• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 45
  • 45
  • 19
  • 18
  • 16
  • 10
  • 10
  • 10
  • 10
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Theoretical and Experimental Studies of Organic Semiconductors / 有機半導体の理論的および実験的研究

Kubo, Shosei 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22463号 / 工博第4724号 / 新制||工||1738(附属図書館) / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 梶 弘典, 教授 佐藤 啓文, 教授 関 修平 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
12

Theoretical Design of Light-Emitting Molecules Based on Vibronic Coupling Density Analysis / 振電相互作用密度を用いた発光分子の理論設計

Uejima, Motoyuki 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18288号 / 工博第3880号 / 新制||工||1595(附属図書館) / 31146 / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 田中 一義, 教授 田中 庸裕, 教授 佐藤 啓文 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
13

Vibronic Coupling Density as a Chemical Reactivity Index and Other Aspects / 反応性指標としての振電相互作用密度及びその他の諸相

Haruta, Naoki 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19741号 / 工博第4196号 / 新制||工||1647(附属図書館) / 32777 / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 田中 庸裕, 教授 佐藤 啓文, 教授 梶 弘典 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
14

Introducing Functionality to Poly(arylene ether)s via Modification of Diphenyl sulfone – type Monomers

Humayun, Zahida 04 June 2020 (has links)
No description available.
15

Exciton Dynamics in White Organic Light-Emitting Diodes comprising Triplet Harvesting

Hofmann, Simone 01 July 2013 (has links)
This work comprises different approaches for the efficiency enhancement of white organic light-emitting diodes (OLEDs). In particular, diffusion and transfer processes of excited singlet and triplet states are investigated. Generation of white light is realized by using the so-called triplet harvesting method where the otherwise nonradiatively decaying triplets of a blue fluorescent emitter are transferred to a highly efficient phosphorescent emitter and result in additional emission at lower energies. Triplet harvesting significantly increases the internal quantum efficiency in OLEDs. First, the well-known blue emitter 4P-NPD is investigated as model case. Using time-resolved spectroscopy, triplet harvesting by a yellow and red phosphorescent emitter, respectively is directly proven. However, triplet harvesting by a green emitter is not possible due to the low triplet energy of 4P-NPD. Using quantum chemical calculations, two new emitter molecules, 8M-4P-NPD and 8M-4P-FPD, are synthesized with the aim to rise the triplet energy. Their properties and their ability to facilitate triplet harvesting by a green emitter are studied. For the first time, a white triplet harvesting OLED is demonstrated where triplet harvesting occurs directly from a blue emitter to a green and a red emitter. Furthermore, an additional singlet transfer is observed in the triplet harvesting OLEDs under investigation. Using the phosphorescent emitter as singlet sensor, this effect allows the determination of the singlet diffusion length in 4P-NPD. By varying the distance between singlet generation zone and singlet sensor, a singlet diffusion length of 4.6 nm is found. One further approach to increase the efficiency is the optimization of a tandem OLED which comprises two single OLED units stacked on top of each other. At a luminance of 1,000 cd/m², the white tandem OLED shows an external quantum efficiency of 25%, a luminous efficacy of 33 lm/W, a color rendering index (CRI) of 62, and Commission Internationale de l’Eclairage (CIE) color coordinates of (0.53/0.43). These efficiencies are comparable to state-of-the-art efficiencies of white OLEDs. Finally, the highly efficient white tandem structure is applied on an alternative electrode consisting of flattened silver nanowires. In comparison to the conventional OLED with indium-tin oxide (ITO) electrode, this OLED shows similarly high efficiencies as well as a superior color stability in terms of viewing angles. The color stability can be assigned to the light scattering properties of the nanowires. The OLED with silver nanowire electrode shows efficiencies of 24% and 30 lm/W at 1,000 cd/m² with a CRI of 69 and CIE coordinates of (0.49/0.47).:List of Publications List of Important Abbreviations 1 Introduction 2 White Light and Color 2.1 Radiometry and Photometry 2.2 Color Stimulus Specification 2.3 White Light 2.4 Light Sources 3 Organic Semiconductors 3.1 Molecular Orbitals 3.2 Fluorescence and Phosphorescence 3.3 Singlet-Triplet Splitting 3.4 Energy Transfer Mechanisms 3.5 Exciton Diffusion and Quenching 3.6 Charge Carrier Transport 4 Organic Light-Emitting Diodes 4.1 Electroluminescence 4.2 The pin Concept 4.3 Phosphorescent Emitters 4.4 Triplet Harvesting 4.5 Light Outcoupling 4.6 White OLEDs - State-of-the-Art 5 Experimental and Methods 5.1 Materials 5.2 Device Preparation 5.3 OLED Characterization 5.3.1 IVL and Spectral Emission 5.3.2 Angular Dependence 5.3.3 Efficiencies 5.3.4 Lifetime 5.4 Time-Resolved Spectroscopy 5.5 Photoluminescence Setup 5.6 Theoretical Calculations 5.6.1 Optical Simulation of OLEDs 5.6.2 Calculation of Molecular Orbitals 6 Triplet Harvesting 6.1 The Emitter 4P-NPD 6.1.1 Orientation 6.1.2 Exciton Harvesting 6.1.3 Two-color white TH OLED 6.2 Development of Blue Emitters 6.2.1 8M-4P-NPD 6.2.2 8M-4P-FPD 6.3 Comparison to Quantum Chemical Calculations 6.4 Summary and Outlook 7 Singlet Diffusion Length 7.1 Electroluminescence Quenching 7.1.1 Working principle of the device 7.1.2 Theoretical Considerations 7.1.3 Results 7.2 Photoluminescence Quenching 7.2.1 Preliminary Considerations 7.2.2 Reference Devices 7.2.3 Sample Devices and Discussion 7.3 Summary and Outlook 8 Tandem OLEDs 8.1 Previous Work 8.2 Triplet Harvesting Unit 8.3 Full Phosphorescent Unit 8.4 Charge Generation Layer in Tandem OLEDs 8.5 Tandem OLED with Double Emission Layer 8.6 Conclusions and Outlook 9 Silver Nanowire Electrodes 9.1 Demand for Alternative Electrodes 9.2 Processing and Quality Characteristics 9.3 Influence of Organic Buffer Layers 9.4 Variation of the Electron Transport Layer Thickness 9.5 Highly Efficient OLEDs on Silver Nanowire Electrodes 9.6 Summary and Outlook 10 Concluding Remarks 10.1 Summary of Main Results 10.2 Outlook: White TH OLEDs / In dieser Arbeit werden verschiedene Ansätze zur Effizienzsteigerung in weißen organischen lichtemittierenden Dioden (OLEDs) erforscht. Hierfür werden im Besonderen Diffusions- und Transferprozesse von angeregten Singulett- und Triplettzuständen untersucht. Zur Erzeugung von weißem Licht wird die sogenannte “triplet harvesting” Methode verwendet, bei der die sonst nicht zur Emission beitragenden Triplettzustände eines fluoreszenten blauen Emitters auf einen hocheffizienten phosphoreszenten Emitter übertragen werden. Dieser liefert dann zusätzliche Emission im niederenergetischen Spektralbereich. Durch triplet harvesting kann die interne Quantenausbeute in OLEDs beträchtlich gesteigert werden. Zunächst wird der bekannte blaue Emitter 4P-NPD als Modellbeispiel untersucht. Mittels zeitlich aufgelöster Spektroskopie kann triplet harvesting auf einen gelben bzw. roten Emitter direkt nachgewiesen werden. Allerdings ist auf Grund der niedrigen Triplettenergie triplet harvesting auf einen grünen Emitter nicht möglich. In Anbetracht dieser Tatsache werden unter Zuhilfenahme quantenchemischer Betrachtungen zwei neue Emittermoleküle, 8M-4P-NPD und 8M-4P-FPD, synthetisiert und auf ihre Eigenschaften und ihre Eignung für triplet harvesting untersucht. Dabei wird zum ersten Mal eine weiße OLED realisiert, in der triplet harvesting von einem blauen Emitter direkt auf einen grünen und einen roten Emitter erfolgt. Des Weiteren wird bei den untersuchten triplet harvesting OLEDs ein zusätzlicher Singulettübertrag auf den phosphoreszenten Emitter beobachtet. Dieser Effekt wird zur Bestimmung der Singulettdiffusionslänge in 4P-NPD genutzt. Der phosphoreszente Emitter dient dabei als Singulettsensor. Über eine Variation des Abstands zwischen Singulettgenerationszone und Sensor wird eine Singulettdiffusionslänge von 4,6 nm bestimmt. Ein weiterer Ansatz zur Effizienzsteigerung besteht in der Optimierung einer aus zwei OLEDs zusammengesetzten Tandem OLED. Bei einer Leuchtdichte von 1000 cd/m² erzielt diese weiße Tandem OLED eine externe Quanteneffizienz von 25% und eine Leistungseffizienz von 33 lm/W mit einem Farbwiedergabeindex (CRI) von 62 und Commission Internationale de l’Eclairage (CIE) Farbkoordinaten von (0,53/0,43). Diese Effizienzen sind vergleichbar mit dem aktuellen Forschungsstand weißer OLEDs. Schließlich wird diese hocheffiziente weiße Tandemstruktur auf eine alternative Elektrode bestehend aus flachgedrückten Silbernanodrähten aufgebracht. Im Vergleich zur konventionellen OLED mit Indiumzinnoxid (ITO) Elektrode erreicht diese ähnlich hohe Effizienzen sowie eine verbesserte Farbstabilität bezüglich des Betrachtungswinkels, was auf die Streueigenschaften der Nanodrähte zurückgeführt werden kann. Bei einer Leuchtdichte von 1000 cd/m² zeigt die OLED mit Silbernanodrahtelektrode Effizienzen von 24% und 30 lm/W bei einem CRI von 69 und CIE Koordinaten von (0,49/0,47).:List of Publications List of Important Abbreviations 1 Introduction 2 White Light and Color 2.1 Radiometry and Photometry 2.2 Color Stimulus Specification 2.3 White Light 2.4 Light Sources 3 Organic Semiconductors 3.1 Molecular Orbitals 3.2 Fluorescence and Phosphorescence 3.3 Singlet-Triplet Splitting 3.4 Energy Transfer Mechanisms 3.5 Exciton Diffusion and Quenching 3.6 Charge Carrier Transport 4 Organic Light-Emitting Diodes 4.1 Electroluminescence 4.2 The pin Concept 4.3 Phosphorescent Emitters 4.4 Triplet Harvesting 4.5 Light Outcoupling 4.6 White OLEDs - State-of-the-Art 5 Experimental and Methods 5.1 Materials 5.2 Device Preparation 5.3 OLED Characterization 5.3.1 IVL and Spectral Emission 5.3.2 Angular Dependence 5.3.3 Efficiencies 5.3.4 Lifetime 5.4 Time-Resolved Spectroscopy 5.5 Photoluminescence Setup 5.6 Theoretical Calculations 5.6.1 Optical Simulation of OLEDs 5.6.2 Calculation of Molecular Orbitals 6 Triplet Harvesting 6.1 The Emitter 4P-NPD 6.1.1 Orientation 6.1.2 Exciton Harvesting 6.1.3 Two-color white TH OLED 6.2 Development of Blue Emitters 6.2.1 8M-4P-NPD 6.2.2 8M-4P-FPD 6.3 Comparison to Quantum Chemical Calculations 6.4 Summary and Outlook 7 Singlet Diffusion Length 7.1 Electroluminescence Quenching 7.1.1 Working principle of the device 7.1.2 Theoretical Considerations 7.1.3 Results 7.2 Photoluminescence Quenching 7.2.1 Preliminary Considerations 7.2.2 Reference Devices 7.2.3 Sample Devices and Discussion 7.3 Summary and Outlook 8 Tandem OLEDs 8.1 Previous Work 8.2 Triplet Harvesting Unit 8.3 Full Phosphorescent Unit 8.4 Charge Generation Layer in Tandem OLEDs 8.5 Tandem OLED with Double Emission Layer 8.6 Conclusions and Outlook 9 Silver Nanowire Electrodes 9.1 Demand for Alternative Electrodes 9.2 Processing and Quality Characteristics 9.3 Influence of Organic Buffer Layers 9.4 Variation of the Electron Transport Layer Thickness 9.5 Highly Efficient OLEDs on Silver Nanowire Electrodes 9.6 Summary and Outlook 10 Concluding Remarks 10.1 Summary of Main Results 10.2 Outlook: White TH OLEDs
16

Improved On-chip Fluorescence Detection and Oxygen Sensing using Organic Thin Film Devices

Shuai, Yun 14 August 2009 (has links)
No description available.
17

Erzeugung großflächiger organischer Leuchtdioden in einem vertikalen In-Line-Bedampfungssystem

Schreil, Manfred 24 May 2005 (has links) (PDF)
Im Mittelpunkt der vorliegenden Dissertation stand die Herstellung von organischen Leuchtdioden und Passiv-Matrix-Displays an einer neuartigen Durchlauf-Depositionsanlage. Die Abscheidung von "small molecule" Materialien im Hochvakuum wurde dabei mittels organischer Molekularstrahldeposition (OMBD) durchgeführt. Um effiziente Leuchtdioden zu erzielen, sind die Bauelemente als Mehrschichtsystem aufgebracht worden. Als Grundstruktur kam eine Schichtenfolge zur Anwendung, die als Löchertransporter aus dem Starburst-Derivat 2-TNATA, daran anschließend einem tertiären Arylamin, dem elektronenblockierenden a-NPB sowie dem Oxinat-Komplex Alq3 besteht. Dabei diente das Aluminium-Oxinat als Elektronenleiter und Emissionsmaterial. Mit dem Quinacridon-Derivat QAD als Dotierstoff wurde außerdem eine OLED-Struktur mit Gast-Wirtsystem realisiert Eine kontrollierte und reproduzierbare Deposition der organischen Materialien ist eine unabdingbare Voraussetzung, um organische Leuchtdioden kommerziell als Mehrschichtbauelemente herstellen zu können. Dazu wurde ein Hochvakuumsystem der Firma Applied Films installiert und in Betrieb genommen. Die VES 400/13-Entwicklungsanlage ist als Vertical Evaporation and Sputtering Durchlaufsystem für bis zu 400 mm hohe Substrate mit 11 individuellen Prozesskammern sowie zwei daran anschließenden Stickstoffboxen konzipiert. Diese Technologie ermöglicht das Aufdampfen einer oder nacheinander mehrerer Schichten auf beliebiges Substratmaterial. Entsprechend den Erfordernissen sind wichtige Prozessparameter wie Depositionsrate, Transportgeschwindigkeit des Substrates sowie Filmdicke der funktionellen Schichten in einem weiten Bereich frei einstellbar. Neben einer ausgeglichenen Löcher- und Elektroneninjektion werden die Eigenschaften der hergestellten Leuchtdioden durch die Dicken der einzelnen Schichten, der Beweglichkeit der Ladungsträger in den verwendeten organischen Materialien sowie der energetischen Lage der höchsten besetzten und niedrigsten unbesetzten Molekülorbitale der Halbleiter bestimmt. Als undotierte OLED-Struktur wurde eine Schichtenfolge aus ITO / 2-TNATA / NPB / Alq3 / Mg verwendet. Die Stärke der elektrischen Kontakte betrug jeweils etwa 150 nm für ITO bzw. Magnesium. Die organischen Halbleiterfilme verfügten über Lagendicken von 60 / 10 / 60 nm. Eine derart aufgebaute Leuchtdiode zeigte ein grünes Emissionsspektrum, dessen Mittenwellenlänge bei etwa 537 nm lag und eine Halbwertsbreite von circa 112 nm aufwies. Für die Betriebsspannung, die Leuchtdichte, die Strom- sowie die Leistungseffizienz ergaben sich für die beiden Stromdichten von 3 mA/cm² und 30 mA/cm² optimierte Werte zu 5,3 V bzw. 9,4 V, 100 cd/m² bzw. 1317 cd/m², 3,3 cd/A bzw. 4,4 cd/A sowie 2 lm/W bzw. 1,5 lm/W. Das Sperr- oder Gleichrichtungsverhältnis Gv wurde für die beiden gemessenen Maximal-spannungen von ±10 Volt zu <5 x 107 bestimmt. Durch die Dotierung der Alq3-Emissionsschicht mit etwa 1 mol% des Quinacridon-Derivats QAD und Hinzufügen einer separaten Elektronentransportschicht konnte eine Steigerung der Elektrolumines-zenz erreicht werden. Der OLED-Aufbau des Gast-Wirt-Systems verfügt über einen Schichtenstapel mit den Lagen ITO / 2-TNATA / NPB / Alq3 + QAD / Alq3 / Mg. Die Filmdicken der organischen Schichten der OLED mit den besten Eigenschaften betragen 60 / 10 / 35 / 25 nm. Die anorganischen elektrischen Kontakte waren jeweils etwa 150 nm dick. Die dotierten Bauelemente zeigen ein bei einer Mittenwellenlänge von 527 nm emittierendes, grünes Spektrum. Mit einer geringen Halbwertsbreite von 28 nm ist die Bedingung einer schmalen Emissionsbreite für die Anwendung in OLED-Displays erfüllt. Die Betriebsspannung, die Leuchtdichte, die Strom- und die Leistungseffizienz ergeben für die beiden Stromdichten von 6,2 mA/cm² und 45,6 mA/cm² optimierte Werte zu 10,8 V bzw. 17,0 V, 445,4 cd/m² bzw. 3816,7 cd/m², 7,2 cd/A bzw. 8,4 cd/A sowie 2,1 lm/W bzw. 1,6 lm/W.
18

Erzeugung großflächiger organischer Leuchtdioden in einem vertikalen In-Line-Bedampfungssystem

Schreil, Manfred 08 June 2005 (has links)
Im Mittelpunkt der vorliegenden Dissertation stand die Herstellung von organischen Leuchtdioden und Passiv-Matrix-Displays an einer neuartigen Durchlauf-Depositionsanlage. Die Abscheidung von "small molecule" Materialien im Hochvakuum wurde dabei mittels organischer Molekularstrahldeposition (OMBD) durchgeführt. Um effiziente Leuchtdioden zu erzielen, sind die Bauelemente als Mehrschichtsystem aufgebracht worden. Als Grundstruktur kam eine Schichtenfolge zur Anwendung, die als Löchertransporter aus dem Starburst-Derivat 2-TNATA, daran anschließend einem tertiären Arylamin, dem elektronenblockierenden a-NPB sowie dem Oxinat-Komplex Alq3 besteht. Dabei diente das Aluminium-Oxinat als Elektronenleiter und Emissionsmaterial. Mit dem Quinacridon-Derivat QAD als Dotierstoff wurde außerdem eine OLED-Struktur mit Gast-Wirtsystem realisiert Eine kontrollierte und reproduzierbare Deposition der organischen Materialien ist eine unabdingbare Voraussetzung, um organische Leuchtdioden kommerziell als Mehrschichtbauelemente herstellen zu können. Dazu wurde ein Hochvakuumsystem der Firma Applied Films installiert und in Betrieb genommen. Die VES 400/13-Entwicklungsanlage ist als Vertical Evaporation and Sputtering Durchlaufsystem für bis zu 400 mm hohe Substrate mit 11 individuellen Prozesskammern sowie zwei daran anschließenden Stickstoffboxen konzipiert. Diese Technologie ermöglicht das Aufdampfen einer oder nacheinander mehrerer Schichten auf beliebiges Substratmaterial. Entsprechend den Erfordernissen sind wichtige Prozessparameter wie Depositionsrate, Transportgeschwindigkeit des Substrates sowie Filmdicke der funktionellen Schichten in einem weiten Bereich frei einstellbar. Neben einer ausgeglichenen Löcher- und Elektroneninjektion werden die Eigenschaften der hergestellten Leuchtdioden durch die Dicken der einzelnen Schichten, der Beweglichkeit der Ladungsträger in den verwendeten organischen Materialien sowie der energetischen Lage der höchsten besetzten und niedrigsten unbesetzten Molekülorbitale der Halbleiter bestimmt. Als undotierte OLED-Struktur wurde eine Schichtenfolge aus ITO / 2-TNATA / NPB / Alq3 / Mg verwendet. Die Stärke der elektrischen Kontakte betrug jeweils etwa 150 nm für ITO bzw. Magnesium. Die organischen Halbleiterfilme verfügten über Lagendicken von 60 / 10 / 60 nm. Eine derart aufgebaute Leuchtdiode zeigte ein grünes Emissionsspektrum, dessen Mittenwellenlänge bei etwa 537 nm lag und eine Halbwertsbreite von circa 112 nm aufwies. Für die Betriebsspannung, die Leuchtdichte, die Strom- sowie die Leistungseffizienz ergaben sich für die beiden Stromdichten von 3 mA/cm² und 30 mA/cm² optimierte Werte zu 5,3 V bzw. 9,4 V, 100 cd/m² bzw. 1317 cd/m², 3,3 cd/A bzw. 4,4 cd/A sowie 2 lm/W bzw. 1,5 lm/W. Das Sperr- oder Gleichrichtungsverhältnis Gv wurde für die beiden gemessenen Maximal-spannungen von ±10 Volt zu <5 x 107 bestimmt. Durch die Dotierung der Alq3-Emissionsschicht mit etwa 1 mol% des Quinacridon-Derivats QAD und Hinzufügen einer separaten Elektronentransportschicht konnte eine Steigerung der Elektrolumines-zenz erreicht werden. Der OLED-Aufbau des Gast-Wirt-Systems verfügt über einen Schichtenstapel mit den Lagen ITO / 2-TNATA / NPB / Alq3 + QAD / Alq3 / Mg. Die Filmdicken der organischen Schichten der OLED mit den besten Eigenschaften betragen 60 / 10 / 35 / 25 nm. Die anorganischen elektrischen Kontakte waren jeweils etwa 150 nm dick. Die dotierten Bauelemente zeigen ein bei einer Mittenwellenlänge von 527 nm emittierendes, grünes Spektrum. Mit einer geringen Halbwertsbreite von 28 nm ist die Bedingung einer schmalen Emissionsbreite für die Anwendung in OLED-Displays erfüllt. Die Betriebsspannung, die Leuchtdichte, die Strom- und die Leistungseffizienz ergeben für die beiden Stromdichten von 6,2 mA/cm² und 45,6 mA/cm² optimierte Werte zu 10,8 V bzw. 17,0 V, 445,4 cd/m² bzw. 3816,7 cd/m², 7,2 cd/A bzw. 8,4 cd/A sowie 2,1 lm/W bzw. 1,6 lm/W.
19

Directional organic light-emitting diodes using photonic microstructure

Zhang, Shuyu January 2014 (has links)
This thesis describes investigations into the optical and device design of organic light-emitting diodes (OLEDs) with the aim of exploring the factors controlling the spatial emission pattern of OLEDs and developing novel OLEDs with directional emission by applying wavelength-scale photonic microstructure. The development of directional OLEDs was broken down into two steps: the development of efficient narrow linewidth OLEDs and the integration of wavelength-scale photonic microstructures into narrow linewidth OLEDs. The narrow linewidth OLEDs were developed using europium (Eu) complexes. The electrical optimisation of solution-processed Eu-based OLEDs using commercially available materials was investigated. The optimised Eu-based OLEDs gave an external quantum efficiency of 4.3% at a display brightness of 100 cd/m². To our knowledge, this is the highest efficiency reported for solution-processed Eu-based OLED devices, and the efficiency roll-off has been reduced compared with other reported references. Photonic microstructures were applied to develop directional OLEDs using the efficient Eu-based OLEDs. Two contrasting strategies were used. One was to embed photonic microstructures into Eu-based OLEDs, the other was to couple photonic microstructures externally onto the devices. The microstructured devices developed by the former strategy boosted the emitted power in desired angles in both s- and p-polarisations and doubled the fraction of emission in an angle range of 4⁰. The devices developed by the external coupling strategy achieved even higher directionality and the out-coupled emission was a confined beam with easy control of beam steering. Around 90% of the emitted power was confined in an angular range of 20⁰ in the detection plane. The optical properties can be optimised independently without compromising the electrical properties of devices, which gives major advantages in terms of effectiveness and versatility. Optical models were also developed to investigate the out-coupling mechanism of various trapped modes and develop OLEDs with stronger directionality.
20

Optical Simulation and Optimization of Light Extraction Efficiency for Organic Light Emitting Diodes

January 2016 (has links)
abstract: Current organic light emitting diodes (OLEDs) suffer from the low light extraction efficiency. In this thesis, novel OLED structures including photonic crystal, Fabry-Perot resonance cavity and hyperbolic metamaterials were numerically simulated and theoretically investigated. Finite-difference time-domain (FDTD) method was employed to numerically simulate the light extraction efficiency of various 3D OLED structures. With photonic crystal structures, a maximum of 30% extraction efficiency is achieved. A higher external quantum efficiency of 35% is derived after applying Fabry-Perot resonance cavity into OLEDs. Furthermore, different factors such as material properties, layer thicknesses and dipole polarizations and locations have been studied. Moreover, an upper limit for the light extraction efficiency of 80% is reached theoretically with perfect reflector and single dipole polarization and location. To elucidate the physical mechanism, transfer matrix method is introduced to calculate the spectral-hemispherical reflectance of the multilayer OLED structures. In addition, an attempt of using hyperbolic metamaterial in OLED has been made and resulted in 27% external quantum efficiency, due to the similar mechanism of wave interference as Fabry-Perot structure. The simulation and optimization methods and findings would facilitate the design of next generation, high-efficiency OLED devices. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2016

Page generated in 0.0822 seconds