• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 64
  • 64
  • 18
  • 18
  • 15
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A new approach to pricing real options on swaps : a new solution technique and extension to the non-a.s. finite stopping realm

Chu, Uran 07 June 2012 (has links)
This thesis consists of extensions of results on a perpetual American swaption problem. Companies routinely plan to swap uncertain benefits with uncertain costs in the future for their own benefits. Our work explores the choice of timing policies associated with the swap in the form of an optimal stopping problem. In this thesis, we have shown that Hu, Oksendal's (1998) condition given in their paper to guarantee that the optimal stopping time is a.s. finite is in fact both a necessary and sufficient condition. We have extended the solution to the problem from a region in the parameter space where optimal stopping times are a.s. finite to a region where optimal stopping times are non-a.s. finite, and have successfully calculated the probability of never stopping in this latter region. We have identified the joint distribution for stopping times and stopping locations in both the a.s. and non-a.s. finite stopping cases. We have also come up with an integral formula for the inner product of a generalized hyperbolic distribution with the Cauchy distribution. Also, we have applied our results to a back-end forestry harvesting model where stochastic costs are assumed to exponentiate upwards to infinity through time. / Graduation date: 2013
32

A Random Walk Version of Robbins' Problem

Allen, Andrew 12 1900 (has links)
Robbins' problem is an optimal stopping problem where one seeks to minimize the expected rank of their observations among all observations. We examine random walk analogs to Robbins' problem in both discrete and continuous time. In discrete time, we consider full information and relative ranks versions of this problem. For three step walks, we give the optimal stopping rule and the expected rank for both versions. We also give asymptotic upper bounds for the expected rank in discrete time. Finally, we give upper and lower bounds for the expected rank in continuous time, and we show that the expected rank in the continuous time problem is at least as large as the normalized asymptotic expected rank in the full information discrete time version.
33

Optimal Sequential Decisions in Hidden-State Models

Vaicenavicius, Juozas January 2017 (has links)
This doctoral thesis consists of five research articles on the general topic of optimal decision making under uncertainty in a Bayesian framework. The papers are preceded by three introductory chapters. Papers I and II are dedicated to the problem of finding an optimal stopping strategy to liquidate an asset with unknown drift. In Paper I, the price is modelled by the classical Black-Scholes model with unknown drift. The first passage time of the posterior mean below a monotone boundary is shown to be optimal. The boundary is characterised as the unique solution to a nonlinear integral equation. Paper II solves the same optimal liquidation problem, but in a more general model with stochastic regime-switching volatility. An optimal liquidation strategy and various structural properties of the problem are determined. In Paper III, the problem of sequentially testing the sign of the drift of an arithmetic Brownian motion with the 0-1 loss function and a constant cost of observation per unit of time is studied from a Bayesian perspective. Optimal decision strategies for arbitrary prior distributions are determined and investigated. The strategies consist of two monotone stopping boundaries, which we characterise in terms of integral equations. In Paper IV, the problem of stopping a Brownian bridge with an unknown pinning point to maximise the expected value at the stopping time is studied. Besides a few general properties established, structural properties of an optimal strategy are shown to be sensitive to the prior. A general condition for a one-sided optimal stopping region is provided. Paper V deals with the problem of detecting a drift change of a Brownian motion under various extensions of the classical Wiener disorder problem. Monotonicity properties of the solution with respect to various model parameters are studied. Also, effects of a possible misspecification of the underlying model are explored.
34

Stochastic optimal impulse control of jump diffusions with application to exchange rate

Unknown Date (has links)
We generalize the theory of stochastic impulse control of jump diffusions introduced by Oksendal and Sulem (2004) with milder assumptions. In particular, we assume that the original process is affected by the interventions. We also generalize the optimal central bank intervention problem including market reaction introduced by Moreno (2007), allowing the exchange rate dynamic to follow a jump diffusion process. We furthermore generalize the approximation theory of stochastic impulse control problems by a sequence of iterated optimal stopping problems which is also introduced in Oksendal and Sulem (2004). We develop new results which allow us to reduce a given impulse control problem to a sequence of iterated optimal stopping problems even though the original process is affected by interventions. / by Sandun C. Perera. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
35

Problem of hedging of a portfolio with a unique rebalancing moment

Mironenko, Georgy January 2012 (has links)
The paper deals with the problem of finding an optimal one-time rebalancing strategy for the Bachelier model, and makes some remarks for the similar problem within Black-Scholes model. The problem is studied on finite time interval under mean-square criterion of optimality. The methods of the paper are based on the results for optimal stopping problem and standard mean-square criterion. The solution of the problem, considered in the paper, let us interpret how and - that is more important for us -when investor should rebalance the portfolio, if he wants to hedge it in the best way.
36

Méthodes numériques pour les processus markoviens déterministes par morceaux / Numerical methods for piecewise-deterministic Markov processes

Brandejsky, Adrien 02 July 2012 (has links)
Les processus markoviens déterministes par morceaux (PMDM) ont été introduits dans la littérature par M.H.A. Davis en tant que classe générale de modèles stochastiques non-diffusifs. Les PMDM sont des processus hybrides caractérisés par des trajectoires déterministes entrecoupées de sauts aléatoires. Dans cette thèse, nous développons des méthodes numériques adaptées aux PMDM en nous basant sur la quantification d'une chaîne de Markov sous-jacente au PMDM. Nous abordons successivement trois problèmes : l'approximation d'espérances de fonctionnelles d'un PMDM, l'approximation des moments et de la distribution d'un temps de sortie et le problème de l'arrêt optimal partiellement observé. Dans cette dernière partie, nous abordons également la question du filtrage d'un PMDM et établissons l'équation de programmation dynamique du problème d'arrêt optimal. Nous prouvons la convergence de toutes nos méthodes (avec le plus souvent des bornes de la vitesse de convergence) et les illustrons par des exemples numériques. / Piecewise-deterministic Markov processes (PDMP’s) have been introduced by M.H.A. Davis as a general class of non-diffusive stochastic models. PDMP’s are hybrid Markov processes involving deterministic motion punctuated by random jumps. In this thesis, we develop numerical methods that are designed to fit PDMP's structure and that are based on the quantization of an underlying Markov chain. We deal with three issues : the approximation of expectations of functional of a PDMP, the approximation of the moments and of the distribution of an exit time and the partially observed optimal stopping problem. In the latter one, we also tackle the filtering of a PDMP and we establish the dynamic programming equation of the optimal stopping problem. We prove the convergence of all our methods (most of the time, we also obtain a bound for the speed of convergence) and illustrate them with numerical examples.
37

Some optimal visiting problems: from a single player to a mean-field type model

Marzufero, Luciano 19 July 2022 (has links)
In an optimal visiting problem, we want to control a trajectory that has to pass as close as possible to a collection of target points or regions. We introduce a hybrid control-based approach for the classic problem where the trajectory can switch between a group of discrete states related to the targets of the problem. The model is subsequently adapted to a mean-field game framework, that is when a huge population of agents plays the optimal visiting problem with a controlled dynamics and with costs also depending on the distribution of the population. In particular, we investigate a single continuity equation with possible sinks and sources and the field possibly depending on the mass of the agents. The same problem is also studied on a network framework. More precisely, we study a mean-field game model by proving the existence of a suitable definition of an approximated mean-field equilibrium and then we address the passage to the limit.
38

Learning and Earning : Optimal Stopping and Partial Information in Real Options Valuation

Sätherblom, Eric Marco Raymond January 2024 (has links)
In this thesis, we consider an optimal stopping problem interpreted as the task of valuating two so called real options written on an underlying asset following the dynamics of an observable geometric Brownian motion with non-observable drift; we have incomplete information. After exercising the first real option, however, the value of the underlying asset becomes observable with reduced noise; we obtain partial information. We then state some theoretical properties of the value function such as convexity and monotonicity. Furthermore, numerical solutions for the value functions are obtained by stating and solving a linear complementary problem. This is done in a Python implementation using the 2nd order backward differentiation formula and summation-by-parts operators for finite differences combined with an operator splitting method.
39

Essays in dynamic behavior

Viefers, Paul 04 December 2014 (has links)
Diese Dissertation behandelt sowohl die Theorie, als auch beobachtetes Verhalten in Stoppproblemen. In einem Stoppproblem, beobachtet ein Agent die Entwicklung eines stationären, stochastischen Prozesses über die Zeit. Zu jedem Zeitpunkt genießt der Agent das Recht den Prozess zu stoppen, um eine Auszahlung einzustreichen die Funktion des gegenwärtigen und der vergangenen Realisationen des Prozesses sind. Das Ziel des Agenten ist es den Stoppzeitpunkt so zu wählen, dass die erwartete Auszahlung oder der erwartete Verlust durch Stoppen maximiert bzw. minimiert wird. Stoppprobleme dieser Art konstituieren können als die einfachsten, jedoch wirklich dynamischen Entscheidungsprobleme in der ökonomischen Theorie angesehen werden Das erste Kapitel legt neue theoretische Resultate hinsichtlich der optimalen Stoppstrategien unter Erwartungsnutzentheorie, sog. gain-loss utilities und Bedauerungspräferenzen vor. Das zweite Kapitel behandelt sodann die Ergebnisse eines Laborexperiments in dem die theoretischen Vorhersagen getestet werden. Kapitel drei beschäftigt sich mit der Situation in der die Agenten nicht vollständig über Wahrscheinlichkeiten für künftige Ereignisse informiert sind, d.h. es herrscht Ambiguität. / This dissertation is concerned with theory and behavior in stopping problems. In a stopping problem an agent or individual observes the realization of some exogenous and stationary stochastic process over time. At every point in time, she has the right or the once-only option to stop the process in order to earn a function of the past and current values of the process. The agent''s objective then is to choose the point in time to exercise the option in order to maximize an expected reward or to minimize an expected loss. Such problems constitute the most rudimentary, yet truly dynamic class of choice problems that is studied in economics. The first chapter provides new theoretical results about optimal stopping both under expected utility, as well as gain-loss utility and regret preferences. The second chapter presents a laboratory experiment that tests several of the theoretical predictions about behavior made in the first chapter. The third chapter is concerned with stopping behavior in a setting, where the probability law that drives the observed process is not perfectly known to the decision maker, i.e. there is ambiguity.
40

Essays on Utility maximization and Optimal Stopping Problems in the Presence of Default Risk

Feunou, Victor Nzengang 09 August 2018 (has links)
Gegenstand der vorliegenden Dissertation sind stochastische Kontrollprobleme, denen sich Agenten im Zusammenhang mit Entscheidungen auf Finanzmärkten gegenübersehen. Der erste Teil der Arbeit behandelt die Maximierung des erwarteten Nutzens des Endvermögens eines Finanzmarktinvestors. Für den Investor ist eine Beschreibung der optimalen Handelsstrategie, die zur numerischen Approximation geeignet ist sowie eine Stabilitätsanalyse der optimalen Handelsstrategie bzgl. kleinerer Fehlspezifikationen in Nutzenfunktion und Anfangsvermögen, von höchstem Interesse. In stetigen Marktmodellen beweisen wir Stabilitätsresultate für die optimale Handeslsstrategie in geeigneten Topologien. Für hinreichend differenzierbare Nutzenfunktionen und zeitstetige Marktmodelle erhalten wir eine Beschreibung der optimalen Handelsstrategie durch die Lösung eines Systems von stochastischen Vorwärts-Rückwärts-Differentialgleichungen (FBSDEs). Der zweite Teil der Arbeit beschäftigt sich mit optimalen Stopproblemen für einen Agenten, dessen Ertragsprozess von einem Ausfallsereignis abhängt. Unser Hauptinteresse gilt der Beschreibung der Lösungen vor und nach dem Ausfallsereignis und damit dem besseren Verständnis des Verhaltens des Agenten bei Auftreten eines Ausfallsereignisses. Wir zeigen wie sich das optimale Stopproblem in zwei einzelne Teilprobleme zerlegen lässt: eines, für das der zugrunde liegende Informationsfluss das Ausfallereignis nicht beinhaltet, und eines, in welchem der Informationsfluss das Ausfallereignis berücksichtigt. Aufbauend auf der Zerlegung des Stopproblems und der Verbindung zwischen der Optimalen Stoptheorie und der Theorie von reflektierenden stochastischen Rückwärts-Differentialgleichungen (RBSDEs), leiten wir einen entsprechenden Zerlegungsansatz her, um RBSDEs mit genau einem Sprung zu lösen. Wir beweisen neue Existenz- und Eindeutigkeitsresultate von RBSDEs mit quadratischem Wachstum. / This thesis studies stochastic control problems faced by agents in financial markets when making decisions. The first part focuses on the maximization of expected utility from terminal wealth for an investor trading in a financial market. Of utmost concern to the investor is a description of optimal trading strategy that is amenable to numerical approximation, and the stability analysis of the optimal trading strategy w.r.t. "small" misspecification in his utility function and initial capital. In the setting of a continuous market model, we prove stability results for the optimal wealth process in the Emery topology and the uniform topology on semimartingales, and stability results for the optimal trading strategy in suitable topologies. For sufficiently differentiable utility functions, we obtain a description of the optimal trading strategy in terms of the solution of a system of forward-backward stochastic differential equations (FBSDEs). The second part of the thesis deals with the optimal stopping problem for an agent with a reward process exposed to a default event. Our main concern is to give a description of the solutions before and after the default event and thereby better understand the behavior of the agent in the presence of default. We show how the stopping problem can be decomposed into two individual stopping problems: one with information flow for which the default event is not visible, and another one with information flow which captures the default event. We build on the decomposition of the optimal stopping problem, and the link between the theories of optimal stopping and reflected backward stochastic differential equations (RBSDEs) to derive a corresponding decomposition approach to solve RBSDEs with a single jump. This decomposition allows us to establish existence and uniqueness results for RBSDEs with drivers of quadratic growth.

Page generated in 0.0756 seconds