Spelling suggestions: "subject:"open quantum systems"" "subject:"ipen quantum systems""
51 |
Proteção de sistemas quânticos e o postulado da medida / Protection of quantum systems and the measurement postulateLeonardo Andreta de Castro 08 December 2016 (has links)
O processamento de informação quântica requer medidas, muitas vezes precedidas devoluções unitárias. Uma descrição realista de um computador quântico também deve levar em conta que o sistema interage com um ambiente externo - distinto do observador - que o remove de sua evolução ideal, gerando erros. Neste trabalho, fazemos um estudo da dinâmica de sistemas quânticos observados múltiplas vezes ou continuamente, enquanto interagem com ambientes externos. Para tanto, empregamos uma equação mestra híbrida, que permite modelar uma interação contínua e markoviana do sistema com o medidor, enquanto o ruído do ambiente apresenta características não markovianas. O estudo da dinâmica de uma medida contínua ruidosa revela que o sistema melhor preserva suas populações iniciais quando é realizada a medida de uma observável que não comuta com os operadores do ruído produzido pelo ambiente. Estes resultados, já conhecidos para o caso simples de um qubit de memória interagindo com o vácuo, são generalizados para uma temperatura inicial superior a zero e para um qubit submetido a uma porta quântica. A universalidade destes fenômenos de preservação da população inicial permite fazer analogia com o efeito Zenão quântico. Mantendo o mesmo formalismo, mas adaptando a interação com o ambiente para descrever um decaimento verificamos que o efeito Zenão quântico é observado para acoplamentos fracos com o ambiente. Tratamos também de como tal conhecimento sobre a preservação das populações pela medida auxilia na elaboração de melhores formas de preservar a informação em códigos quânticos. Com o auxílio da teoria das medidas fracas, propomos um possível método experimental simples para o teste da validade dos modelos de descrição de medidas contínuas. Com este estudo da dinâmica de uma medida quântica, esperamos elucidar questões de ordem prática no processamento de informação quântica, assim como ajudar no melhor entendimento de questões fundamentais, como o postulado da medida. / The processing of quantum information requires measurements, often preceded by unitary evolutions. A faithful description of a quantum computer should also take into account that the system interacts with an external environment - other than the observer - that removes it from its ideal evolution, causing errors. Here, we study the dynamics of quantum systems observed multiple times or continuously, while they interact with external environments. To do this, we employ a hybrid master equation, which allows us to model a continuous, Markovian interaction between the system and the measurement apparatus, while the environmental noise presents non-Markovian features. This study of the dynamics of the noisy continuous measurement reveals that the system better preserves its initial populations when the observable measured does not commute with the environmental noise operators. These results, already known for the simpler case of a memory qubit interacting with vacuum, are generalized for an initial temperature above zero and a qubit undergoing a quantum gate. The universality of these phenomena of preservation of the initial populations allows an analogy with the Quantum Zeno Effect. Keeping the same formalism, but adapting the environmental interaction to describe a decay, we verify that the quantum Zeno effect is observed for weak coupling with the environment. We also deal with how the knowledge about the preservation of the populations by the measurement helps in creating better ways to preserve the information in quantum codes. With the help of the weak measurement theory, we propose a simple experimental method to test the validity of models that describe a continuous measurement. With this study of the dynamics of a quantum measurement, we hope to help solve practical issues in quantum information processing, as well as provide greater insight into fundamental questions, such as the measurement postulate.
|
52 |
Mesure continue en mécanique quantique : quelques résultats et applications / Continuous measurement in quantum mechanics : a few results and applicationsTilloy, Antoine 24 June 2016 (has links)
Cette thèse est consacrée à l’étude des trajectoires quantiques issues de la théorie desmesures continues en mécanique quantique non relativiste. On y présente de nouveaux résultatsthéoriques ainsi que des exemples d’applications. Sur le front théorique, on étudie principalementla limite de mesure «forte» dans laquelle on met en évidence l’émergence de sauts quantiques etd’échardes quantiques, deux phénomènes dont on précise la statistique. Hors de la limite forte, onpropose une méthode d’extraction optimale d’information pour un registre de qubits. Sur le frontdes applications, on introduit une méthode originale de contrôle utilisant l’intensité de la mesurecomme unique variable et on explique la transition balistique-diffusif dans les marches aléatoiresquantiques ouvertes; deux sous produits de l’étude théorique préalable des situations de mesureforte. On s’intéresse aussi au problème de la gravité semi-classique et montre que la théorie desmesures continues peut permettre d’en construire un modèle cohérent à la limite newtonienne. Onsuggère enfin quelques extensions possibles de la théorie à l’estimation a posteriori et d’éventuellesgénéralisations des résultats théoriques à des situations de mesures répétées discrètes. Dans laprésentation des résultats, l’accent est mis davantage sur l’explicitation des liens entre les multiplespoints de vue possibles sur les trajectoires quantiques (parallèles avec la théorie classique du filtrageet les modèles de collapse objectif utilisés dans les fondements) que sur la rigueur mathématique. / This thesis is devoted to the study of the quantum trajectories obtained from thetheory of continuous measurement in non relativistic quantum mechanics. New theoretical resultsas well as examples of applications are presented. On the theoretical front, we study mostly thelimit of «strong» measurement where we put forward the emergence of quantum jumps and quantumspikes, two phenomena we characterize in detail. Out of the strong measurement limit, weinvestigate a method to extract information from a register of qubits optimally. On the applicationfront, we introduce an original method to control quantum systems exploiting only the freedomof changing the measurement intensity and we explain the transition between a ballistic and adiffusive behavior in open quantum random walks; two byproduct of the theoretical study of thestrong measurement regime. We further study the problem of semi-classical gravity and show thatcontinuous measurement theory allows to construct a consistent model in the Newtonian regime.We eventually suggest possible extensions of the formalism to a posteriori estimation and hint atgeneralizations of the results for the strong measurement limit in the wider context of discreterepeated measurements. In the course of our presentation, we emphasize the link with other approachesto the theory of continuous measurement (parallels with stochastic filtering and collapsemodels in foundations) rather than aim for mathematical rigor.
|
53 |
Feedback exponential stabilization of open quantum systems undergoing continuous-time measurements / Stabilisation exponentielle par rétroaction de systèmes quantiques ouverts soumis à des mesures en temps continuLiang, Weichao 30 October 2019 (has links)
Dans cette thèse, nous nous intéressons à la stabilisation par rétroaction des systèmes quantiques ouverts soumis à des mesures imparfaites en temps continu. Tout d'abord, nous introduisons la théorie du filtrage quantique pour décrire l'évolution temporelle de l'opérateur de densité conditionnelle représentant un état quantique en interaction avec un environnement. Ceci est décrit par une équation différentielle stochastique à valeurs matricielles. Deuxièmement, nous étudions le comportement asymptotique des trajectoires quantiques associées à des systèmes de spin à N niveaux pour des états initiaux donnés, pour les cas avec et sans loi de rétroaction. Dans le cas sans loi de rétroaction, nous montrons la propriété de réduction de l'état quantique à vitesse exponentielle. Ensuite, nous fournissons des conditions suffisantes sur la loi de contrôle assurant une convergence presque sûre vers un état pur prédéterminé correspondant à un vecteur propre de l'opérateur de mesure. Troisièmement, nous étudions le comportement asymptotique des trajectoires de systèmes ouverts à plusieurs qubits pour des états initiaux donnés. Dans le cas sans loi de rétroaction, nous montrons la réduction exponentielle de l'état quantique pour les systèmes N-qubit avec deux canaux quantiques. Dans le cas particulier des systèmes à deux qubits, nous donnons des conditions suffisantes sur la loi de contrôle assurant la convergence asymptotique vers un état cible de Bell avec un canal quantique, et la convergence exponentielle presque sûre vers un état cible de Bell avec deux canaux quantiques. Ensuite, nous étudions le comportement asymptotique des trajectoires des systèmes quantiques ouverts de spin-1/2 avec les états initiaux inconnus soumis à des mesures imparfaites en temps continu, et nous fournissons des conditions suffisantes au contrôleur pour garantir la convergence de l'état estimé vers l'état quantique réel lorsque le temps tend vers l'infini. En conclusion, nous discutons de manière heuristique du problème de stabilisation exponentielle des systèmes de spin à N niveaux avec les états initiaux inconnus et nous proposons des lois de rétroaction candidates afin de stabiliser le système de manière exponentielle. / In this thesis, we focus on the feedback stabilization of open quantum systems undergoing imperfect continuous-time measurements. First, we introduce the quantum filtering theory to obtain the time evolution of the conditional density operator representing a quantum state in interaction with an environment. This is described by a matrix-valued stochastic differential equation. Second, we study the asymptotic behavior of quantum trajectories associated with N-level quantum spin systems for given initial states, for the cases with and without feedback law. For the case without feedback, we show the exponential quantum state reduction. Then, we provide sufficient conditions on the feedback control law ensuring almost sure exponential convergence to a predetermined pure state corresponding to an eigenvector of the measurement operator. Third, we study the asymptotic behavior of trajectories of open multi-qubit systems for given initial states. For the case without feedback, we show the exponential quantum state reduction for N-qubit systems with two quantum channels. Then, we focus on the two-qubit systems, and provide sufficient conditions on the feedback control law ensuring asymptotic convergence to a target Bell state with one quantum channel, and almost sure exponential convergence to a target Bell state with two quantum channels. Next, we investigate the asymptotic behavior of trajectories of open quantum spin-1/2 systems with unknown initial states undergoing imperfect continuous-time measurements, and provide sufficient conditions on the controller to guarantee the convergence of the estimated state towards the actual quantum state when time goes to infinity. Finally, we discuss heuristically the exponential stabilization problem for N-level quantum spin systems with unknown initial states and propose candidate feedback laws to stabilize exponentially the system.
|
54 |
Relações monogâmicas entre estados multipartidos e efeitos de memória em computação quântica baseada em medidas projetivas /Filenga, Daví. January 2020 (has links)
Orientador: Felipe Fernandes Fanchini / Resumo: Na presente Tese realizou-se um estudo acerca das relações monogâmicas entre emaranhamento de formação (EF) e discórdia quântica (DQ) para sistemas quânticos multipartidos, bem como um estudo acerca da dinâmica dissipativa de operações lógicas de 1 (portas NOT e Z) e 2 (porta CNOT) qubits para uma computação quântica baseada em medidas projetivas (MBQC). Como resultado, expressões as quais generalizam relações de conservação entre EF e DQ puderam ser deduzidas, bem como relações de distribuição de DQ para sistemas de n partes. Ademais, ampliando os estudos referentes a sistemas multipartidos, uma pesquisa a respeito da influência dos canais amplitude damping (AD) e phase damping (PD) em uma MBQC considerando ambientes altamente não-Markovianos pôde ser desenvolvida. Nesse sentido, uma medida denominada fidelidade média (Fm) foi então proposta, a partir da qual expressões analíticas puderam ser deduzidas para os canais em questão, e sendo demonstrado que Fm resulta em valores idênticos para as portas X e Z. Além do mais, também foi possível realizar um estudo acerca dos tempos ótimos das medidas, segundo o qual pôde-se concluir que sua rápida execução não necessariamente implica em melhores resultados, tampouco sua lenta execução não necessariamente implica em piores. Nesse contexto, pôde-se também demonstrar que para o canal AD o conhecimento do mapa dissipativo já é o suficiente para intuitivamente determinar os melhores tempos de medidas, sendo que o mesmo não necessariamen... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In this work a study about the monogamous relations between entanglement of formation (EF) and quantum discord (QD) for multipartite quantum systems, as well the dissipative dynamics of 1 (NOT and Z gates) and 2 (CNOT gate) qubits for a measurement-based quantum computation (MBQC) could be developed. As a result, expressions which generalize conservation laws between EF and DQ could be deduced, as well as DQ distribution laws for n part quantum systems. In addition, expanding the multipartite systems studies, a research about the influence of the amplitude damping (AD) and phase damping (PD) channels in an MBQC considering highly non-Markovian environments also could be developed. In this sense, a measure called average gate fidelity (Fm) was proposed, from which we deduce analytical expressions for the channels and show that it is identical for the X and Z gates. In addition, we conducted a study of the optimal measurement times, where we conclude that neither fast application of the projective measurements necessarily implies better results, nor slow application necessarily implies worse results. Furthermore, it was also possible to demonstrate that while for the AD the knowledge of the dissipative map is sufficient to determine the best measurement times, the same is not necessarily true for the PD, where the time of the set of measures becomes crucial since a phase error in one qubit can fix the phase error that takes place in another. Finally, a study was carried out on ... (Complete abstract click electronic access below) / Doutor
|
55 |
Zufallsmatrixtheorie für die Lindblad-MastergleichungLange, Stefan 31 January 2020 (has links)
Wir wenden die Zufallsmatrixtheorie auf den Lindblad-Superoperator L, d.h. den linearen Superoperator der Lindblad-Gleichung an und untersuchen die Verteilung und die Korrelationen der Eigenwerte von L zur Charakterisierung der Dynamik komplexer offener Quantensysteme. Zufallsmatrixensembles für L werden über Ensembles hermitescher und positiver Matrizen definiert, die alle freien Koeffizienten der Lindblad-Gleichung enthalten. Wir bestimmen Mittelwert und Breiten der Verteilung der von Null verschiedenen Eigenwerte von L in der komplexen Ebene und zeigen, wie diese Verteilung von den Verteilungen und Korrelationen der Eigenwerte der Koeffizientenmatrizen abhängt. In vielerlei Hinsicht ähneln die Ensembles für L dem Ginibreschen orthogonalen Ensemble. Beispielsweise finden wir das gleiche Abstoßungsverhalten zwischen benachbarten Eigenwerten. Alle Ergebnisse werden mit denen einer früheren Zufallsmatrixanalyse von Ratengleichungen verglichen. / Random matrix theory is applied to the Lindblad superoperator L, i.e., the linear superoperator of the Lindblad equation. We study the distribution and correlations of eigenvalues of L to characterize the dynamics of complex open quantum systems. Random matrix ensembles for L are given in terms of ensembles of hermitian and positive matrices, which contain all free coefficients of the Lindblad equation. We determine mean and widths of the distribution of the nonzero eigenvalues of L in the complex plane and show how this distribution depends on the distributions and correlations of eigenvalues of the matrices of coefficients. In many respects the ensembles for L resemble the Ginibre orthogonal ensemble. For instance, we find the same repulsion characteristics for neighboring eigenvalues. All results are compared to an earlier work on random matrix theory for rate equations.
|
56 |
Semiclassical hybrid dynamics for open quantum systemsGoletz, Christoph-Marian 22 June 2011 (has links)
In this work the semiclassical hybrid dynamics is extended in order to be capable of treating open quantum systems considering finite baths. The corresponding phenomena, i.e. decoherence and dissipation, are investigated for various scenarios.
|
57 |
Non-Markovian Dissipative Quantum Mechanics with Stochastic TrajectoriesKoch, Werner 12 October 2010 (has links)
All fields of physics - be it nuclear, atomic and molecular, solid state, or optical - offer examples of systems which are strongly influenced by the environment of the actual system under investigation. The scope of what is called "the environment" may vary, i.e., how far from the system of interest an interaction between the two does persist. Typically, however, it is much larger than the open system itself. Hence, a fully quantum mechanical treatment of the combined system without approximations and without limitations of the type of system is currently out of reach.
With the single assumption of the environment to consist of an internally thermalized set of infinitely many harmonic oscillators, the seminal work of Stockburger and Grabert [Chem. Phys., 268:249-256, 2001] introduced an open system description that captures the environmental influence by means of a stochastic driving of the reduced system. The resulting stochastic Liouville-von Neumann equation describes the full non-Markovian dynamics without explicit memory but instead accounts for it implicitly through the correlations of the complex-valued noise forces.
The present thesis provides a first application of the Stockburger-Grabert stochastic Liouville-von Neumann equation to the computation of the dynamics of anharmonic, continuous open systems. In particular, it is demonstrated that trajectory based propagators allow for the construction of a numerically stable propagation scheme. With this approach it becomes possible to achieve the tremendous increase of the noise sample count necessary to stochastically converge the results when investigating such systems with continuous variables. After a test against available analytic results for the dissipative harmonic oscillator, the approach is subsequently applied to the analysis of two different realistic, physical systems.
As a first example, the dynamics of a dissipative molecular oscillator is investigated. Long time propagation - until thermalization is reached - is shown to be possible with the presented approach. The properties of the thermalized density are determined and they are ascertained to be independent of the system's initial state. Furthermore, the dependence on the bath's temperature and coupling strength is analyzed and it is demonstrated how a change of the bath parameters can be used to tune the system from the dissociative to the bound regime.
A second investigation is conducted for a dissipative tunneling scenario in which a wave packet impinges on a barrier. The dependence of the transmission probability on the initial state's kinetic energy as well as the bath's temperature and coupling strength is computed.
For both systems, a comparison with the high-temperature Markovian quantum Brownian limit is performed. The importance of a full non-Markovian treatment is demonstrated as deviations are shown to exist between the two descriptions both in the low temperature cases where they are expected and in some of the high temperature cases where their appearance might not be anticipated as easily.:1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Theory of Open Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Influence Functional Formalism . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Quantum Brownian Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Stochastic Unraveling of the Influence Functional . . . . . . . . . . . . . . . 20
2.4 Improved Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Modified Dynamic Response . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Guide Trajectory Transformation . . . . . . . . . . . . . . . . . . . . 24
2.5 Obtaining Properly Correlated Stochastic Samples from Filtered White Noise 24
3 Unified Stochastic Trajectory Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Semiclassical Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.1 Guide Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Real Coherent State Center Coordinates . . . . . . . . . . . . . . . . 31
3.1.3 Propagation Scheme Including Stochastic Forces . . . . . . . . . . . 32
3.2 Stochastic Bohmian Mechanics with Complex Action . . . . . . . . . . . . . 33
3.2.1 Hydrodynamic Formulation of Bohmian Mechanics . . . . . . . . . . 33
3.2.2 Bohmian Mechanics with Complex Action . . . . . . . . . . . . . . . 34
3.2.3 Stochastic BOMCA Trajectories . . . . . . . . . . . . . . . . . . . . 38
3.3 Noise Distribution Preserving Removal of Adverse Samples . . . . . . . . . . 39
4 Dissipative Harmonic Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Reservoir Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Harmonic Oscillator Analytic Expectation Values . . . . . . . . . . . . . . . 42
4.2.1 Ohmic Bath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Drude Regularized Bath . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Sampling Strategies and Analytic Comparison . . . . . . . . . . . . . . . . . 44
4.4 Limits of the Markovian Approximation . . . . . . . . . . . . . . . . . . . . 45
5 Dissipative Vibrational Dynamics of Diatomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1 Molecular Morse Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Anharmonic Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Transient Non-Markovian Effects . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Trapping by Dissipation and Thermalization . . . . . . . . . . . . . . . . . . 53
6 Tunneling with Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1 Eckart Barrier Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Dissipative Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Investigation of Markovianity . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Appendix A Conventions for Constants, Reservoir Kernels, and Influence Phases 69
Appendix B Stochastic Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.1 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 71
B.2 Position Verlet Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B.3 Runge-Kutta Fourth Order Scheme . . . . . . . . . . . . . . . . . . . . . . . 73
Appendix CMorse Oscillator Expectation Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Appendix DPrerequisites of a Successful Stochastic Propagation . . . . . . . . . . . . . . 79
D.1 Hubbard-Stratonovich Transformation . . . . . . . . . . . . . . . . . . . . . 79
D.2 Kernels of the Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
D.2.1 Quadratic Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
D.2.2 Quartic Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
D.2.3 Strictly Ohmic Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . 89
D.3 Guide Trajectory Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 90
D.3.1 Quadratic Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
D.3.2 Quartic Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
D.3.3 Strictly Ohmic Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . 92
D.4 Computation of Matrix Elements and Expectation Values . . . . . . . . . . 92
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
|
58 |
Dynamics for the special class of quantum master equationsPietro, Locatelli January 2022 (has links)
The paper is an analysis of a special class of the master equations such that the Dissipation superoperator is L(ρ) = [M, [M, ρ]], where M is an hermitian andunitary operator and ρ a density matrix. It mainly investigates the dynamics ofρ and its properties such as boundness of the operators of the master equation,the eigenvalues of these operators, the purity of the states, the steady states. In the study of the temporal evolution of ρ it has been done an analysis of Decoherence free subspaces(DFS). A special attention is given to von Neumannentropy. For what it regards this last topic there are also specific referencesto the camel-like behaviour, a phenomenon regarding the entropy that happenswhen certain conditions of the dissipation superaoperator are not satisfied.There are Python simulations of the expectation values of some operators, andof the von Neumann entropy, and Linear Entropy.
|
59 |
Exact Open Quantum System Dynamics – Investigating Environmentally Induced EntanglementHartmann, Richard 22 March 2022 (has links)
When calculating the dynamics of a quantum system, including the effect of its environment is highly relevant since virtually any real quantum system is exposed to environmental influences. It has turned out that the widely used perturbative approaches to treat such so-called open quantum systems have severe limitations. Furthermore, due to current experiments which have implemented strong system-environment interactions the non-perturbative regime is far from being academical. Therefore determining the exact dynamics of an open quantum system is of fundamental relevance. The hierarchy of pure states (HOPS) formalism poses such an exact approach.
Its novel and detailed derivation, as well as several numerical aspects constitute the main methodical part of this work. Motivated by fundamental issues but also due to practical relevance for real world devices exploiting quantum effects, the entanglement dynamics of two qubits in contact with a common environment is investigated extensively. The HOPS formalism is based on the exact stochastic description of open quantum system dynamics in terms of the non-Markovian quantum state diffusion (NMQSD) theory. The distinguishing and numerically beneficial features of the HOPS approach are the stochastic nature, the implicit treatment of the environmental dynamics and, related to this, the enhanced statistical convergence (importance sampling), as well as the fact that only pure states have to be propagated. In order to claim that the HOPS approach is exact, we develop schemes to ensure that the numerical errors can be made arbitrarily small. This includes the sampling of Gaussian stochastic processes, the multi-exponential representation of the bath correlation function and the truncation of the hierarchy. Moreover, we incorporated thermal effects on the reduced dynamics by a stochastic Hermitian contribution to the system Hamiltonian.
In particular, for strong system-environment couplings this is very beneficial for the HOPS. To confirm the accuracy assertion we utilize the seemingly simple, however, non-trivial spin-boson model to show agreement between the HOPS and other methods. The comparison shows the HOPS method’s versatile applicability over a broad range of model parameters including weak and strong coupling to the environment, as well as zero and high temperatures.
With the gained knowledge that the HOPS method is versatile and accurately applicable, we investigate the specific case of two qubits while focusing on their entanglement dynamics. It is well known that entanglement, the relevant property when exploiting quantum effects in fields like quantum computation, communication and metrology, is fragile when exposed to environmental noise. On the other hand, a common environment can also mediate an effective interaction between the two parties featuring entanglement generation. In this work we elucidate the interplay between these competing effects, focusing on several different aspects. For the perturbative (weak coupling) regime we enlighten the difficulties inherent to the frequently used rotating wave approximation (RWA), an approximation often applied to ensure positivity of the reduced state for all times. We show that these difficulties are best overcome when simply omitting the RWA. The seemingly unphysical dynamics can still be used to approximate the exact entanglement dynamics very well. Furthermore, the influence of the renormalizing counter term is investigated.
It is expected that under certain conditions (adiabatic regime) the generation of entanglement is suppressed by the presence of the counter term. It is shown, however, that for a deep sub-Ohmic environment this expectation fails.
Leaving the weak coupling regime, we show that the generation of entanglement due to the influence of the common environment is a general property of the open two-spin system. Even for non-zero temperatures it is demonstrated that entanglement can still be generated and may last for arbitrary long times. Finally, we determine the maximum of the steady state entanglement as a function of the coupling strength and show how the known delocalization-to-localization phase transition is reflected in the long time entanglement dynamics. All these results require an exact treatment of the open quantum system dynamics and, thus, contribute to the fundamental understanding of the entanglement dynamics of open quantum systems. / Bei der Bestimmung der Dynamik eines Quantensystems ist die Berücksichtigung seiner Umgebung von großem Interessen, da faktisch jedes reale Quantensystem von seiner Umgebung beeinflusst wird. Es zeigt sich, dass die viel verwendeten störungstheoretischen Ansätze starken Einschränkungen unterliegen. Außerdem, da es in aktuellen Experimenten gelungen ist starke Wechselwirkung zwischen dem System und seiner Umgebung zu realisieren, gewinnt das nicht-störungstheoretischen Regime stets an Relevanz. Dementsprechend ist die Berechnung der exakten Dynamik offener Quantensysteme von grundlegender Bedeutung. Einen solchen exakten nummerischen Zugang stellt der hierarchy of pure states (HOPS) Formalismus dar. Dessen neuartige und detaillierte Herleitung, sowie diverse nummerische Aspekte werden im methodischen Teil dieser Arbeit dargelegt. In vielerlei Hinsicht relevant folgt als Anwendung eine umfangreiche Untersuchung der Verschränkungsdynamik zweier Qubits unter dem Einfluss einer gemeinsamen Umgebung. Vor allem im Hinblick auf die experimentell realisierbare starke Kopplung mit der Umgebung ist dieses Analyse von Interesse. Der HOPS Formalismus basiert auf der stochastischen Beschreibung der Dynamik offener Quantensysteme im Rahmen der non-Markovian quantum state diffusion (NMQSD) Theorie. Der stochastische Charakter der Methode, die implizite Berücksichtigung der Umgebungsdynamik, sowie das damit verbundene Importance Sampling, als auch die Tatsache dass lediglich reine Zustände propagiert werden müssen unterscheidet diese Methode maßgeblich von anderen Ansätzen und birgt numerische Vorteile. Um zu behaupten, dass die HOPS Methode exakte Ergebnisse liefert, müssen auftretenden nummerischen Fehler beliebig klein gemacht werden können.
Ein grundlegender Teil der hier vorgestellten methodischen Arbeit liegt in der Entwicklung diverser Schemata, die genau das erreichen. Dazu zählen die numerische Realisierung von Gauss’schen stochastischen Prozessen, die Darstellung der Badkorrelationsfunktion als Summe von Exponentialfunktionen sowie das Abschneiden der Hierarchie. Außerdem wird gezeigt, dass sich der temperaturabhängige Einfluss der Umgebung durch einen stochastischen Hermiteschen Beitrag zum System-Hamiltonoperator berücksichtigen lässt. Vor allem bei starker Kopplung ist diese Variante besonders geeignet für den HOPS Zugang. Um die Genauigkeitsbehauptung der HOPS Methode zu überprüfen wird die Übereinstimmung mit anderen Methode gezeigt, wobei das vermeintlich einfachste, jedoch nicht triviale spin-boson-Modell als Testsystem verwendet wird. Diese Untersuchung belegt, dass die HOPS Methode für eine Vielzahl an Szenarien geeignet ist. Das beinhaltet schwache und starke Kopplung an die Umgebung, sowie Temperatur null als auch hohe Temperaturen.
Mit dem gewonnenen Wissen, dass die HOPS Methode vielseitig einsetzbar ist und genaue Ergebnisse liefert wird anschließend der spezielle Fall zweier Qubits untersucht. Im Hinblick auf die Ausnutzung von Quanteneffekten in Bereichen wie Rechentechnik, Kommunikation oder Messtechnik liegt der primäre Fokus auf der Dynamik der Verschränkung zwischen den Qubits. Es ist bekannt, dass durch von außen induziertes Rauschen die Verschränkung im Laufe der Zeit abnimmt. Andererseits weiß man auch, dass eine gemeinsame Umgebung zu einer effektiven Wechselwirkung zwischen den Qubits führt, welche Verschränkung aufbauen kann. In dieser Arbeit wird das Wechselspiel zwischen diesen beiden gegensätzlichen Effekten untersucht, wobei die folgenden Aspekte beleuchtet werden. Für den Fall schwacher Kopplung, wo eine störungstheoretische Behandlung in Frage kommt, werden die Probleme der rotating wave approximation (RWA) analysiert. Diese Näherung wird häufig verwendet um die Positivität des reduzierten Zustands zu allen Zeiten zu gewährleisten. Es wird gezeigt, dass sich diese Probleme am besten vermeiden lassen, wenn die RWA einfach weggelassen wird. Die auf den ersten Blick nicht-physikalische Dynamik ist sehr gut geeignet um die exakte Verschränkungsdynamik näherungsweise wiederzugeben. Des Weiteren wird der Einfluss der Renormalisierung des sogenannten counter terms untersucht. Unter bestimmten Voraussetzungen (adiabatisches Regime) ist zu erwarten, dass der Verschränkungsaufbau durch den counter term verhindert wird. Es zeigt sich, dass für eine sehr sub-Ohm’sche Umgebung (deep sub-Ohmic regime) diese Erwartung nicht zutrifft. Weiterhin wird der Fall starker Kopplung zwischen dem zwei-Qubit-System und der Umgebung betrachtet. Die Berechnungen zeigen das generelle Bild, dass sich zwei nicht wechselwirkende Qubits durch den Einfluss einer gemeinsamen Umgebung verschränken. Selbst bei Temperaturen größer als null kann Verschränkung aufgebaut werden und auch für beliebig lange Zeiten erhalten bleiben. In einem letzten Punkt wird das Maximum der stationären Verschränkung (Langzeit-Limes) in Abhängigkeit von der Kopplungsstärke bestimmt. Dabei wird gezeigt, dass sich der bekannte Phasenübergang von Delokalisierzung zu Lokalisierung auch in der Langzeitdynamik der Verschränkung widerspiegelt. All diese Erkenntnisse erfordern eine exakte Behandlung der offenen Systemdynamik und erweitern somit das fundamentalen Verständnis der Verschränkungsdynamik offener Quantensysteme.
|
60 |
Driven-Dissipative Quantum Many-Body Systems / Systèmes quantiques à plusieurs corps dissipatifs et pilotésScarlatella, Orazio 21 October 2019 (has links)
Ma thèse de doctorat était consacrée à l'étude des systèmes quantiques à plusieurs corps dissipatifs et pilotés. Ces systèmes représentent des plateformes naturelles pour explorer des questions fondamentales sur la matière dans des conditions de non-équilibre, tout en ayant un impact potentiel sur les technologies quantiques émergentes. Dans cette thèse, nous discutons d'une décomposition spectrale de fonctions de Green de systèmes ouverts markoviens, que nous appliquons à un modèle d'oscillateur quantique de van der Pol. Nous soulignons qu’une propriété de signe des fonctions spectrales des systèmes d’équilibre ne s’imposait pas dans le cas de systèmes ouverts, ce qui produisait une surprenante "densité d’états négative", avec des conséquences physiques directes. Nous étudions ensuite la transition de phase entre une phase normale et une phase superfluide dans un système prototype de bosons dissipatifs forcés sur un réseau. Cette transition est caractérisée par une criticité à fréquence finie correspondant à la rupture spontanée de l'invariance par translation dans le temps, qui n’a pas d’analogue dans des systèmes à l’équilibre. Nous discutons le diagramme de phase en champ moyen d'une phase isolante de Mott stabilisée par dissipation, potentiellement pertinente pour des expériences en cours. Nos résultats suggèrent qu'il existe un compromis entre la fidélité de la phase stationnaire à un isolant de Mott et la robustesse d'une telle phase à taux de saut fini. Enfin, nous présentons des développements concernant la théorie du champ moyen dynamique (DMFT) pour l’étude des systèmes à plusieurs corps dissipatifs et forcés. Nous introduisons DMFT dans le contexte des modèles dissipatifs et forcés et nous développons une méthode pour résoudre le problème auxiliaire d'une impureté couplée simultanément à un environnement markovien et à un environnement non-markovien. À titre de test, nous appliquons cette nouvelle méthode à un modèle simple d’impureté fermionique. / My PhD was devoted to the study of driven-dissipative quantum many-body systems. These systems represent natural platforms to explore fundamental questions about matter under non-equilibrium conditions, having at the same time a potential impact on emerging quantum technologies. In this thesis, we discuss a spectral decomposition of single-particle Green functions of Markovian open systems, that we applied to a model of a quantum van der Pol oscillator. We point out that a sign property of spectral functions of equilibrium systems doesn't hold in the case of open systems, resulting in a surprising ``negative density of states", with direct physical consequences. We study the phase transition between a normal and a superfluid phase in a prototype system of driven-dissipative bosons on a lattice. This transition is characterized by a finite-frequency criticality corresponding to the spontaneous break of time-translational invariance, which has no analog in equilibrium systems. Later, we discuss the mean-field phase diagram of a Mott insulating phase stabilized by dissipation, which is potentially relevant for ongoing experiments. Our results suggest that there is a trade off between the fidelity of the stationary phase to a Mott insulator and robustness of such a phase at finite hopping. Finally, we present some developments towards using dynamical mean field theory (DMFT) for studying driven-dissipative lattice systems. We introduce DMFT in the context of driven-dissipative models and developed a method to solve the auxiliary problem of a single impurity, coupled simultaneously to a Markovian and a non-Markovian environment. As a test, we applied this novel method to a simple model of a fermionic, single-mode impurity.
|
Page generated in 0.0893 seconds