Spelling suggestions: "subject:"orthogonal polynomials"" "subject:"orthogonal olynomials""
31 |
Multivariate orthogonal polynomialsCooper, Leonard W. January 1951 (has links)
The object of this thesis is to define special orthogonal polynomials and develop efficient methods for employing them which have the same advantages with respect to functions of the type (1.2) as do univariate orthogonal polynomials in the simple case k=1. These new polynomials may be usefully termed “multivariate orthogonal polynomials.” / Master of Science
|
32 |
Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex PlaneYang, Meng 21 May 2018 (has links)
In chapter 1, we present some background knowledge about random matrices, Coulomb gas, orthogonal polynomials, asymptotics of planar orthogonal polynomials and the Riemann-Hilbert problem. In chapter 2, we consider the monic orthogonal polynomials, $\{P_{n,N}(z)\}_{n=0,1,\cdots},$ that satisfy the orthogonality condition,
\begin{equation}\nonumber \int_\mathbb{C}P_{n,N}(z)\overline{P_{m,N}(z)}e^{-N Q(z)}dA(z)=h_{n,N}\delta_{nm} \quad(n,m=0,1,2,\cdots), \end{equation}
where $h_{n,N}$ is a (positive) norming constant and the external potential is given by
$$Q(z)=|z|^2+ \frac{2c}{N}\log \frac{1}{|z-a|},\quad c>-1,\quad a>0.$$
The orthogonal polynomial is related to the interacting Coulomb particles with charge $+1$ for each, in the presence of an extra particle with charge $+c$ at $a.$ For $N$ large and a fixed ``c'' this can be a small perturbation of the Gaussian weight. The polynomial $P_{n,N}(z)$ can be characterized by a matrix Riemann--Hilbert problem \cite{Ba 2015}. We then apply the standard nonlinear steepest descent method \cite{Deift 1999, DKMVZ 1999} to derive the strong asymptotics of $P_{n,N}(z)$ when $n$ and $N$ go to $\infty.$ From the asymptotic behavior of $P_{n,N}(z),$ we find that, as we vary $c,$ the limiting distribution behaves discontinuously at $c=0.$ We observe that the mother body (a kind of potential theoretic skeleton) also behaves discontinuously at $c=0.$ The smooth interpolation of the discontinuity is obtained by further scaling of $c=e^{-\eta N}$ in terms of the parameter $\eta\in[0,\infty).$ To obtain the results for arbitrary values of $c$, we used the ``partial Schlesinger transform'' method developed in \cite{BL 2008} to derive an arbitrary order correction in the Riemann--Hilbert analysis.
In chapter 3, we consider the case of multiple logarithmic singularities. The planar orthogonal polynomials $\{p_n(z)\}_{n=0,1,\cdots}$ with respect to the external potential that is given by $$Q(z)=|z|^2+ 2\sum_{j=1}^lc_j\log \frac{1}{|z-a_j|},$$
where $\{a_1, a_2, \cdots, a_l\}$ is a set of nonzero complex numbers and $\{c_1, c_2, \cdots, c_l\}$ is a set of positive real numbers. We show that the planar orthogonal polynomials $p_{n}(z)$ with $l$ logarithmic singularities in the potential are the multiple orthogonal polynomials $p_{{\bf{n}}}(z)$ (Hermite-Pad\'e polynomials) of Type II with $l$ measures of degree $|{\bf{n}}|=n=\kappa l+r,$ ${\bf{n}}=(n_1,\cdots,n_l)$ satisfying the orthogonality condition,
$$ \frac{1}{2\ii}\int_{\Gamma}p_{{\bf{n}}}(z) z^k\chi_{{\bf{n}}-{\bf{e}}_j}(z)\dd z=0, \quad 0\leq k\leq n_j-1,\quad 1\leq j\leq l,$$
where $\Gamma$ is a certain simple closed curve with counterclockwise orientation and
$$ \chi_{{\bf{n}}-{\bf{e}}_j}(z):= \prod_{i=1}^l(z-a_i)^{c_i }\int_{0}^{\overline{z}\times\infty}\frac{\prod_{i=1}^l(s-\bar{a}_i)^{n_i+c_i}}{(s-\bar{a}_j)\ee^{zs}}\,\dd s. $$
Such equivalence allows us to formulate the $(l+1)\times(l+1)$ Riemann--Hilbert problem for $p_n(z)$. We also find the ratio between the determinant of the moment matrix corresponding to the multiple orthogonal polynomials and the determinant of the moment matrix from the original planar measure.
|
33 |
Polinômios ortogonais e L-ortogonais associados a medidas relacionadasCampetti, Marcos Henrique [UNESP] 20 January 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-01-20Bitstream added on 2014-06-13T20:55:41Z : No. of bitstreams: 1
campetti_mh_me_sjrp.pdf: 574554 bytes, checksum: a27f7403e37f640c1f02b66b9632ca90 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / O objetivo deste trabalho é fazer um estudo das propriedades de duas sequências de polinômios, {Pϕ0 n }∞ n=0 e {Pϕ1 n }∞ n=0, ortogonais com relação, respectivamente, às medidas dϕ0 e dϕ1, relacionadas entre si, e das propriedades de duas sequências de polinômios L-ortogonais, {Bψ0 n }∞ n=0 e {Bψ1 n }∞ n=0, quando as medidas associadas, dψ0 e dψ1, est˜ao tamb´em relacionadas. Para os polinômios ortogonais, foram considerados dois casos: polinômios ortogonais associados a medidas simétricas relacionadas por dϕ1(x) = c 1 + qx2 dϕ0(x) e polinˆomios ortogonais associados a medidas relacionadas por (x − q) dϕ1(x) = c dϕ0(x). Como exemplo, os resultados foram aplicados no estudo de polinˆomios ortogonais de Sobolev associados a medidas simétricas como os de Gegenbauer e Hermite, e medidas não simétricas como as de Jacobi e Laguerre. Para os polinômios L-ortogonais, considerou-se o estudo de duas sequências de polinômios associados a medidas positivas fortes dψ0 e dψ1 relacionadas por (z − κ) dψ1(z) = c dψ0(z). Como consequência dessas propriedades, algoritmos para gerar qualquer um dos pares de coeficientes das relações de recorrência, {αψ0 n , βψ0 n } ou {αψ1 n , βψ1 n }, dado o outro, foram dados. / The main purpose of this work is to study some properties of two sequences of polynomials, {Pϕ0 n }∞ n=0 and {Pϕ1 n }∞ n=0, orthogonal, respectively, with respect to the related measures dϕ0 and dϕ1, and properties of two sequences of L-orthogonal polynomials, {Bψ0 n }∞ n=0 and {Bψ1 n }∞ n=0, when the associated measures, dψ0 and dψ1, are also related. For the orthogonal polynomials, we considered two cases: orthogonal polynomials associated with symmetric measures related to each other by dϕ1(x) = c 1 + qx2 dϕ0(x) and orthogonal polynomials associated with measures related by (x − q) dϕ1(x) = c dϕ0(x). As examples, the results are applied to obtain informations regarding Sobolev orthogonal polynomials associated with symmetric measures as Gegenbauer and Hermite measures, and non-symmetrical measures such as Jacobi and Laguerre measures. For the L-orthogonal polynomials, we considered the study of two sequences of polynomials associated with strong positive measures dψ0 and dψ1 and related to each other by (z −κ) dψ1(z) = c dψ0(z). As a consequence of these properties, algorithms to generate any pair of coefficients of the recurrence relations, {αψ0 n , βψ0 n } or {αψ1 n , βψ1 n }, given the other, were given.
|
34 |
Polinômios para-ortogonais e análise de freqüênciaMartins, Fabiano Alan [UNESP] 25 February 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:07Z (GMT). No. of bitstreams: 0
Previous issue date: 2005-02-25Bitstream added on 2014-06-13T20:08:12Z : No. of bitstreams: 1
martins_fa_me_sjrp.pdf: 451924 bytes, checksum: c1a2a18101f8ff7b018fcfef32d93920 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo deste trabalho é estudar uma aplicação de polinômios conhecidos, como polinômios para-ortogonais, na solução do problema de análise de freqüência. Para isto, estudamos os polinômios de Szegö que são ortogonais no cýrculo unitário e que dão origem aos polinômios para-ortogonais. Estudamos casos especiais de polinômios para-ortogonais que, através de uma transformação do cýrculo unitário no intervalo [-1, 1], estão associados a certos polinômios ortogonais. Apresentamos também uma abordagem do problema de análise de freqüência utilizando esses polinômios ortogonais em [-1, 1]. / The purpose of this work is to study an application of some polynomials, known as para-orthogonal polynomials, in the solution of the frequency analysis problem. We study the Szeguo polynomials that are orthogonal polynomials on the unit circle and give origin to the para-orthogonal polynomials. We investigate some special cases of para-orthogonal polynomials that are associate with certain orthogonal polynomials on [-1, 1] through a transformation from the unit circle to the real interval [-1, 1]. We also present an approach of the frequency analysis problem using these orthogonal polynomials on [-1, 1].
|
35 |
Polinômios q-Ortogonais / q-Orthogonal PolynomialsRafael, Matheus Henrique de Figueiredo 24 May 2018 (has links)
Submitted by Matheus Henrique de Figueiredo Rafael (mhdfr@hotmail.com) on 2018-06-12T13:14:10Z
No. of bitstreams: 1
merged.pdf: 638040 bytes, checksum: 3c71db8c27eb62182e4783fe8b859446 (MD5) / Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-06-12T19:00:48Z (GMT) No. of bitstreams: 1
rafael_mhf_me_sjrp.pdf: 638040 bytes, checksum: 3c71db8c27eb62182e4783fe8b859446 (MD5) / Made available in DSpace on 2018-06-12T19:00:48Z (GMT). No. of bitstreams: 1
rafael_mhf_me_sjrp.pdf: 638040 bytes, checksum: 3c71db8c27eb62182e4783fe8b859446 (MD5)
Previous issue date: 2018-05-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo desta dissertação é estudar os chamados polinômios q-ortogonais. Com esse objetivo, analisamos algumas das igualdades envolvendo q-fatoriais, séries q-hipergeométricas e suas aplicações em certos polinômios q-ortogonais. Os resultados estão associados a quatro casos particulares de polinômios q-ortogonais, q-Hermite, q-Ultra-esféricos, Al-Salam-Chihara e Askey-Wilson, os quais são bastante explorados. / The objective of this dissertation is to consider a study of the so-called q-orthogonal polynomials. With this objective we look at some of the equalities involving qfatorials,q-hypergeometric series and their applications towards certain q-orthogonal polynomials. Results are associated with four particular cases of q-orthogonal polynomials,namely: theq-Hermite, q-Ultraespherical, Al-Salam-Chihara and the AskeyWilson, which thouroughly explored.
|
36 |
Sobre Polinômios Ortogonais Excepcionais / On Exceptional Orthogonal PolynomialsFukushima, Paula Akari 23 May 2018 (has links)
Submitted by Paula Akari Fukushima (paula.fukushima@gmail.com) on 2018-06-07T13:24:40Z
No. of bitstreams: 1
dissertacao_com_ficha_catalografica.pdf: 734238 bytes, checksum: 7e83c559085d2370c3126bb9787364f8 (MD5) / Rejected by Elza Mitiko Sato null (elzasato@ibilce.unesp.br), reason: Solicitamos que realize correções na submissão seguindo as orientações abaixo:
Problema 01) Observamos que no seu arquivo consta o auxílio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), então na Folha de rosto e de aprovação deve constar a financiadora.
Lembramos que o arquivo depositado no repositório deve ser igual ao impresso, o rigor com o padrão da Universidade se deve ao fato de que o seu trabalho passará a ser visível mundialmente.
Agradecemos a compreensão
on 2018-06-08T19:11:31Z (GMT) / Submitted by Paula Akari Fukushima (paula.fukushima@gmail.com) on 2018-06-12T13:25:21Z
No. of bitstreams: 1
dissertacao_com_ficha_catalografica.pdf: 734279 bytes, checksum: 7a81403314e3b2da3076407e9672a090 (MD5) / Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-06-12T19:15:16Z (GMT) No. of bitstreams: 1
fukushima_pa_me_sjrp.pdf: 734279 bytes, checksum: 7a81403314e3b2da3076407e9672a090 (MD5) / Made available in DSpace on 2018-06-12T19:15:16Z (GMT). No. of bitstreams: 1
fukushima_pa_me_sjrp.pdf: 734279 bytes, checksum: 7a81403314e3b2da3076407e9672a090 (MD5)
Previous issue date: 2018-05-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nesta dissertação estudamos sequências de polinômios ortogonais que surgem como auto-funções polinomiais do problema de Sturm-Liouville, sob a condição de que, nem todos os graus das auto-funções polinomiais estejam presentes na sequência de graus dos polinômios que formam o conjunto ortogonal completo. Estas sequências são chamadas de sequências de polinômios ortogonais excepcionais. Emparticular,realizamosumestudodospolinômiosortogonaisexcepcionais X1-Jacobi e X1-Laguerre. / In this dissertation we study sequences of orthogonal polynomials that arise as polynomial eigenfunctions of the Sturm-Liouville problem, with the condition that not all degrees of polynomial eigenfunctions are present in the sequence of degrees of the polynomials that form a complete orthogonal set. These sequences are called exceptional orthogonal polynomial sequences. In particular, we study the exceptional orthogonal polynomials X1-Jacobi and X1-Laguerre.
|
37 |
Polinômios para-ortogonais e análise de freqüência /Martins, Fabiano Alan. January 2005 (has links)
Orientador: Cleonice Fátima Bracciali / Banca: Walter dos Santos Motta Junior / Banca: Eliana Xavier Linhares de Andrade / Resumo: O objetivo deste trabalho é estudar uma aplicação de polinômios conhecidos, como polinômios para-ortogonais, na solução do problema de análise de freqüência. Para isto, estudamos os polinômios de Szegö que são ortogonais no cýrculo unitário e que dão origem aos polinômios para-ortogonais. Estudamos casos especiais de polinômios para-ortogonais que, através de uma transformação do cýrculo unitário no intervalo [-1, 1], estão associados a certos polinômios ortogonais. Apresentamos também uma abordagem do problema de análise de freqüência utilizando esses polinômios ortogonais em [-1, 1]. / Abstract: The purpose of this work is to study an application of some polynomials, known as para-orthogonal polynomials, in the solution of the frequency analysis problem. We study the Szeguo polynomials that are orthogonal polynomials on the unit circle and give origin to the para-orthogonal polynomials. We investigate some special cases of para-orthogonal polynomials that are associate with certain orthogonal polynomials on [-1, 1] through a transformation from the unit circle to the real interval [-1, 1]. We also present an approach of the frequency analysis problem using these orthogonal polynomials on [-1, 1]. / Mestre
|
38 |
Studies on generalizations of the classical orthogonal polynomials where gaps are allowed in their degree sequences / 次数列に欠落が存在するような古典直交多項式の一般化に関する研究Luo, Yu 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第22583号 / 情博第720号 / 新制||情||123(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 中村 佳正, 教授 矢ヶ崎 一幸, 准教授 辻本 諭 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
39 |
Lifting schemes for wavelet filters of trigonometric vanishingmomentsCheng, Ho-Yin., 鄭浩賢. January 2002 (has links)
published_or_final_version / Mathematics / Master / Master of Philosophy
|
40 |
Fórmulas de quadratura associada a polinômios que satisfazem uma relação de recorrência especial e fórmulas de quadratura no círculo unitário /Pereira, Junior Augusto. January 2019 (has links)
Orientador: Cleonice Fátima Bracciali / Banca: Jorge Alberto Borrego Morell / Banca: Vanessa Avansini Botta Pirani / Banca: Alagacone Sri Ranga / Banca: Jo˜ao Carlos Ferreira Costa / Resumo: A partir dos zeros dos polinômios que satisfazem uma relação de recorrência do tipo R_II especial, obtemos uma fórmula de quadratura na reta real com fórmulas simples para o cálculo de seus pesos. Alguns polinômios para-ortogonais no círculo unitário podem ser obtidos por uma relação de recorrência de três termos. As duas relações de recorrência mencionadas são conectadas por uma transformação que leva a reta real ao círculo unitário. Desta maneira, obtemos também fórmulas de quadratura no círculo unitário. Os nós e pesos das fórmulas de quadratura no círculo unitário são facilmente obtidos através dos nós e pesos da primeira fórmula. Foram feitas algumas adaptações em métodos numéricos muito bem conhecidos para obter os nós e pesos destas fórmulas de quadratura / Abstract: From polynomials that satisfy a special recurrence relation of type RII we derive a quadrature formula in the real line with simple formulas to obtain the respective weights. Some para-orthogonal polynomials in the unit circle can be expressed by a three terms recurrence relation. The two mencioned recurrence relations are connected by a transformation that takes the real line onto the unit circle. Hence, we obtain also quadrature formula on the unit circle. The nodes and the weights of the quadratura on the unit circle are obteined easily from the nodes and the weights of the first quadrature formula. We have also made some adaptions in well known numerical methods to obtain the nodes and weights of these quadrature formulas / Doutor
|
Page generated in 0.0691 seconds