131 |
[en] THE STUDY OF CONIC CURVES BY ORIGAMI / [pt] O ESTUDO DAS CÔNICAS ATRAVÉS DO ORIGAMIBRUNA MAYARA BATISTA RODRIGUES 24 February 2016 (has links)
[pt] O estudo das Curvas Cônicas tem sido cada vez menos abordado no Ensino
Médio e, nos poucos casos em que tal abordagem é apresentada, verifica-se uma
prioridade indevida à memorização de equações. Por outro lado, embora a eficiência
do Origami não seja divulgada com frequência no ensino de assuntos matemáticos
de maior complexidade, existe uma geometria axiomática consistente por trás desta
arte de dobrar papéis que a torna um instrumento de ensino capaz de explorar, com
clareza, propriedades e definições de assuntos matemáticos. O presente trabalho
pretende unir esses dois elementos, curvas cônicas e origami, com o intuito de
desenvolver conceitos do primeiro a partir de construções do segundo.
Desta forma, faz-se um relato histórico e conceitual sobre as Curvas Cônicas;
descreve-se a importância do Origami e seu uso no ensino da Matemática;
apresenta-se o estudo das sete possibilidades para uma única dobragem no Origami
conhecidas como os axiomas de Huzita-Hatori com o objetivo de sugerir o uso das
dobraduras no estudo da elipse, da parábola e da hipérbole no Ensino Médio das
escolas do país. A fim de divulgar o Origami como um recurso eficiente e interessante no
ensino das Cônicas e validar a pesquisa apresentada, uma oficina foi desenvolvida,
aplicada, avaliada e aprimorada num pequeno grupo de estudantes de Licenciatura
em Matemática e seus resultados estão aqui expostos. / [en] The study of Conic Curves has been each time less approached at High School
and, in those few cases it is presented, it s possible to verify an improperly
prioritized of equation memorizations. On the other hand, although the efficiency of
the Origami is not often divulged at teaching mathematical subjects of greater
complexity, there is a consistent axiomatic geometry behind this art of folding
papers that makes it an a teaching tool able to explore, clearly, the properties and
definitions of mathematical subjects. This study aims to join these two elements,
conic curves and origami, in order to develop concepts from the first to building the
second one. This way, it can make a historical and conceptual essay about the Conic
Curves; describing the importance of the Origami and its use in Mathematics
teaching; presenting the study of the seven possibilities for a single folding in
Origami known as Huzita-Hatori s axioms in order to suggest the use of the folding
in the study of ellipse, parable and hyperbole at High Schools all over the country.
Divulging the Origami as an efficient and interesting resource in the teaching
of the Conics and validate this research, a workshop was developed, applied,
evaluated and improved in a small group of students of Degree in Mathematics and
its results are exposed here.
|
132 |
Uma contribuição para o ensino de geometria utilizando origami e caleidoscópioBuske, Neirelise [UNESP] 16 April 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:24:53Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-04-16Bitstream added on 2014-06-13T19:11:46Z : No. of bitstreams: 1
buske_n_me_rcla.pdf: 2292266 bytes, checksum: 62def68434237e23a32ee13c7d52e395 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / O objetivo desta pesquisa foi analisar como o origami e o caleidoscópio podem contribuir no processo de ensino e aprendizagem de alguns conceitos da Geometria. Este trabalho foi desenvolvido seguindo a proposta metodológica de Romberg, tem abordagem do tipo qualitativa e a coleta de dados se deu, essencialmente, por observação-participante em sala de aula, com a utilização de questionários, gravações de áudio, fotos, anotações e análise documental. Elaboramos uma proposta de ensino com a finalidade de levar os alunos a trabalharem com os problemas utilizando as construções feitas com origami e caleidoscópio. Foram desenvolvidas atividades, via resolução de problemas, com alunos do segundo semestre de um curso de licenciatura em Matemática, e os conteúdos estudados estavam relacionados às construções fundamentais, polígonos e poliedros. No encadeamento dos assuntos são apresentadas as explicações de como se realizar as construções com origami e como se confeccionar o caleidoscópio generalizado, juntamente com os preceitos matemáticos necessários para justificá-los. A execução prática da proposta de ensino por nós sugerida permitiu-nos fazer o levantamento e a análise de diversas possibilidades e limitações do uso do origami e caleidoscópio no estudo de conceitos relacionados à Geometria, mas circunscritos às proposições já citadas. Assim, trazemos sugestões para aperfeiçoar o trabalho e também de como ele pode ser mais bem aproveitado, cônscios de que o assunto aqui não se esgota, podendo surgir novas aplicações aos olhos de um educador interessado em utilizar esses recursos. / The purpose of this research was to analyze how Origami and kaleidoscope may contribute on the teaching and learning process over some Geometry concepts. This work has been developed according to Romberg s methodological proposal, it has a qualitative-type approach and the data collecting was essentially carried out by practical class observation, utilizing questionnaires, audio recordings, pictures, drafts and document analysis. We ve elaborated a teaching proposal aiming to lead students to work with problems by utilizing the constructions made with the Origami and Kaleidoscope. Activities have been developed, via problem solving, with the first-year students in a bachelor math's graduation course, and the researched subjects were related to the fundamental constructions, polygon and polyhedron. Explanations are shown within the subject sequences on how to do the constructions by using the Origami and how to build an average kaleidoscope, according to the mathematical precepts needed to justify them. The practical execution of the teaching proposal suggested by us, allowed ourselves to make the research and analyzes of many kaleidoscope and Origami possibility and limitation use on the Geometry related concepts research, besides circumscription to the already mentioned proposals. Thus, we bring along suggestions to improve the work and also how it could be more developed, aware that the subject here is not over, since applications may appear before an educator's eyes interested in using those resources.
|
133 |
Development of Deformable Electronics using Microelectromechanical Systems (MEMS) based Fabrication TechnologiesJanuary 2014 (has links)
abstract: This dissertation presents my work on development of deformable electronics using microelectromechanical systems (MEMS) based fabrication technologies. In recent years, deformable electronics are coming to revolutionize the functionality of microelectronics seamlessly with their application environment, ranging from various consumer electronics to bio-medical applications. Many researchers have studied this area, and a wide variety of devices have been fabricated. One traditional way is to directly fabricate electronic devices on flexible substrate through low-temperature processes. These devices suffered from constrained functionality due to the temperature limit. Another transfer printing approach has been developed recently. The general idea is to fabricate functional devices on hard and planar substrates using standard processes then transferred by elastomeric stamps and printed on desired flexible and stretchable substrates. The main disadvantages are that the transfer printing step may limit the yield. The third method is "flexible skins" which silicon substrates are thinned down and structured into islands and sandwiched by two layers of polymer. The main advantage of this method is post CMOS compatible. Based on this technology, we successfully fabricated a 3-D flexible thermal sensor for intravascular flow monitoring. The final product of the 3-D sensor has three independent sensing elements equally distributed around the wall of catheter (1.2 mm in diameter) with 120° spacing. This structure introduces three independent information channels, and cross-comparisons among all readings were utilized to eliminate experimental error and provide better measurement results. The novel fabrication and assembly technology can also be applied to other catheter based biomedical devices. A step forward inspired by the ancient art of folding, origami, which creating three-dimensional (3-D) structures from two-dimensional (2-D) sheets through a high degree of folding along the creases. Based on this idea, we developed a novel method to enable better deformability. One example is origami-enabled silicon solar cells. The solar panel can reach up to 644% areal compactness while maintain reasonable good performance (less than 30% output power density drop) upon 40 times cyclic folding/unfolding. This approach can be readily applied to other functional devices, ranging from sensors, displays, antenna, to energy storage devices. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2014
|
134 |
Studies of Origami and Kirigami and Their ApplicationsJanuary 2016 (has links)
abstract: Origami and Kirigami are two traditional art forms in the world. Origami, from
‘ori’ meaning folding, and ‘kami’ meaning paper is the art of paper folding. Kirigami, from ‘kiri’ meaning cutting, is the art of the combination of paper cutting and paper folding. In this dissertation, Origami and kirigami concepts were successively utilized in making stretchable lithium ion batteries and three-dimensional (3D) silicon structure which both provide excellent mechanical characteristics. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2016
|
135 |
Uma contribuição para o ensino de geometria utilizando origami e caleidoscópio /Buske, Neirelise. January 2007 (has links)
Orientador: Claudemir Murari / Banca: Ruy Madsen Barbosa / Banca: Miriam Godoy Penteado / Resumo: O objetivo desta pesquisa foi analisar como o origami e o caleidoscópio podem contribuir no processo de ensino e aprendizagem de alguns conceitos da Geometria. Este trabalho foi desenvolvido seguindo a proposta metodológica de Romberg, tem abordagem do tipo qualitativa e a coleta de dados se deu, essencialmente, por observação-participante em sala de aula, com a utilização de questionários, gravações de áudio, fotos, anotações e análise documental. Elaboramos uma proposta de ensino com a finalidade de levar os alunos a trabalharem com os problemas utilizando as construções feitas com origami e caleidoscópio. Foram desenvolvidas atividades, via resolução de problemas, com alunos do segundo semestre de um curso de licenciatura em Matemática, e os conteúdos estudados estavam relacionados às construções fundamentais, polígonos e poliedros. No encadeamento dos assuntos são apresentadas as explicações de como se realizar as construções com origami e como se confeccionar o caleidoscópio generalizado, juntamente com os preceitos matemáticos necessários para justificá-los. A execução prática da proposta de ensino por nós sugerida permitiu-nos fazer o levantamento e a análise de diversas possibilidades e limitações do uso do origami e caleidoscópio no estudo de conceitos relacionados à Geometria, mas circunscritos às proposições já citadas. Assim, trazemos sugestões para aperfeiçoar o trabalho e também de como ele pode ser mais bem aproveitado, cônscios de que o assunto aqui não se esgota, podendo surgir novas aplicações aos olhos de um educador interessado em utilizar esses recursos. / Abstract: The purpose of this research was to analyze how Origami and kaleidoscope may contribute on the teaching and learning process over some Geometry concepts. This work has been developed according to Rombergs methodological proposal, it has a qualitative-type approach and the data collecting was essentially carried out by practical class observation, utilizing questionnaires, audio recordings, pictures, drafts and document analysis. Weve elaborated a teaching proposal aiming to lead students to work with problems by utilizing the constructions made with the Origami and Kaleidoscope. Activities have been developed, via problem solving, with the first-year students in a bachelor math's graduation course, and the researched subjects were related to the fundamental constructions, polygon and polyhedron. Explanations are shown within the subject sequences on how to do the constructions by using the Origami and how to build an average kaleidoscope, according to the mathematical precepts needed to justify them. The practical execution of the teaching proposal suggested by us, allowed ourselves to make the research and analyzes of many kaleidoscope and Origami possibility and limitation use on the Geometry related concepts research, besides circumscription to the already mentioned proposals. Thus, we bring along suggestions to improve the work and also how it could be more developed, aware that the subject here is not over, since applications may appear before an educator's eyes interested in using those resources. / Mestre
|
136 |
Non-local Finite Element Model for Rigid OrigamiJanuary 2014 (has links)
abstract: Origami is an art transforming a flat sheet of paper into a sculpture. Among various types of origami, the focus is on a particular class called the `Rigid Origami' ("RO"). A Rigid Origami, unlike other forms, is not intended to be folded into fancy shapes. On the contrary, an RO has a simple and a geometrically well-defined crease pattern and does not have curved/smudged faces. The folds can be carried out by a continuous motion in which, at each step, each face of the origami is completely flat. As a result, these planar faces experience very minimal strain due to loading. This property allows it to be used to fold surfaces made of rigid materials. Tapping into the geometrical properties of RO will open a new field of research with great practical utility. Analyzing each new RO pattern will require generating numerous prototypes; this is practically impossible to do, as it consumes a lot of time and material. The advantages of Finite Element Analysis/numerical modeling become very clear in this scenario. A new design concept may be modeled to determine its real world behavior under various load environments and may, therefore, be refined prior to the creation of drawings, when changes are inexpensive. Since an RO undergoes a non-local deformation when subjected to a disturbance, the usage of conventional FEA will not produce accurate results. A non-local element model was developed which can be used in conjunction with the finite element package ABAQUS, via its user-defined element (UEL). This model was tested on two RO patterns, namely Miura-Ori and Ron Resch, by carrying out basic simulations. There are many other interesting origami patterns, exhibiting different meta-material properties, yet to be explored. This Finite Element Approach equips researchers with necessary tools to study those options in great detail. / Dissertation/Thesis / M.S. Mechanical Engineering 2014
|
137 |
A geometria do origami como ferramenta para o ensino da geometria euclidiana na educação básicaBarreto, Carlos Alberto 12 April 2013 (has links)
The purpose of this monograph is to study the geometry of origami and its applications in Euclidean Geometry as a tool that contributes to the teaching of Geometry in Basic Education. Provide a brief history of origami and its arrival in Brazil and as a result we present the axioms that define the simple movements that can be performed using points and straight lines in a plane. We also study
the classic problems of doubling the cube and the trisection of the angle, showing that they are possible to be solved through the Geometry of Origami. We show then the Origami applications for studies of flat Euclidean space, emphasizing the study of Plato polyhedra. We finished the job by showing how we developed the Origami Project - Mathematics and Art in the State College John XXIII . / O objetivo desta monografia é fazer o estudo da Geometria do Origami e de suas aplicações na Geometria Euclidiana como instrumento que contribua para o ensino da Geometria na Educação Básica. Fornecemos um pequeno histórico do Origami e de sua chegada ao Brasil e na sequência apresentamos os axiomas que definem os movimentos simples que podem ser realizados utilizando pontos e retas num plano. Estudamos também os problemas clássicos da duplicação do cubo e da trissecção do ângulo, mostrando que são possíveis de ser resolvidos por meio da Geometria do Origami. Mostramos, então, aplicações do Origami para estudos de Geometria Euclidiana plana e espacial, dando ênfase ao estudo dos poliedros de Platão. Encerramos o trabalho, mostrando como foi desenvolvido o Projeto Origami - Matemática e Arte no Colégio Estadual João XXIII .
|
138 |
Toward Deployable Origami Continuum Robot: Sensing, Planning, and ActuationSantoso, Junius 14 November 2019 (has links)
Continuum manipulators which are robot limbs inspired by trunks, snakes, and tentacles, represent a promising field in robotic manipulation research. They are well known for their compliance, as they can conform to the shape of objects they interact with. Furthermore, they also benefit from improved dexterity and reduced weight compared to traditional rigid manipulators. The current state of the art continuum robots typically consists of a bulky pneumatic or tendon-driven actuation system at the base, hindering their scalability. Additionally, they tend to sag due to their own weight and are weak in the torsional direction, limiting their performance under external load. This work presents an origami-inspired cable-driven continuum manipulator module that offers low-cost, light-weight, and is inherently safe for human-robot interaction. This dissertation includes contributions in the design of the modular and torsionally strong continuum robot, the motion planning and control of the system, and finally the embedded sensing to close the loop providing robust feedback.
|
139 |
Development of a Hybrid Carrier System based on DNA Origami Nanostructures and Layer-by-Layer MicrocarriersScheffler, Florian 12 February 2021 (has links)
Die vorliegende Dissertation untersuchte die Kombination von DNA-Nanostrukturen, so- genannte DNA-Origami-Strukturen, mit Layer-by-Layer (LbL) Mikrotransportern zum Auf- bau eines verbesserten Medikamententrägersystems. Dies sollte die jeweiligen Vorteile der eigenständigen Systeme kombinieren um individuelle Nachteile, wie etwa die li- mitierte Stabilität der DNA-Origami-Strukturen unter physiologischen Bedingungen als auch die schrittweise Freisetzung transportierter Medikamente aus der durchlässigen Polymerschicht der LbL-Mikrotransporter, zu umgehen. Die Untersuchungen bestrebten somit die Oberflächenfunktionalisierung der LbL-Mikrotransporter, um den gerichteten Transport in spezifische Zielzellen zu ermöglichen. Im Weiteren sollte die simultane Aus- schüttung des Medikamentes durch geschützte, in die Polymerschicht integrierte, schalt- bare DNA-Origami-Strukturen erreicht werden.
Dahingehend wurde zunächst die Verkapselung des Rinderserumproteins und Strept- avidins mittels eines angehangenen DNA-Stranges gezeigt. Dieser hybridisierte an die Komplementärsequenz im Inneren von DNA-Origami-Röhren und geschlossenen Käfi- gen mit rechteckigem Grundriss. Um die für den späteren Medikamententransport not- wendige Ablösung des Proteins aus der Struktur zu untersuchen, wurde das gebundene Protein durch externe Zugabe eines invasiven Stranges und einem einzelsträngigen Über- hang am Bindungsstrang nach der Technik des toehold-mediated strand displacements, dem Überhang-bedingten Strangaustausch, vom Bindungsstrang abgelöst. Die umfassende Un- tersuchung zeigte, dass die Wände geschlossener DNA-Origami-Käfige sowohl für einzel- strängige DNA als auch für Proteine teilweise permeabel waren. Im Gegensatz zu unge- schützten Strukturen, zeigten die in die LbL-Polymerschicht integrierten DNA-Origami- Strukturen in anschließenden Stabilitätsstudien eine deutliche Resistenz gegenüber phys- iologisch degradierenden Faktoren. Zum Ziel des Medikamententransports wurden die hybriden Transporter daraufhin umfassend im Zusammenspiel mit kultivierten Zellen untersucht, wobei sich eine gute Interaktionsrate bei vernachlässigbarer Toxizität des Sys- tems zeigte. Die weitere Verbesserung der biologischen Kompatibilität und Selektivität der Transporter wurde im letzten Schritt durch Oberflächenfunktionalisierung mittels einer Lipiddoppelschicht erreicht. Die zusätzliche Anbindung spezifischer Antikörper an diese Doppelschicht führte anschließend zu einer Verbesserung der Aufnahmerate bei Expres- sion des entsprechenden Rezeptors an der Zelloberfläche.
Diese Arbeit zeigte somit die grundlegende Charakterisierung des hybriden Transport- systems aus DNA-Origami-Strukturen und LbL-Mikrotransportern, sowie dessen weitere Funktionalisierung und bildet daher die Grundlage für weiterführende Studien.
|
140 |
Elucidation of the Molecular Mechanisms of Gene Expressions-Epigenetics Regulation by Chemical Biology / ケミカルバイオロジーによる遺伝子発現-エピジェネティクス制御の分子機構の解明Sato, Shinsuke 23 September 2020 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(理学) / 乙第13369号 / 論理博第1573号 / 新制||理||1666(附属図書館) / (主査)教授 杉山 弘, 教授 深井 周也, 教授 秋山 芳展 / 学位規則第4条第2項該当 / Doctor of Science / Kyoto University / DGAM
|
Page generated in 0.0185 seconds