Spelling suggestions: "subject:"cumber system"" "subject:"1umber system""
31 |
Kritiska aspekter vid lärandet av decimala talsystemet : En läromedelsanalys i årskurs 3 / Critical aspects in learning the decimal number system : Textbooks analysis in year 3Sigurdardottir, Thorstina January 2022 (has links)
Syftet med detta arbete är att utveckla ett ramverk för analys av variationsmönster som förekommer inom decimala talsystemet i matematikläromedel, för att därefter gå över till att använda detta ramverk för analys av hur tre vanligt förekommande läromedel i Sverige behandlar det decimala talsystemet i årskurs 3. Studien utgår därmed från följande frågeställning: Hur kan kritiska aspekter inom området decimala talsystemet, som framkommer i tidigare forskning, användas för läromedelsanalys? På vilka sätt behandlar det tre utvalda läromedlen för årskurs 3 de kritiska aspekterna i det decimala talsystemet? Studiens fokus är det matematiska innehåll som eleven möter i läroboken vid inlärning av det decimala talsystemet och den variation som finns i de kritiska aspekterna som forskningen visar på. Forskningen visar nämligen att det är vanligt förekommande att elever har problem med inlärning av det decimala talsystemet och att detta kan leda till problem senare under deras skolgång. Metoden som används är en kvalitativ läromedelsanalys där tre läromedel för årskurs 3 analyserades med syftet att undersöka vilka variationsmönster som förekommer i de kritiska aspekterna som forskningen lyfter. De kritiska aspekter som granskades var platsvärde, gruppering, språk och variationsmönster. Analysen visar att varitionsmönsters förekomst skiljer sig mycket mellan de olika böckerna. De kritiska aspekterna förekom i alla läromedlen men i olika omfattning. Ett av lärmedlen hade ett mer framstående variationsmönster, särskilt inom området platsvärde. Utifrån denna studie är det rimligt att dra slutsatsen att det inte går att förlita sig enbart på läromedlen i undervisning av det decimala talsystemet, samt att läraren bör kritiskt granska dessa före användning. Det vill säga användandet av enbart läromedel kan utgöra problem vid lärandet av det decimala talsystemet och lärare behöver bli mer medvetna om sitt ansvar när det kommer till val av läromedel. / The purpose of this work is to develop a framework for analysis of variation patterns occurring within the decimal number system in mathematic textbooks, and then move on to using this framework for analysis of how three commonly used textbooks, in Sweden deal with the decimal number system in Year 3. This purpose is achieved by answering the following questions. In what way can critical aspects concerning the field of the decimal number system, which emerge from previous research, be used for textbook analysis? In what ways do the three selected textbooks for Year 3 deal with the critical aspects of the decimal number system? The focus of the study is the mathematical content that students encounter in textbooks when learning the decimal number system and the variation that exists in the critical aspects revealed by research. Research shows that it is common for students to have problems with learning the decimal number system and that this can lead to issues later in their schooling. Qualitative analysis was used to analyze three teaching materials for Year 3 with the aim of examining which variation patterns occur in the critical aspects highlighted by the research. The critical aspects examined were site value, grouping, and language. The analysis showed that the occurrence of variation patterns varies greatly among different books. The critical aspects occurred in all the teaching materials, but to varying degrees. One of the teaching aids had more prominent variation patterns, especially concerning place value. From this study, it can be concluded that it is not possible to rely solely on textbooks when teaching the decimal number system, and teachers should critically examine teaching aids before using them. Relying on textbooks alone can be a problem in teaching the decimal number system, and teachers need to become more aware of their responsibilities when choosing textbooks in mathematics.
|
32 |
The Cognition behind Early Mathematics: A Literature Review and an Exploration of the Educational Implications in Early ChildhoodHardman, Emily C. 06 May 2020 (has links)
No description available.
|
33 |
Design and Analysis of Modular Architectures for an RNS to Mixed Radix Conversion Multi-processorShivashankar, Nithin 27 October 2014 (has links)
No description available.
|
34 |
Le développement d’une séquence d’enseignement/apprentissage basée sur l’histoire de la numération pour des élèves du troisième cycle du primairePoirier, Julie 07 1900 (has links)
Notre contexte pratique — nous enseignons à des élèves doués de cinquième année suivant le programme international — a grandement influencé la présente recherche. En effet, le Programme primaire international (Organisation du Baccalauréat International, 2007) propose un enseignement par thèmes transdisciplinaires, dont un s’intitulant Où nous nous situons dans l’espace et le temps. Aussi, nos élèves sont tenus de suivre le Programme de formation de l’école québécoise (MÉLS Ministère de l'Éducation du Loisir et du Sport, 2001) avec le développement, notamment, de la compétence Résoudre une situation-problème et l’introduction d’une nouveauté : les repères culturels. Après une revue de la littérature, l’histoire des mathématiques nous semble tout indiquée. Toutefois, il existe peu de ressources pédagogiques pour les enseignants du primaire. Nous proposons donc d’en créer, nous appuyant sur l’approche constructiviste, approche prônée par nos deux programmes d’études (OBI et MÉLS).
Nous relevons donc les avantages à intégrer l’histoire des mathématiques pour les élèves (intérêt et motivation accrus, changement dans leur façon de percevoir les mathématiques et amélioration de leurs apprentissages et de leur compréhension des mathématiques). Nous soulignons également les difficultés à introduire une approche historique à l’enseignement des mathématiques et proposons diverses façons de le faire. Puis, les concepts mathématiques à l’étude, à savoir l’arithmétique, et la numération, sont définis et nous voyons leur importance dans le programme de mathématiques du primaire. Nous décrivons ensuite les six systèmes de numération retenus (sumérien, égyptien, babylonien, chinois, romain et maya) ainsi que notre système actuel : le système indo-arabe. Enfin, nous abordons les difficultés que certaines pratiques des enseignants ou des manuels scolaires posent aux élèves en numération.
Nous situons ensuite notre étude au sein de la recherche en sciences de l’éducation en nous attardant à la recherche appliquée ou dite pédagogique et plus particulièrement aux apports des recherches menées par des praticiens (un rapprochement entre la recherche et la pratique, une amélioration de l’enseignement et/ou de l’apprentissage, une réflexion de l’intérieur sur la pratique enseignante et une meilleure connaissance du milieu). Aussi, nous exposons les risques de biais qu’il est possible de rencontrer dans une recherche pédagogique, et ce, pour mieux les éviter. Nous enchaînons avec une description de nos outils de collecte de données et rappelons les exigences de la rigueur scientifique.
Ce n’est qu’ensuite que nous décrivons notre séquence d’enseignement/apprentissage en détaillant chacune des activités. Ces activités consistent notamment à découvrir comment différents systèmes de numération fonctionnent (à l’aide de feuilles de travail et de notations anciennes), puis comment ces mêmes peuples effectuaient leurs additions et leurs soustractions et finalement, comment ils effectuaient les multiplications et les divisions.
Enfin, nous analysons nos données à partir de notre journal de bord quotidien bonifié par les enregistrements vidéo, les affiches des élèves, les réponses aux tests de compréhension et au questionnaire d’appréciation. Notre étude nous amène à conclure à la pertinence de cette séquence pour notre milieu : l’intérêt et la motivation suscités, la perception des mathématiques et les apprentissages réalisés. Nous revenons également sur le constructivisme et une dimension non prévue : le développement de la communication mathématique. / Our practical context -we teach gifted fifth grade students in an International School- has greatly influenced this research. Indeed, the International Primary Years Programme (International Baccalaureate Organization, 2007) fosters transdisciplinary themes, including one intitled Where we are in place and time. Our students are also expected to follow the Quebec education program schools (Ministry of Education, Recreation and Sport, 2001) with the development of competencies such as: To solve situational problem and the introduction of a novelty: the Cultural References. After the literature review, the history of mathematics seems very appropriate. However, there are few educational resources for primary teachers. This is the reason why we propose creating the resources by drawing upon the constructivist approach, an approach recommended by our two curricula (OBI and MELS).
We bring to light the advantages of integrating the history of mathematics for students (increased interest and motivation, change in their perception of mathematics and improvement in learning and understanding mathematics). We also highlight the difficulties in introducing a historical approach to teaching mathematics and suggest various ways to explore it. Then we define the mathematical concepts of the study: arithmetic and counting and we remark their importance in the Primary Mathematics Curriculum. We then describe the six selected number systems (Sumerian, Egyptian, Babylonian, Chinese, Roman and Mayan) as well as our current system: the Indo-Arabic system. Finally, we discuss the difficulties students may encounter due to some teaching practices or textbooks on counting.
We situate our study in the research of science of education especially on applied research and the contributions of the teacher research reconciliation between research and practice, the improvement of teaching and / or learning and a reflection within the teaching practice). Also, we reveal the possible biases that can be encountered in a pedagogical research and thus, to better avoid them. Finally, we describe the tools used to collect our data and look at the requirements for scientific rigor.
Next, we describe our teaching sequence activities in details. These activities include the discovery of how the different number systems work (using worksheets and old notations) and how the people using the same systems do their additions and subtractions and how they do their multiplications and divisions. Finally, we analyze our data from a daily diary supported by video recordings, students’ posters, the comprehension tests and the evaluation questionnaire. Our study leads us to conclude the relevance of this sequence in our context: interest and motivation, perception of mathematics and learning achieved. We also discuss constructivism and a dimension not provided: the development of mathematical communication.
|
35 |
A virtual RSNS direction finding antenna systemChen, Jui-Chun 12 1900 (has links)
Approved for public release; distribution in unlimited. / In this thesis, a performance analysis and improvement of a phase sampling interferometer antenna system based on the Robust Symmetrical Number System (RSNS) in the presence of noise is investigated. Previous works have shown that the RSNS-based DF technique can provide high bearing resolution with a minimum number of antenna elements. However, the previous experimental data showed significant deviation from the theoretical results expected due to imperfections, errors, and noise. Therefore, an additive Gaussian noise model of RSNS-based DF was established and simulated. Simulation results show that the presence of noise distorts the signal amplitudes used in the RSNS processor and causes degradation of the angle-ofarrival estimates. A performance analysis was undertaken by first introducing the quadrature modulation configuration into RSNS-based DF system, which provided a digital antenna approach for more flexibility in the signal processing. With a digital approach, variable resolution signal preprocessing can be employed, using a virtual channel concept. The virtual channel concept changes moduli values without changing the actual physical antenna element spacing. This attractive property allows the RSNS algorithm to be implemented into existing antenna arrays and only requires modifying the antenna signal processor. Computer simulation results showed that the proposed method can successfully improve the system performance and also mitigate the effects of noise. / Captain, Taiwan Army
|
36 |
Accélérateurs logiciels et matériels pour l'algèbre linéaire creuse sur les corps finis / Hardware and Software Accelerators for Sparse Linear Algebra over Finite FieldsJeljeli, Hamza 16 July 2015 (has links)
Les primitives de la cryptographie à clé publique reposent sur la difficulté supposée de résoudre certains problèmes mathématiques. Dans ce travail, on s'intéresse à la cryptanalyse du problème du logarithme discret dans les sous-groupes multiplicatifs des corps finis. Les algorithmes de calcul d'index, utilisés dans ce contexte, nécessitent de résoudre de grands systèmes linéaires creux définis sur des corps finis de grande caractéristique. Cette algèbre linéaire représente dans beaucoup de cas le goulot d'étranglement qui empêche de cibler des tailles de corps plus grandes. L'objectif de cette thèse est d'explorer les éléments qui permettent d'accélérer cette algèbre linéaire sur des architectures pensées pour le calcul parallèle. On est amené à exploiter le parallélisme qui intervient dans différents niveaux algorithmiques et arithmétiques et à adapter les algorithmes classiques aux caractéristiques des architectures utilisées et aux spécificités du problème. Dans la première partie du manuscrit, on présente un rappel sur le contexte du logarithme discret et des architectures logicielles et matérielles utilisées. La seconde partie du manuscrit est consacrée à l'accélération de l'algèbre linéaire. Ce travail a donné lieu à deux implémentations de résolution de systèmes linéaires basées sur l'algorithme de Wiedemann par blocs : une implémentation adaptée à un cluster de GPU NVIDIA et une implémentation adaptée à un cluster de CPU multi-cœurs. Ces implémentations ont contribué à la réalisation de records de calcul de logarithme discret dans les corps binaires GF(2^{619}) et GF(2^{809} et dans le corps premier GF(p_{180}) / The security of public-key cryptographic primitives relies on the computational difficulty of solving some mathematical problems. In this work, we are interested in the cryptanalysis of the discrete logarithm problem over the multiplicative subgroups of finite fields. The index calculus algorithms, which are used in this context, require solving large sparse systems of linear equations over finite fields. This linear algebra represents a serious limiting factor when targeting larger fields. The object of this thesis is to explore all the elements that accelerate this linear algebra over parallel architectures. We need to exploit the different levels of parallelism provided by these computations and to adapt the state-of-the-art algorithms to the characteristics of the considered architectures and to the specificities of the problem. In the first part of the manuscript, we present an overview of the discrete logarithm context and an overview of the considered software and hardware architectures. The second part deals with accelerating the linear algebra. We developed two implementations of linear system solvers based on the block Wiedemann algorithm: an NVIDIA-GPU-based implementation and an implementation adapted to a cluster of multi-core CPU. These implementations contributed to solving the discrete logarithm problem in binary fields GF(2^{619}) et GF(2^{809}) and in the prime field GF(p_{180})
|
37 |
O Sistema de Numeração Decimal: um estudo sobre o valor posicionalTracanella, Aline Tafarelo 09 May 2018 (has links)
Submitted by Filipe dos Santos (fsantos@pucsp.br) on 2018-07-27T13:29:56Z
No. of bitstreams: 1
Aline Tafarelo Tracanella.pdf: 2762008 bytes, checksum: a0ecbfb9e128d24bccdf1a07c2c5e734 (MD5) / Made available in DSpace on 2018-07-27T13:29:57Z (GMT). No. of bitstreams: 1
Aline Tafarelo Tracanella.pdf: 2762008 bytes, checksum: a0ecbfb9e128d24bccdf1a07c2c5e734 (MD5)
Previous issue date: 2018-05-09 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / As soon as children begin their school life, they already carry with them an idea about the
numbers and operation of the Decimal Number System (DNS). However, this knowledge need
to be systematized, extended and deepened appropriately in order to assist in the construction
of other mathematical concepts. Given this problem, the present research aims to investigate
the mobilized knowledge of the positional value in the DNS and the understanding of the
characteristics of number zero in the same system by students of the fourth year of Elementary
School. Therefore, it is done a brief historical context to rescue how the development of this
kind of knowledge by ancient people has developed over time. As theoretical contributions, it
is used the researches of Piaget & Szeminska, and of Kamii on the constructions of the number
concept by the students. Regarding to the acquisition of the properties of the DNS, it is
discussed the researches of Fayol, Lerner & Sadovsky as well as Zunino, who also studies the
issue of the number zero in this system. To achieve the research objective, it is adopted the
qualitative methodology, since the focus of it is on the mobilized knowledge by the students in
the search for a solution to proposed activities. It was also developed an instrument with six
exercises involving the positional value and the number zero, based on the proposed sequence
in the Brandt version. One week after an application of the instrument, it was conducted a semistructured
interview, which was of very important to understand the answers provided by the
students. In the analysis and discussion of the obtained data, it is understand that the students
mobilized knowledge about the numerical sequence and the criteria of comparison pointed out
by Lerner & Sadovsky. In addition to these mobilized knowledge, the participants also used the
contextualization of activities to justify their responses, using a comparison with everyday
situations, such as, for example, age observation among children. Regarding the number zero,
it was analyzed the meanings attributed to this number by the students during interviews.
During the research phases, all students stated that zero “worth nothing”, but they have provided
justifications that meet the historical facts pointed out in the brief contextualization carried out
in the third chapter of the research. It is also noted that the participants are building their
knowledge about DNS, presenting an unstable knowledge that changes according to the
question asked regarding the proposed situation. The results found in this research indicate that
the work with DNS needs to be continuous throughout the initial years of Elementary School,
as the students continue to build their knowledge about DNS and expand their understanding
of the number zero in the years after the literacy cycle / Assim que as crianças iniciam sua vida escolar, já carregam consigo alguma ideia sobre os
números e sobre o funcionamento do Sistema de Numeração Decimal (SND). Todavia esses
conhecimentos precisam ser sistematizados, ampliados e aprofundados adequadamente, para
auxiliar na construção de outros conceitos matemáticos. Diante dessa problemática, a presente
pesquisa tem por objetivo investigar que conhecimentos são mobilizados por alunos do quarto
ano do Ensino Fundamental acerca do valor posicional no SND e sobre a compreensão do
número zero nesse mesmo sistema. Para isso, buscamos em uma breve contextualização
histórica resgatar como se deu o desenvolvimento desses saberes por povos antigos no decorrer
do tempo. Como aportes teóricos, nos baseamos nas pesquisas de Piaget e Szeminska e de
Kamii sobre a construção do conceito de número pelos alunos. Com relação à aquisição das
propriedades do SND, discorremos sobre as pesquisas de Fayol e de Lerner e Sadovsky, bem
como de Zunino, que aborda também a questão do número zero nesse sistema. Para atender ao
objetivo da pesquisa, adotamos a metodologia de cunho qualitativo, pois o foco da investigação
está nos conhecimentos mobilizados pelos educandos na busca por uma solução para as
atividades propostas. Elaboramos um instrumento com seis exercícios envolvendo o valor
posicional e o número zero, baseado na sequência proposta na tese de Brandt. Uma semana
após a aplicação do instrumento, realizamos uma entrevista semiestruturada, que foi de suma
importância para compreender com maior clareza as respostas fornecidas pelos alunos. Na
análise e discussão dos dados obtidos, compreendemos que os estudantes mobilizaram
conhecimentos acerca da sequência numérica e dos critérios de comparação apontados por
Lerner e Sadovsky. Além desses conhecimentos mobilizados, os participantes também
recorreram à contextualização das atividades para justificar suas respostas, usando a
comparação com situações cotidianas, como, por exemplo, a observação da idade entre
crianças. Com relação ao número zero, analisamos os significados atribuídos a esse número
pelos alunos durante as entrevistas. Durante as fases da pesquisa, todos os educandos afirmaram
que o zero “não vale nada”, mas trouxeram justificativas que vão ao encontro dos fatos histórico
apontados na breve contextualização realizada no primeiro capítulo da investigação. Notamos
também que os participantes estão construindo seus conhecimentos acerca do SND,
apresentando um conhecimento não estável, ou seja, que se altera de acordo com a pergunta
feita referente à situação proposta. Os resultados encontrados nessa pesquisa apontam que o
trabalho com o SND precisa ser contínuo, durante todos os anos iniciais do Ensino
Fundamental, pois os alunos continuam construindo seus conhecimentos acerca do SND e
ampliando sua compreensão sobre o número zero nos anos posteriores ao ciclo de alfabetização
|
38 |
Análise de dissertações e teses voltadas à formação de professores e que focalizem o sistema de numeração decimalCardoso, Mariana Campioni Morone 09 July 2014 (has links)
Made available in DSpace on 2016-04-27T16:57:31Z (GMT). No. of bitstreams: 1
Mariana Campioni Morone Cardoso.pdf: 1708711 bytes, checksum: f36e3e1fad86d85e0e2252fcf18410f9 (MD5)
Previous issue date: 2014-07-09 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This paper aims at analyzing dissertations and theses that focus on teaching the first years and the comprehension of the decimal number system. On CAPES platform we have used the following key words: Decimal number system and first years; Decimal number system and teacher formation between 2006 and 2010. Having chosen the researches, in preliminar analysis we collected and presented their summaries, objectives, theoretical references, methodology and results through text recording. We established categories, in order to relate the selected researches to each other, searching for answers to the following questions: which objectives have been pursued and which results have been reached in relation to the decimal number system relatively to teaching such topic in the first years of school? To do that, we have decided on using the content analysis on a qualitative basis. We deconstructed the structure, recognizing its main characteristics and extracted from that its meaning following Laville and Dionne. The analysis of the researches aims at the need to be alert to the necessary command of the content for effective teaching. So, we consider urgent the adoption of a perspective of formation in which the future teacher involves himself in teaching reflexive processes during his learning / Neste trabalho buscamos analisar dissertações e teses que focalizassem a docência dos anos iniciais e a compreensão do sistema de numeração decimal. Na plataforma CAPES, utilizamos as seguintes palavras-chaves: Sistema de numeração decimal e anos iniciais; Sistema de numeração decimal e formação de professores entre os anos de 2006 e 2010. Após a escolha das pesquisas, em análises preliminares recolhemos e apresentamos seus resumos, seus objetivos, referencial teórico, metodologia e resultados, através de fichamentos. Nas análises, definimos categorias, a fim de estabelecer relações entre essas pesquisas selecionadas, buscando repostas às questões: que objetivos têm sido buscados e que resultados vêm sendo alcançados em relação ao sistema de numeração decimal relativamente à docência deste assunto nos anos iniciais do Ensino Fundamental? Para tal, optamos pela análise de conteúdo, de caráter qualitativo. Desmontamos a estrutura, reconhecendo suas principais características, e disso extraímos sua significação, seguindo Laville e Dionne. A análise das pesquisas selecionadas, aponta para a necessidade de se atentar ao necessário domínio do conteúdo para que se efetive o ensino. Logo, consideramos urgente a adoção de uma perspectiva de formação na qual o futuro professor se envolva em processos reflexivos da docência, na sua aprendizagem
|
39 |
O ensino do Sistema de Numeração Decimal nas séries iniciais do Ensino Fundamental: as relações com a aprendizagem do sistema posicionalMilan, Ivonildes dos Santos 22 November 2017 (has links)
Submitted by Filipe dos Santos (fsantos@pucsp.br) on 2018-01-23T11:30:17Z
No. of bitstreams: 1
Ivonildes dos Santos Milan.pdf: 1457633 bytes, checksum: 5afb9339e38d655529cb405ab53dc782 (MD5) / Made available in DSpace on 2018-01-23T11:30:17Z (GMT). No. of bitstreams: 1
Ivonildes dos Santos Milan.pdf: 1457633 bytes, checksum: 5afb9339e38d655529cb405ab53dc782 (MD5)
Previous issue date: 2017-11-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / On this research, we aim to reflect upon the teaching and learning of the Decimal Number System on the second grade of elementary School, more specifically to analyze the didactical conditions that allow the comprehension of what is hidden - the positional system. We used some of the contributions of Mathematics’ Didactics that defends the usage of didactical situations that raise, in students, the use of previous knowledge to select, organize, interpret information, and make decisions, in order to allow them to find different ways to build mathematical knowledge. Our methodology is inspired by Didactical Engineering, which comprehends the usage/elaboration of didactical situations that ensemble a meaningful learning board in the classroom. The didactical sequence, elaborated by Argentinian researchers from the Didactical Situations Theory, integrates an investigation project - developed in the city of Buenos Aires with second grade students – and has, as a starting point, the interaction with written numbers. We applied the didactical sequence twice to second grade students from the same elementary school, located in São Paulo. Our research has brought relevant contributions, such as: the way students relate, think and comprehend the positional value; promote successive approximations on the value of algorithms that represent the first grouping of ten basis; justify the efficiency of didactical sequences in mathematical learning; identify variables, in teaching and learning, that secure the process of both successive conceptualization to new knowledge and also variables present in the usual teaching which unfeasible the construction process of knowledge by students, and yet, confirms the potential of the group discussions to Mathematical learning / Nessa pesquisa, objetivamos refletir sobre o ensino e a aprendizagem do Sistema de Numeração Decimal no segundo ano do Ensino Fundamental, mais especificamente analisar as condições didáticas que possibilitam a compreensão daquilo que está oculto – o sistema posicional. Utilizamos algumas contribuições da Didática da Matemática, que defende a utilização de situações didáticas que suscitem, nos alunos, ações que mobilizem conhecimentos já adquiridos, para que selecionem, organizem, interpretem informações e tomem decisões que os permitam encontrar diferentes formas de construir conhecimentos matemáticos. Nossa metodologia se inspira na Engenharia Didática, que compreende a utilização/elaboração de situações didáticas que configurem um quadro de aprendizagem significativa em sala de aula. A sequência didática, elaborada por pesquisadoras argentinas a partir da Teoria das Situações Didáticas, integra um projeto de investigação – desenvolvido na Província de Buenos Aires com alunos do segundo ano –, cujo ponto de partida é a interação com a numeração escrita. Aplicamos a sequência didática duas vezes a alunos do segundo ano do Ensino Fundamental, numa mesma escola, localizada em São Paulo. Nossa pesquisa trouxe contribuições relevantes, tais como: o modo como os alunos se relacionam, pensam e entendem o valor posicional; promover aproximações sucessivas sobre o valor dos algarismos que representam o primeiro agrupamento da base dez; justificar a eficácia das sequências didáticas na aprendizagem matemática; identificar variáveis, no ensino e aprendizagem, que asseguram o processo tanto de conceitualizações sucessivas a novos conhecimentos quanto de variáveis presentes no ensino usual, as quais inviabilizam o processo de construção dos conhecimentos pelos alunos; e, ainda, confirmar o potencial das discussões coletivas para a aprendizagem matemática
|
40 |
Le développement d’une séquence d’enseignement/apprentissage basée sur l’histoire de la numération pour des élèves du troisième cycle du primairePoirier, Julie 07 1900 (has links)
Notre contexte pratique — nous enseignons à des élèves doués de cinquième année suivant le programme international — a grandement influencé la présente recherche. En effet, le Programme primaire international (Organisation du Baccalauréat International, 2007) propose un enseignement par thèmes transdisciplinaires, dont un s’intitulant Où nous nous situons dans l’espace et le temps. Aussi, nos élèves sont tenus de suivre le Programme de formation de l’école québécoise (MÉLS Ministère de l'Éducation du Loisir et du Sport, 2001) avec le développement, notamment, de la compétence Résoudre une situation-problème et l’introduction d’une nouveauté : les repères culturels. Après une revue de la littérature, l’histoire des mathématiques nous semble tout indiquée. Toutefois, il existe peu de ressources pédagogiques pour les enseignants du primaire. Nous proposons donc d’en créer, nous appuyant sur l’approche constructiviste, approche prônée par nos deux programmes d’études (OBI et MÉLS).
Nous relevons donc les avantages à intégrer l’histoire des mathématiques pour les élèves (intérêt et motivation accrus, changement dans leur façon de percevoir les mathématiques et amélioration de leurs apprentissages et de leur compréhension des mathématiques). Nous soulignons également les difficultés à introduire une approche historique à l’enseignement des mathématiques et proposons diverses façons de le faire. Puis, les concepts mathématiques à l’étude, à savoir l’arithmétique, et la numération, sont définis et nous voyons leur importance dans le programme de mathématiques du primaire. Nous décrivons ensuite les six systèmes de numération retenus (sumérien, égyptien, babylonien, chinois, romain et maya) ainsi que notre système actuel : le système indo-arabe. Enfin, nous abordons les difficultés que certaines pratiques des enseignants ou des manuels scolaires posent aux élèves en numération.
Nous situons ensuite notre étude au sein de la recherche en sciences de l’éducation en nous attardant à la recherche appliquée ou dite pédagogique et plus particulièrement aux apports des recherches menées par des praticiens (un rapprochement entre la recherche et la pratique, une amélioration de l’enseignement et/ou de l’apprentissage, une réflexion de l’intérieur sur la pratique enseignante et une meilleure connaissance du milieu). Aussi, nous exposons les risques de biais qu’il est possible de rencontrer dans une recherche pédagogique, et ce, pour mieux les éviter. Nous enchaînons avec une description de nos outils de collecte de données et rappelons les exigences de la rigueur scientifique.
Ce n’est qu’ensuite que nous décrivons notre séquence d’enseignement/apprentissage en détaillant chacune des activités. Ces activités consistent notamment à découvrir comment différents systèmes de numération fonctionnent (à l’aide de feuilles de travail et de notations anciennes), puis comment ces mêmes peuples effectuaient leurs additions et leurs soustractions et finalement, comment ils effectuaient les multiplications et les divisions.
Enfin, nous analysons nos données à partir de notre journal de bord quotidien bonifié par les enregistrements vidéo, les affiches des élèves, les réponses aux tests de compréhension et au questionnaire d’appréciation. Notre étude nous amène à conclure à la pertinence de cette séquence pour notre milieu : l’intérêt et la motivation suscités, la perception des mathématiques et les apprentissages réalisés. Nous revenons également sur le constructivisme et une dimension non prévue : le développement de la communication mathématique. / Our practical context -we teach gifted fifth grade students in an International School- has greatly influenced this research. Indeed, the International Primary Years Programme (International Baccalaureate Organization, 2007) fosters transdisciplinary themes, including one intitled Where we are in place and time. Our students are also expected to follow the Quebec education program schools (Ministry of Education, Recreation and Sport, 2001) with the development of competencies such as: To solve situational problem and the introduction of a novelty: the Cultural References. After the literature review, the history of mathematics seems very appropriate. However, there are few educational resources for primary teachers. This is the reason why we propose creating the resources by drawing upon the constructivist approach, an approach recommended by our two curricula (OBI and MELS).
We bring to light the advantages of integrating the history of mathematics for students (increased interest and motivation, change in their perception of mathematics and improvement in learning and understanding mathematics). We also highlight the difficulties in introducing a historical approach to teaching mathematics and suggest various ways to explore it. Then we define the mathematical concepts of the study: arithmetic and counting and we remark their importance in the Primary Mathematics Curriculum. We then describe the six selected number systems (Sumerian, Egyptian, Babylonian, Chinese, Roman and Mayan) as well as our current system: the Indo-Arabic system. Finally, we discuss the difficulties students may encounter due to some teaching practices or textbooks on counting.
We situate our study in the research of science of education especially on applied research and the contributions of the teacher research reconciliation between research and practice, the improvement of teaching and / or learning and a reflection within the teaching practice). Also, we reveal the possible biases that can be encountered in a pedagogical research and thus, to better avoid them. Finally, we describe the tools used to collect our data and look at the requirements for scientific rigor.
Next, we describe our teaching sequence activities in details. These activities include the discovery of how the different number systems work (using worksheets and old notations) and how the people using the same systems do their additions and subtractions and how they do their multiplications and divisions. Finally, we analyze our data from a daily diary supported by video recordings, students’ posters, the comprehension tests and the evaluation questionnaire. Our study leads us to conclude the relevance of this sequence in our context: interest and motivation, perception of mathematics and learning achieved. We also discuss constructivism and a dimension not provided: the development of mathematical communication.
|
Page generated in 0.0724 seconds