• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 49
  • 10
  • 9
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 147
  • 147
  • 50
  • 37
  • 22
  • 21
  • 19
  • 15
  • 14
  • 14
  • 14
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach

Gharakhloo, Roozbeh 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this work we use and develop Riemann-Hilbert techniques to study the asymptotic behavior of structured determinants. In chapter one we will review the main underlying definitions and ideas which will be extensively used throughout the thesis. Chapter two is devoted to the asymptotic analysis of Hankel determinants with Laguerre-type and Jacobi-type potentials with Fisher-Hartwig singularities. In chapter three we will propose a Riemann-Hilbert problem for Toeplitz+Hankel determinants. We will then analyze this Riemann-Hilbert problem for a certain family of Toeplitz and Hankel symbols. In Chapter four we will study the asymptotics of a certain bordered-Toeplitz determinant which is related to the next-to-diagonal correlations of the anisotropic Ising model. The analysis is based upon relating the bordered-Toeplitz determinant to the solution of the Riemann-Hilbert problem associated to pure Toeplitz determinants. Finally in chapter ve we will study the emptiness formation probability in the XXZ-spin 1/2 Heisenberg chain, or equivalently, the asymptotic analysis of the associated Fredholm determinant.
132

Applications des structures algébriques associées aux systèmes intégrables

Bergeron, Geoffroy 07 1900 (has links)
Cette thèse en trois parties regroupe des travaux de recherches sous la thématiques des symétries sous-jacentes aux systèmes intégrables et des structures algébriques qui les encodent. Une première partie illustre comment les fonctions spéciales que sont les polynômes orthogonaux apparaissent dans la théorie de la représentation des diverses structures algébriques associées à des symétries. La seconde partie se concentre sur une généralisation algébrique de l'opérateur de Heun classique menant à de nouvelles structures algébriques qui trouvent des applications en traitement de signal et dans l'étude des systèmes intégrables. La dernière partie concerne l'élaboration d'un cadre théorique dans le langage de la théorie de l'information algorithmique permettant de poser une définition mathématique de la notion d'émergence. / This thesis in three parts groups research work under the theme of the symmetries underlying integrable systems and the algebraic structures that encodes them. A first part illustrates how orthogonal polynomials, a type of special function, appear in the representation theory of various algebraic structures associated to symmetries. The second part focuses on an algebraic generalization of the classical Heun operator that leads to new algebraic structures with applications in signal processing and in the study of integrable systems. The last part concerns the formulation of a framework in the language of algorithmic information theory the enables a mathematical definition for the notion of emergence.
133

[en] MATRIX MODELS TECHNIQUES AND 2D CAUSAL QUANTUM GRAVITY / [pt] TÉCNICAS DE MODELOS DE MATRIZES E GRAVIDADE QUÂNTICA CAUSAL EM DUAS DIMENSÕES

SAULO MATUSALEM DA SILVA MENDES 27 February 2015 (has links)
[pt] Nesta dissertação nós discutimos as técnicas de modelos de matrizes para gravidade quântica em duas dimensões, as triangulações dinâmicas (DT) e sua versão causal, chamada de triangulações dinâmicas causais (CDT). Em virtude do teorema de Gauss-Bonnet a ação de Einstein-Hilbert se torna um invariante topológico em duas dimensões, por conseguinte, a avaliação da integral de caminho se transforma em um simples problema combinatório de contagem dos diagramas desenhados em uma superfície de Riemann, o que implica numa expansão topológica da função de partição. Usando métodos de integrais da teoria quântica de campos, podemos entender a correspondência entre modelos de matrizes e a formulação em grade da gravidade quântica, onde as N × N matrizes Hermitianas geram gráficos planares. Uma vez que a integral matricial se reduz a uma integração dos seus autovalores, solucionamos o modelo matricial utilizando duas técnicas: polinômios ortogonais e a análise do ponto de sela. Usando os polinômios ortogonais calculamos a energia livre no limite planar para diferentes potenciais. Por fim, partindo dos modelos matriciais estudamos DT e CDT numa analogia com o gás de Coulomb. / [en] In this thesis we discuss the matrix models techniques applied to two dimensional quantum gravity, the dynamical triangulations (DT) approach and its causal version, so-called causal dynamical triangulations (CDT). By virtue of the Gauss-Bonnet theorem, the Einstein-Hilbert action in two dimensions becomes a topological invariant, thereupon the evaluation of the path integral becomes a simple combinatorial counting problem of graphs drawn on a Riemann surface, which leads to a topological expansion of the partition function. Using integral methods from quantum field theory we can understand the correspondence between large N matrix models and a lattice (DT and CDT) formulation of quantum gravity, where the N ×N Hermitian matrices generates planar graphs (fatgraphs). Once the matrix integral is reduced to an integral of its eigenvalues, we solve the matrix model using two techniques: Orthogonal polynomials and saddle point analysis. Using orthogonal polynomials we compute the free energy in the Large N limit for different potentials. Finally, we study DT and CDT using matrix models and further make contact with a Coulomb gas analogy.
134

Best constants in Markov-type inequalities with mixed weights / Kleinste Konstanten in Markovungleichungen mit unterschiedlichen Gewichten

Langenau, Holger 19 April 2016 (has links) (PDF)
Markov-type inequalities provide upper bounds on the norm of the (higher order) derivative of an algebraic polynomial in terms of the norm of the polynomial itself. The present thesis considers the cases in which the norms are of the Laguerre, Gegenbauer, or Hermite type, with respective weights chosen differently on both sides of the inequality. An answer is given to the question on the best constant so that such an inequality is valid for every polynomial of degree at most n. The demanded best constant turns out to be the operator norm of the differential operator. The latter conicides with the tractable spectral norm of its matrix representation in an appropriate set of orthonormal bases. The methods to determine these norms vary tremendously, depending on the difference of the parameters accompanying the weights. Up to a very small gap in the parameter range, asymptotics for the best constant in each of the aforementioned cases are given. / Markovungleichungen liefern obere Schranken an die Norm einer (höheren) Ableitung eines algebraischen Polynoms in Bezug auf die Norm des Polynoms selbst. Diese vorliegende Arbeit betrachtet den Fall, dass die Normen vom Laguerre-, Gegenbauer- oder Hermitetyp sind, wobei die entsprechenden Gewichte auf beiden Seiten unterschiedlich gewählt werden. Es wird die kleinste Konstante bestimmt, sodass diese Ungleichung für jedes Polynom vom Grad höchstens n erfüllt ist. Die gesuchte kleinste Konstante kann als die Operatornorm des Differentialoperators dargestellt werden. Diese fällt aber mit der Spektralnorm der Matrixdarstellung in einem Paar geeignet gewählter Orthonormalbasen zusammen und kann daher gut behandelt werden. Zur Abschätzung dieser Normen kommen verschiedene Methoden zum Einsatz, die durch die Differenz der in den Gewichten auftretenden Parameter bestimmt werden. Bis auch eine kleine Lücke im Parameterbereich wird das asymptotische Verhalten der kleinsten Konstanten in jedem der betrachteten Fälle ermittelt.
135

Special functions of Weyl groups and their continuous and discrete orthogonality

Motlochova, Lenka 04 1900 (has links)
Cette thèse s'intéresse à l'étude des propriétés et applications de quatre familles des fonctions spéciales associées aux groupes de Weyl et dénotées $C$, $S$, $S^s$ et $S^l$. Ces fonctions peuvent être vues comme des généralisations des polynômes de Tchebyshev. Elles sont en lien avec des polynômes orthogonaux à plusieurs variables associés aux algèbres de Lie simples, par exemple les polynômes de Jacobi et de Macdonald. Elles ont plusieurs propriétés remarquables, dont l'orthogonalité continue et discrète. En particulier, il est prouvé dans la présente thèse que les fonctions $S^s$ et $S^l$ caractérisées par certains paramètres sont mutuellement orthogonales par rapport à une mesure discrète. Leur orthogonalité discrète permet de déduire deux types de transformées discrètes analogues aux transformées de Fourier pour chaque algèbre de Lie simple avec racines des longueurs différentes. Comme les polynômes de Tchebyshev, ces quatre familles des fonctions ont des applications en analyse numérique. On obtient dans cette thèse quelques formules de <<cubature>>, pour des fonctions de plusieurs variables, en liaison avec les fonctions $C$, $S^s$ et $S^l$. On fournit également une description complète des transformées en cosinus discrètes de types V--VIII à $n$ dimensions en employant les fonctions spéciales associées aux algèbres de Lie simples $B_n$ et $C_n$, appelées cosinus antisymétriques et symétriques. Enfin, on étudie quatre familles de polynômes orthogonaux à plusieurs variables, analogues aux polynômes de Tchebyshev, introduits en utilisant les cosinus (anti)symétriques. / This thesis presents several properties and applications of four families of Weyl group orbit functions called $C$-, $S$-, $S^s$- and $S^l$-functions. These functions may be viewed as generalizations of the well-known Chebyshev polynomials. They are related to orthogonal polynomials associated with simple Lie algebras, e.g. the multivariate Jacobi and Macdonald polynomials. They have numerous remarkable properties such as continuous and discrete orthogonality. In particular, it is shown that the $S^s$- and $S^l$-functions characterized by certain parameters are mutually orthogonal with respect to a discrete measure. Their discrete orthogonality allows to deduce two types of Fourier-like discrete transforms for each simple Lie algebra with two different lengths of roots. Similarly to the Chebyshev polynomials, these four families of functions have applications in numerical integration. We obtain in this thesis various cubature formulas, for functions of several variables, arising from $C$-, $S^s$- and $S^l$-functions. We also provide a~complete description of discrete multivariate cosine transforms of types V--VIII involving the Weyl group orbit functions arising from simple Lie algebras $C_n$ and $B_n$, called antisymmetric and symmetric cosine functions. Furthermore, we study four families of multivariate Chebyshev-like orthogonal polynomials introduced via (anti)symmetric cosine functions.
136

Sur les tests lisses d'ajustement dans le context des series chronologiques

Tagne Tatsinkou, Joseph Francois 12 1900 (has links)
La plupart des modèles en statistique classique repose sur une hypothèse sur la distribution des données ou sur une distribution sous-jacente aux données. La validité de cette hypothèse permet de faire de l’inférence, de construire des intervalles de confiance ou encore de tester la fiabilité du modèle. La problématique des tests d’ajustement vise à s’assurer de la conformité ou de la cohérence de l’hypothèse avec les données disponibles. Dans la présente thèse, nous proposons des tests d’ajustement à la loi normale dans le cadre des séries chronologiques univariées et vectorielles. Nous nous sommes limités à une classe de séries chronologiques linéaires, à savoir les modèles autorégressifs à moyenne mobile (ARMA ou VARMA dans le cas vectoriel). Dans un premier temps, au cas univarié, nous proposons une généralisation du travail de Ducharme et Lafaye de Micheaux (2004) dans le cas où la moyenne est inconnue et estimée. Nous avons estimé les paramètres par une méthode rarement utilisée dans la littérature et pourtant asymptotiquement efficace. En effet, nous avons rigoureusement montré que l’estimateur proposé par Brockwell et Davis (1991, section 10.8) converge presque sûrement vers la vraie valeur inconnue du paramètre. De plus, nous fournissons une preuve rigoureuse de l’inversibilité de la matrice des variances et des covariances de la statistique de test à partir de certaines propriétés d’algèbre linéaire. Le résultat s’applique aussi au cas où la moyenne est supposée connue et égale à zéro. Enfin, nous proposons une méthode de sélection de la dimension de la famille d’alternatives de type AIC, et nous étudions les propriétés asymptotiques de cette méthode. L’outil proposé ici est basé sur une famille spécifique de polynômes orthogonaux, à savoir les polynômes de Legendre. Dans un second temps, dans le cas vectoriel, nous proposons un test d’ajustement pour les modèles autorégressifs à moyenne mobile avec une paramétrisation structurée. La paramétrisation structurée permet de réduire le nombre élevé de paramètres dans ces modèles ou encore de tenir compte de certaines contraintes particulières. Ce projet inclut le cas standard d’absence de paramétrisation. Le test que nous proposons s’applique à une famille quelconque de fonctions orthogonales. Nous illustrons cela dans le cas particulier des polynômes de Legendre et d’Hermite. Dans le cas particulier des polynômes d’Hermite, nous montrons que le test obtenu est invariant aux transformations affines et qu’il est en fait une généralisation de nombreux tests existants dans la littérature. Ce projet peut être vu comme une généralisation du premier dans trois directions, notamment le passage de l’univarié au multivarié ; le choix d’une famille quelconque de fonctions orthogonales ; et enfin la possibilité de spécifier des relations ou des contraintes dans la formulation VARMA. Nous avons procédé dans chacun des projets à une étude de simulation afin d’évaluer le niveau et la puissance des tests proposés ainsi que de les comparer aux tests existants. De plus des applications aux données réelles sont fournies. Nous avons appliqué les tests à la prévision de la température moyenne annuelle du globe terrestre (univarié), ainsi qu’aux données relatives au marché du travail canadien (bivarié). Ces travaux ont été exposés à plusieurs congrès (voir par exemple Tagne, Duchesne et Lafaye de Micheaux (2013a, 2013b, 2014) pour plus de détails). Un article basé sur le premier projet est également soumis dans une revue avec comité de lecture (Voir Duchesne, Lafaye de Micheaux et Tagne (2016)). / Several phenomena from natural and social sciences rely on distribution’s assumption among which the normal distribution is the most popular. The validity of that assumption is useful to setting up forecast intervals or for checking model adequacy of the underlying model. The goodness-of-fit procedures are tools to assess the adequacy of the data’s underlying assumptions. Autoregressive and moving average time series models are often used to find the mathematical behavior of these phenomena from natural and social sciences, and especially in the finance area. These models are based on some assumptions including normality distribution for the innovations. Normality assumption may be helpful for some testing procedures. Furthermore, stronger conclusions can be drawn from the adjusted model if the white noise can be assumed Gaussian. In this work, goodness-of-fit tests for checking normality for the innovations from autoregressive moving average time series models are proposed for both univariate and multivariate cases (ARMA and VARMA models). In our first project, a smooth test of normality for ARMA time series models with unknown mean based on a least square type estimator is proposed. We derive the asymptotic null distribution of the test statistic. The result here is an extension of the paper of Ducharme et Lafaye de Micheaux (2004), where they supposed the mean known and equal to zero. We use the least square type estimator proposed by Brockwell et Davis (1991, section 10.8) and we provide a rigorous proof that it is almost surely convergent. We show that the covariance matrix of the test is nonsingular regardless if the mean is known. We have also studied a data driven approach for the choice of the dimension of the family and we gave a finite sample approximation of the null distribution. Finally, the finite and asymptotic sample properties of the proposed test statistic are studied via a small simulation study. In the second project, goodness-of-fit tests for checking multivariate normality for the innovations from vector autoregressive moving average time series models are proposed. Since these time series models may rely on a large number of parameters, structured parameterization of the functional form is allowed. The methodology also relies on the smooth test paradigm and on families of orthonormal functions with respect to the multivariate normal density. It is shown that the smooth tests converge to convenient chi-square distributions asymptotically. An important special case makes use of Hermite polynomials, and in that situation we demonstrate that the tests are invariant under linear transformations. We observed that the test is not invariant under linear transformations with Legendre polynomials. A consistent data driven method is discussed to choose the family order from the data. In a simulation study, exact levels are studied and the empirical powers of the smooth tests are compared to those of other methods. Finally, an application to real data is provided, specifically on Canadian labour market data and annual global temperature. These works were exposed at several meeting (see for example Tagne, Duchesne and Lafaye de Micheaux (2013a, 2013b, 2014) for more details). A paper based on the first project is submitted in a refereed journal (see Duchesne, Lafaye de Micheaux et Tagne (2016)).
137

Conception d'un système de transmission ultra-large bande par impulsions orthogonales / Design of the ultra-wideband transceiver based on pulse orthogonal

Tabaa, Mohamed 21 November 2014 (has links)
Dans cette thèse, nous proposons une méthodologie de conception d’architectures de communication dédiées aux réseaux de capteurs basées sur la technique de radio impulsionnelle pour les transmissions ultralarge bande (ULB). La technique impulsionnelle proposée ici repose sur la modulation de forme d’impulsion. L’approche de conception architecturale présentée dans cette thèse se focalise plus particulièrement sur la forme des impulsions et leur génération, qui revêt un intérêt majeur puisqu’elle constitue le support de l’information échangée. L’étude sur le choix de la forme d’impulsion nous a conduit à proposer deux architectures différentes. Une première architecture repose sur les polynômes orthogonaux, et plus particulièrement sur les polynômes d’Hermite, pour la génération des impulsions, et sur une architecture de corrélation pour la détection et la reconnaissance des trains d’impulsions transmis. La deuxième architecture est basée sur la transformée en paquets d’ondelettes discrète et peut être exploitée selon deux modes d’utilisation différents, mono et multiutilisateurs. L’utilisation d’une architecture de synthèse à l’émission et d’analyse à la réception ouvre une nouvelle orientation pour les communications numériques, permettant à la transformée en ondelettes d’assurer à la fois la génération des impulsions à l’émission et leur reconnaissance à la réception. Un intérêt immédiat de la technique proposée permet notamment de faciliter l’accès multiutilisateurs au canal ultralarge bande, et d’autoriser des communications simultanées (Many-to-one, des nœuds vers le puits) ou du broadcast (One-to-many, du puits vers les nœuds) sans surcharger la couche MAC. L’architecture proposée s’inscrit donc à l’interface des couches PHY et MAC et permet de relâcher les contraintes de conception spécifiques à ces couches / In this thesis, we propose a design methodology for communication architectures dedicated to wireless sensor network based on impulse radio techniques for UWB communications. The impulse technique proposed in this work relies on pulse shape modulation. The architecture design approach proposed in this thesis focuses on pulses shape and their generation, which is of major interest as it constitutes the carrier of the information exchanged. The study on the choice of pulse shape led us to propose two different architectures. The first one is based on orthogonal polynomials, more especially on the Hermite polynomials, for impulse generation, and on a correlation architecture for detection and recognition of transmitted impulses. The second architecture is based on discrete wavelet packet transform and can be used according two different modes, mono and multi-users. The use of both synthesis and analysis architectures for emitter and receiver, respectively, offers a new way for digital communications and allows the wavelet transform to ensure the impulses generation on the transmitter and their recognition on the receiver. A major interest point of the proposed technique is to facilitate the multi-users access to the ultra-wideband channel and to allow simultaneous communications (many-to-one, from the sensors to the sink) or broadcast (one-to-many, from the coordinator to the nodes) but without overloading the MAC layer. Hence, the proposed architecture is part of the interface between both PHY and MAC layers, and allows to release their specific design constraints
138

Combinatoire des opérateurs non-commutatifs et polynômes orthogonaux / Combinatorics of noncommutative operators and orthogonal polynomials

Hamdi, Adel 20 September 2012 (has links)
Cette thèse se divise en deux grandes parties, la première traite la combinatoire associée à l’ordre normal des opérateurs non-commutatifs et la seconde aborde des distributions symétriques du nombre de croisements et du nombre d’emboîtements, respectivement k-croisements et k-emboîtements, dans des structures combinatoires (partitions, permutations, permutations colorées, …). La première partie étudie l’ordre normal des opérateurs en termes de placements de tours. Nous étudions la forme de l’ordre normal en connectant deux opérateurs non-commutatifs D et U, et des polynômes orthogonaux spéciaux, et établissons des bijonctions entre les coefficients de (D+U)n et le nombre de placements de tours sur un diagramme de Ferrers. Nous donnons également des preuves combinatoires à des conjectures quantiques posées par des physiciens. Dans la seconde partie, nous définissons des statistiques, comme emboîtements et k-emboîtements, sur l’ensemble des permutations du groupe de Coxeter de type B. Nous donnons également des extensions au type B des résultats sur les croisements et les emboîtements, respectivement k-croisements et k-emboîtements dans les permutations de type A, en termes de distributions symétriques. De plus, nous étudions le lien entre les opérateurs non-commutatifs et ces statistiques. D’autres extensions de la distribution de ces statistiques sur les ensembles de partitions colorées et de permutations colorées de types A et B sont ainsi établies / This thesis is divided into two parts, the first deals with the combinatorics associated to the normal ordering form of noncommutative operators and the second addresses the symmetric distributions of the crossing numbers and nesting numbers, respectively k-crossings and k-nestings, in combinatorial structures (partitions, permutations, colored permutations, …). The first part studies the normal order of operators in terms of rook placements. We study the normal ordering form connecting two noncommutative operators D and U, and some special orthogonal polynomials, and establish bijonctions between coefficients of (D+U)n and rook placements in Ferrers diagrams. We also give combinatorial proofs and alternatives to some quantum conjectures posed by physicists. In the second part, we define the notions of statistics, nestings and k-nestings, on the sets of permutations of the Coxeter group of type B. We also give extensions to type B of the results of the crossings and nestings, respectivelu k-crossings and K-nestings in the set of permutations of type A, in terms of symmetric distributions. Likewise, we study the link between non-commutative operators and these statistics. Other extensions of the distribution of these statistics on the sets of colored partitions and colored permutations of type A and B are established
139

Polinômios ortogonais no círculo unitário: medidas associadas a sequências periódicas / Orthogonal polynomials on the unit circle: associated measures with periodic sequences

Silva, Jairo Santos da [UNESP] 20 February 2017 (has links)
Submitted by JAIRO SANTOS DA SILVA null (jairomath@hotmail.com) on 2017-02-22T18:48:46Z No. of bitstreams: 1 Tese_Final_Jairo_Santos.pdf: 1270250 bytes, checksum: cbddf0844f67ed21da45b4dcbf48ea40 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-02-24T20:29:28Z (GMT) No. of bitstreams: 1 silva_js_dr_sjrp.pdf: 1270250 bytes, checksum: cbddf0844f67ed21da45b4dcbf48ea40 (MD5) / Made available in DSpace on 2017-02-24T20:29:28Z (GMT). No. of bitstreams: 1 silva_js_dr_sjrp.pdf: 1270250 bytes, checksum: cbddf0844f67ed21da45b4dcbf48ea40 (MD5) Previous issue date: 2017-02-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Foi mostrado recentemente que associado a um par de sequências reais (onde uma delas é uma sequência encadeada positiva) existe uma única medida de probabilidade não trivial com suporte no círculo unitário. No presente trabalho nossa principal contribuição é estudar o comportamento dessas medidas quando impomos algumas restrições de sinal e periodicidade sobre essas sequências. Precisamente, fornecemos uma estimativa para o suporte de tais medidas no caso em que a sequência que não é a sequência encadeada positiva satisfaz uma propriedade de sinal alternante. Além disso, quando esse par é tal que a sequência de parâmetros minimal da sequência encadeada positiva e a outra sequência são periódicas, mostramos que o estudo dessas medidas é completamente equivalente ao estudo de medidas associadas a coeficientes de Verblunsky periódicos: o que nos permite neste caso, apresentar, estudar e caracterizar um novo espaço de medidas no círculo unitário. Por fim, estabelecemos informações sobre o suporte essencial de medidas no caso limite periódico, isto é, quando as sequências reais associadas são limite periódicas. / It was shown recently that associated with a pair of real sequences (where one of them is a positive chain sequence) there exists a unique nontrivial probability measure supported on the unit circle. In the present work, our main contribution is to study the behavior of these measures when we impose some restrictions of sign and periodicity on these sequences. Precisely, we provide an estimate for the support of such measures in the event that the sequence which is not the positive chain sequence, satisfies an alternating sign property. Moreover, when this pair is such that the minimal parameter sequence of the positive chain sequence and the other sequence are periodic, we show that the study of these measures is completely equivalent to the study of measures associated with periodic Verblunsky coefficients: which allows us, in this case, to present, to study and to characterize a new space of measures on the unit circle. Finally, we establish information about the essential support of measures in the limit periodic case, i.e., when the associated real sequences are limit periodic.
140

Polynômes orthogonaux : processus limites et modèles exactement résolubles

Lemay, Jean-Michel 06 1900 (has links)
Cette thèse porte sur l’étude des familles de polynômes orthogonaux et leurs liens avec les modèles exactement résolubles. Elle se décline en deux parties. Dans la première, on caractérise quatre nouvelles familles de polynômes orthogonaux à l’aide de processus limites appliqués à des familles appartenant aux schéma d’Askey et de Bannai-Ito. Des troncations singulières des polynômes de Wilson et d’Askey-Wilson sont considérées. Deux premières extensions bivariées de polynômes appartenant au tableau de Bannai-Ito sont également introduites. La deuxième partie présente quatre modèles exactement résolubles en lien avec la théorie des polynômes orthogonaux. Les propriétés de transfert parfait d’information quantique et de partage d’intrication d’un modèle de chaîne de spin XX dont les couplage sont liés aux polynômes de para-Racah sont examinées. Deux modèles superintégrables contenant des opérateurs de réflexions sont proposés. Leurs solutions sont obtenues et leurs symétries s’encodent respectivement dans l’algèbre de Bannai-Ito de rang deux et de rang arbitraire ce qui mène à conjecturer l’apparition des polynômes de Bannai-Ito multivariés comme coefficients de connection. Finalement, par la théorie des représentations de la superalgèbre osp(1|2), deux identités de convolution pour des familles de polynômes du tableau de Bannai-Ito sont offertes. Une réalisation en termes d’opérateurs de Dunkl conduit à une fonction génératrice bilinéaire pour les polynômes de Big −1 Jacobi. / This thesis is concerned with the study of families of orthogonal polynomials and their connection to exactly solvable models. It comprises two parts. In the first one, four novel families of orthogonal polynomials are caracterized through limit processes applied to families belonging to the Askey and Bannai-Ito schemes. Singular truncations of the Wilson and Askey-Wilson polynomials are considered. The first two bivariate extensions of families of the Bannai-Ito tableau are also introduced. The second part presents four exactly solvable models connected to the theory of orthogonal polynomials. The perfect transfer of quantum information and entanglement generation properties of an XX spin chain model whose couplings are linked to the para-Racah polynomials are examined. Two superintegrable models containing reflexion operators are proposed. Their solutions are obtained and their symmetries are encoded respectively in the rank two and arbitrary rank Bannai-Ito algebra which leads to conjecture the apparition of multivariate Bannai-Ito polynomials as overlaps. Finally, via the representation theory of the osp(1|2) Lie superalgebra, two convolution identities for families of orthogonal polynomials of the Bannai-Ito tableau are offered. Realizations in terms of Dunkl operators lead to a bilinear generating function for the Big −1 Jacobi polynomials.

Page generated in 0.0665 seconds