• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 12
  • 9
  • 3
  • 1
  • Tagged with
  • 47
  • 30
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Efeitos da estimulação elétrica de baixa intensidade sobre o metabolismo ósseo de ratas ovarectomizadas / Effects of low intensity electrical stimulation on bone metabolism of ovariectomized rats

Lirani-Galvão, Ana Paula Rebucci [UNIFESP] January 2008 (has links) (PDF)
Made available in DSpace on 2015-12-06T23:47:37Z (GMT). No. of bitstreams: 0 Previous issue date: 2008 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A estimulação elétrica de baixa intensidade (EE) tem sido utilizada para o reparo ósseo, mas pouco se sabe sobre seus efeitos no tecido ósseo após a menopausa. Os osteócitos provavelmente desempenham um importante papel mediando este estímulo físico, e poderiam agir como transdutores através da liberação de sinais bioquímicos como o óxido nítrico (NO). O objetivo deste trabalho foi investigar os efeitos da EE no metabolismo ósseo de ratas ovarectomizadas, e se o NO poderia ser um mediador destes efeitos. Sessenta ratas (200-220g) foram divididas em 6 grupos: SHAM; SHAM tratado com 6mg/d de L-NAME, um inibidor da NO sintase (SHAM-L-NAME); ovarectomizado (OVX); OVX tratado com L-NAME (OVX-L-NAME) ou submetido a uma estimulação elétrica no corpo todo do animal (OVX-EE) ou ambos (OVX-EE-L-NAME) por 12 semanas. A densidade mineral óssea (DMO) global, de coluna e membro posterior foram medidas através de densitometria óssea antes e ao final do protocolo. Após o sacrifício, as tíbias foram retiradas para análises histomorfométricas e imunohistoquímicas. A apoptose de osteócitos (técnicas de caspase-3 e TUNEL) e expressões da NO sintase endotelial (eNOS) e indutível (iNOS) foram analisadas por imunohistoquímica. As ratas OVX demonstraram significante (p<0.05 vs SHAM) diminuição da DMO final global, de coluna e de membro posterior, medidas por densitometria, redução de volume ósseo (10% vs 25%) e número de trabéculas (1.7 vs 3.9), e aumento das superfícies de reabsorção (4.7% vs 3.2%) e mineralização (15.9% vs 7.7%), medidas por histomorfometria. No entanto, após a EE, todos estes parâmetros foram semelhantes aos valores do grupo SHAM e significantemente diferentes de OVX. A EE não foi capaz de prevenir a redução de volume ósseo e número de trabéculas causadas pela OVX na presença de L-NAME (OVX-L-NAME vs OVXEE-L-NAME), como o fez na ausência deste inibidor da NOS. Porém, o L-NAME não bloqueou os efeitos da EE na reabsorção óssea (superfícies de reabsorção e de osteoclastos) em ratas OVX. A eNOS e iNOS foram: expressas de forma semelhante no córtex das tíbias de SHAM, não expressas em OVX, e similarmente expressas em OVX-EE quando comparadas ao SHAM. As expressões de eNOS e iNOS não foram detectadas no tecido ósseo de nenhum grupo tratado com L-NAME. Nas ratas OVX, a porcentagem de osteócitos apoptóticos (24%) foi significantemente maior do que em SHAM (11%) e OVX-EE (8%). Todos os grupos tratados com L-NAME tiveram uma diminuição na porcentagem de osteócitos apoptóticos. Assim, nosso estudo evidenciou que a EE previne alguns efeitos causados pela OVX no tecido ósseo preservando a DMO, estrutura e microarquitetura ósseas, expressão de eNOS e iNOS e viabilidade de osteócitos. Além disso, foi demonstrado que o L-NAME bloqueia parcialmente os efeitos da EE na estrutura óssea (mas não na reabsorção) e na expressão de eNOS e iNOS em ratas OVX, sugerindo que o NO possa ser um mediador dos efeitos positivos da EE no tecido ósseo. No entanto, não foi possível identificar se os efeitos positivos da EE na viabilidade de osteócitos foram mediados pelo NO, pois os efeitos do L-NAME nestas células foram semelhantes àqueles causados pela EE. / Low Intensity Electrical Stimulation (LIES) has been used for bone repair but little is known about its effects on bone after menopause. Osteocytes probably play a role in mediating this physical stimulus and they could act as transducers through the release of biochemical signals, such as nitric oxide (NO). The aim of the present study was to investigate the effects of LIES on bone metabolism in ovariectomized rats, and if NO could be a mediator of these effects. Sixty rats (200-220g) were divided into 6 groups: SHAM; SHAM treated with 6mg/d of LNAME, an inhibitor of NO synthase (SHAM-L-NAME); ovariectomized (OVX); OVX treated with L-NAME (OVX-L-NAME) or subjected to a whole body electrical stimulation (OVX-LIES) or both (OVX-LIES-L-NAME) for 12 weeks. Global, spine and posterior limb bone mineral density (BMD) were measured by bone densitometry before and at the end of protocol. After sacrifice, tibias were collected for histomorphometric and immunohistochemistry analysis. Osteocyte apoptosis (caspase-3 and TUNEL techniques) and expressions of endothelial NO synthase (eNOS) and inducible NOS (iNOS) were assessed by immunostaining. OVX rats showed significant (p<0.05 vs SHAM) decreased final global, spine and limb BMDs, measured by densitometry, decreased bone volume (10% vs 25%) and trabecular number (1.7 vs 3.9), and increased eroded surfaces (4.7% vs 3.2%) and mineralization surfaces (15.9% vs 7.7%), measured by histomorphometry. In contrast, after LIES, all these parameters tended to be similar to SHAM and significantly different from OVX. LIES was not able to prevent the reduction of bone volume and trabecular number caused by OVX in the presence of L-NAME (OVX-L-NAME vs OVX-LIES-L-NAME), as it did in the absence of this NOS inhibitor. However, L-NAME did not block the effects of LIES on bone resorption (eroded surface and osteoclasts surface) in OVX rats. eNOS and iNOS were: similarly expressed in tibiae cortices of SHAM, not expressed in OVX and correspondingly expressed in OVX+LIES when compared to SHAM. eNOS and iNOS expressions were not detected on bone of none of L-NAME treated groups. In OVX, the percentage of apoptotic osteocytes (24%) was significantly increased when compared to SHAM (11%) and OVX-LIES (8%). All LNAME treated groups showed a diminished percentage of apoptotic osteocytes. In conclusion, our study showed that LIES counteracts some effects of OVX on bone tissue preserving BMD, bone structure and microarchitecture, iNOS and eNOS expression and osteocyte viability. Moreover, it was demonstrated that L-NAME partially blocks the effects of LIES on bone structure (but not on bone resorption) and on iNOS and eNOS expressions in OVX rats, suggesting that NO may be a mediator of the positive effects of LIES on bone. However, it was not possible to identify if the known positive effects of LIES on osteocyte viability were mediated by NO, since the effects of L-NAME on these cells were similar to those caused by LIES. / BV UNIFESP: Teses e dissertações
32

The effects of stroke on the skeleton

Poole, Kenneth January 2006 (has links)
Stroke is now a well-recognised risk factor for hip fracture. The aim of this study was to elucidate the pathophysiological mechanisms by which hip bone loss occurs in hemiplegia and to test the efficacy of a novel pharmaceutical strategy for preserving bone in stroke patients. Patients who were admitted acutely with a first-ever stroke and who remained unable to walk one week later were studied prospectively for 12 months, with a series of bone mineral density measurements of the hips (dual energy X-ray absorptiometry) in the context of a randomised controlled trial. Untreated patients (n=13) experienced a decline in bone mineral density at the hemiplegic hip that was rapid, with the greatest losses in the trochanteric region of the affected side. This bone loss was prevented by the administration of a single 4 mg dose of the intravenous bisphosphonate, zoledronate (n=14) within 35 days of stroke onset. Computed tomography of the hips in 8 untreated patients more than a year after stroke confirmed that the greatest difference between sides was in the trochanteric region. Serum vitamin D measurements in 44 patients with acute stroke were substantially lower than healthy elderly controls, with 77% of patients in the insufficient range, suggesting that vitamin D insufficiency preceded stroke. Histomorphometric analysis of iliac bone biopsies from hemiplegic patients 10 weeks following stroke showed normal erosion parameters, but a striking decrease in the surface extent of osteoid when compared with healthy reference values. Unexpectedly, treatment with zoledronate was associated with a significantly higher osteoid surface compared with placebo treated subjects in cancellous, endocortical and cortical bone. Sclerostin, a newly discovered osteocyte-derived protein was studied using immunohistochemical staining of the bone biopsies. Sclerostin is known to be an inhibitor of active osteoblasts, which led to the hypothesis that in stroke, the proportion of osteocytes expressing sclerostin would be inversely associated with the surface extent of bone formation. Histological analysis revealed widespread expression of sclerostin in osteocytes and their canaliculi in all subjects. However, examining individual osteocytes in relation to bone forming surfaces revealed that newly embedded osteocytes did not express sclerostin until after primary mineralisation. It is proposed that this precise pattern and timing of sclerostin expression by osteocytes allows bone formation to continue locally (during remodelling), but prevents excessive new bone formation elsewhere, as seen in the single gene disorder sclerosteosis.
33

Tumor-osteocyte interactions under fluid flow stimulation

Jalali, Aydin January 2018 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Bone is one of the most common sites for breast cancer metastasis. Osteocytes compose approximately 90% of the cell population in bone matrix. Osteocytes are very sensitive to mechanical stimulation, and physical activities play an essential role in maintaining bone's health. Mechanical stimulation can alter the gene expression profile in osteocytes. However, little is known about the effects of mechanical stimulation on tumor-bone interactions. In this thesis, this question has been addressed: Does applying mechanical stimulation to osteocytes change tumor-osteocytes interactions? The hypothesis is that mechanical stimulation can change osteocytes secreting signals and contribute to higher proliferation and migration of tumor cells. In this thesis, fluid flow-driven shear stress has been used as the mechanical stimulator for osteocytes, and the interactions of tumor-osteocytes, with and without mechanical stimulation has been investigated. Monolayer cultures and 3D spheroids of breast cancer cells, including TMD and 4T1 cells were cultured in the conditioned medium (CM) isolated from MLO-A5 osteocytes, and fluid flow-treated conditioned medium (FFCM), and their migratory behavior, proliferation, and protein expression have been evaluated. The results showed that in response to MLO-A5 FFCM, tumor cells behave differently in Src expression, proliferation, and migration compared to MLO-A5 CM. As opposed to MLO-A5 CM, FFCM promoted migration, reduced proliferation, and upregulated Src expression in tumor cells. Moreover, by plasmid and siRNA transfection it has been shown that Src is upstream of Snail and their upregulation is causing epithelial-mesenchymal transition(EMT) responses in tumor cells. Furthermore, ELISA concentration assessment showed the involvement of TGF-beta in Src upregulation. An in vivo study using seventeen mice was conducted to investigate the effect of mechanical stimulation on clinical conditions. Compressive loads were applied to tibia after intratibial injection of 4T1.2 cells. The results suggested that direct mechanical stimulation of metastasized bone, might not be advantageous, and cause more damage. Furthermore, the results indicated that direct mechanical loading can make the knee joint more fragile. This research showed mechanical stimulation can cause tumor cells to behave more migratory in bone microenvironment, and demonstrated its crucial role in tumor-osteocytes interactions.
34

Variation in Cortical Osteocyte Lacunar Density and Distribution: Implications for Bone Quality Assessment

Hunter, Randee Linn 14 August 2015 (has links)
No description available.
35

Influence of higher frequency components and duration of mechanical vibration on artery and bone in a rat-tail model

Goenka, Shilpi 21 October 2013 (has links)
No description available.
36

Electron and Ion Beam Imaging of Human Bone Structure Across the Nano- and Mesoscale

Binkley, Dakota M. January 2019 (has links)
Human bone tissue has an inherent hierarchical structure, which is integral to its material properties. It is primarily composed of a collagen fiber matrix that is mineralized with hydroxyapatite. A comprehensive understanding of bone and the linkages between structural and cellular organization is imperative to developing fundamental knowledge that can be applied to better our understanding of bone disease manifestations and its interaction with implant devices. Herein, this thesis investigated non-traditional methods for evaluating bone structure across the nano- and meso-length scales. Firstly, due to the inhomogeneous organization of collagen fibrils and mineral platelets of bone ultrastructure, a suitable methodology for the investigation of both phases needed to be generated. In this work, focused ion beam (FIB) microscopy was employed to create site-specific scanning transmission electron microscopy (STEM) lift-outs of human osteonal bone that could be visualized with correlatively with STEM and small angle X-ray scattering (SAXS). Samples were successfully characterized using both techniques, and minimal visual damage was induced during data acquisition. This work is the first to demonstrate the potential for bone to be investigated correlatively using both STEM and SAXS. Secondly, this work is the first to employ a dual-beam plasma FIB (PFIB) equipped with a scanning electron microscope (SEM), to investigate bone tissue across the mesoscale. This equipment enables large volume three-dimensional (3D) imaging at nanoscale resolution across larger mesoscale volumes. This thesis aimed to reduce ion beam-based artifacts, which presents as curtain-like features by adjusting the composition of protective capping layers. Subsequently, large volume tomograms of bone tissue were acquired, demonstrating the effectiveness of the PFIB to reveal mesoscale features including the cellular network of bone tissue. Overall, this thesis has developed methods that allow for the application of advanced microscopy techniques to enhance the understanding of bone tissue across the nanoscale and mesoscale. / Thesis / Master of Applied Science (MASc) / Bone tissue has a unique structure that perplexes both biologists and materials scientists. The hierarchical structure of bone has garnered the interest of materials scientists since the body’s skeletal strength and toughness are governed by the nanoscale (millionth of centimetres) to macroscale (centimeters) organization of bone. In this work, the intricate organization of bone is investigated using advanced electron and ion beam microscopy techniques, which achieve high-resolution imaging of bone structure. Firstly, this work developed a sample preparation workflow to correlate electron and X-ray imaging of the same bone tissue. Secondly, this work was the first to apply serial-sectioning plasma focused ion beam tomography to human bone tissue to investigate its structure at high resolution across micron-sized volumes. Here, previously unexplored methodologies to image bone are demonstrated with the hopes of applying such techniques to investigate healthy and pathological bone tissue in the future.
37

Investigating In Vivo Roles of Osteocyte Estrogen Receptor beta (Ot-ERβ) in Skeletal Biology and Validation of a Novel Three-dimensional (3D) In Vitro System for Studying Osteocyte Biology

Xiaoyu Xu (12463830) 26 April 2022 (has links)
<p>Osteoporosis causes over two million skeletal fractures in the United States every year in people over 50 years of age. Age-related bone loss results from imbalanced bone turnover mainly caused by decreases in sex hormones and skeletal mechanobiology. Estrogen receptor β (ERβ) in osteocytes (Ot) has been proposed to mediate skeletal structural adaptations in response to estrogen and mechanical stimuli. However, direct <em>in vivo</em> studies on Ot-ERβ are lacking, and relevant <em>in vitro</em> studies are mostly made in two-dimensional (2D) culture models, whose cellular environment restricts Ot morphology and biology. To better understand the mechanisms of estrogen-ERs in age-related bone loss, it is important to investigate the role of Ot-ERβ in skeletal turnover in response to sex hormonal and mechanical cues and develop a novel 3D culture model that can reproduce Ot morphology for future <em>in vitro</em> ER studies. The role of Ot-ERβ in bone turnover and skeletal adaptive response to mechanical load were examined in male and female mice at 12wk and 30wk old. Ot-ERβ shows age- and sex-dependent effects on bone morphology. Young male mice with Ot-ERβ deletion (ERβ-dOT) showed increased vertebral cancellous bone, whereas decreased cortical and cancellous vertebral bone mass appeared in adult male ERβ-dOT mice. No difference in bone mass occurred in female mice between genotypes. Ot-ERβ mediates tibial mechanoadaptation in cortical but not cancellous in young and adult male mice but plays an inhibitory role in young female mice during cortical mechanoadaptation. Gonadectomy studies on young adult mice revealed that deletion of Ot-ERβ inhibits the sex hormone withdrawal-induced decreases in bone mass and skeletal strength for male mice but did not play a major role for female mice. Lastly, a novel 3D <em>in vitro</em> culture system was developed using collagen-mineral composites for investigating culture mineralization, osteocyte biology, and osteocyte-osteoblast interaction. Cell viability and cellular differentiation were validated after 3 days and 56 days of culture. Optimal PSC-HA culture conditions were determined based on osteocyte differentiation, gene expression analyses, and tissue mineralization. Overall, this work takes novel steps to demonstrate the <em>in vivo</em> role osteocyte-ERβ plays in skeletal morphology and mechanobiology and develops a novel <em>in vitro</em> 3D culture using PSC-HA composites. These advances will contribute to future mechanistic studies of sex hormone receptors in osteoblasts and osteocytes in age-related bone loss using controlled <em>in vitro</em> environments. </p>
38

Development and Characterization of a Model for Studying Mechanotransduction on Osteocyte-Like MLO-Y4 Bone Cells

King, Jonathan D. 06 October 2016 (has links)
No description available.
39

Mécanotransduction osseuse : écoulement interstitiel, microstructure et couplages biochimiques / Bone mechanotransduction : interstitial fluid flow, microstructure and biochemical coupling

Kaiser, Joanna 01 December 2011 (has links)
Dans ce travail de thèse nous nous sommes intéressés aux phénomènes de transport au sein du réseau lacuno-canaliculaire (RLC) et de l'ostéon dans le tissu osseux cortical. Pour étudier la mécanotransduction ostéocytaire amenant au remodelage osseux, nous avons développé un modèle à trois échelles où sont pris en : l'électrcompte ostatique (modélisée par l'équation de Poisson Boltzmann), l'écoulement du fluide (représenté textit{via} une équation de Stokes modifiée et la conservation de la masse fluide) et le transport ionique (régi par l'équation de Nernst-Planck). L'étude de la distribution du potentiel électrique, a mis en exergue l'importance des double-couches électriques au voisinage des parois chargées des pores. Ces double-couches électriques, ainsi que la composition chimique du fluide donnent lieu à des phénomènes d'osmose et d'électroosmose intervenant dans l'écoulement du fluide interstitiel, et influençant la diffusion efficace des ions dans les pores. L'étude a démarré à l'échelle du pore canaliculaire pour être propagée à l'échelle du canalicule puis de l'ostéon, en utilisant une procédure d'homogénéisation périodique asymptotique. Une étude paramétrique nous a permis de cibler les paramètres agissant sur les phénomènes de transport et pouvant faire réagir les ostéocytes. Il est ressorti de cette étude que les effets électro-chimiques jouent rôle important. Nous avons donc choisi de nous focaliser sur la chimie et plus particulièrement sur les effets des flux ioniques physiologiques sur les ostéocytes dans le RLC. Des expériences, mises en place pour étayer ces aspects ont souligné l'importance des échanges chimiques entre les cellules et le fluide qui les entoure. Finalement, nous avons montré que les phénomènes de transports ayant lieu dans le RLC et dans l'ostéon interagissent les uns les autres, parachevant ainsi la description à trois échelles du tissu cortical / Transport phenomena appearing within the cortical bone lacuno-canalicular network (LCN) and the osteon were the objective of this study. We developped a three-scale model to investigate the osteocyte mechanotranduction which is at the origin of the bone remodeling process. This model took into account three physical phenomena : the electrostatics (through the Poisson-Boltzman equation), the interstitial fluid flow (modeled by a modified Stokes equation) and the ionic transport (governed by a Nernst-Planck equation). Analysis of the electrical potential distribution highlighted the importance of the electrical double layers close to the pore charged surface. These electrical double layers, as well as the interstitial fluid chemical composition, induce osmotic and electroosmotic fluid flows and affect the ionic effective diffusion within the pores. Using a periodic asymptotic homogeneisation procedure, the model at the canalicular pore scale was upscaled at the canalicular scale and then at the osteonal scale. A parametric study pointed out the relevant parameters acting on the transport phenomena and possibly affecting osteocyte mecanosensitivity. Our results emphasized the importance of the electro-chemical effects. We thus focused on the chemistry and more especially on the effects of the physiological ionic fluxes on the osteocyte. In vitro experiments and numrical simulations were performed to elucidate these questions. Our results underlined the importance of the chemical exchanges between the osteocyte and the surrounding fluid. Finally, we showed that fluid flow and chemical transport occuring within the LCN and the osteon interact with each other, thus achieving a three-scale description of the transport phenomena in the osteon
40

Characterization of tissue properties on the sub-micron scale in human bone by means of synchrotron radiation CT

Hesse, Bernhard 18 June 2014 (has links)
Gesunder humaner Knochen unterliegt einem permanenten Umbau, um sich den mechanischen Anforderungen anzupassen, Mikrofrakturen zu reparieren und das Mineraliengleichgewicht zu erhalten. Dieser Umbauprozess wird durch Osteoblasten- und Osteoklastenaktivität realisiert, den knochenbildenden bzw. knochenresorbierenden Zellen. Gesteuert wird dieser Prozess durch Osteozyten, dessen Netzwerk mechanosensorische Fähigkeiten zugesprochen werden. Bisphosphonate (BP), hemmen die Osteoklastenaktivität und erhöhen somit die Knochenumsatzzeit. Im ersten Teil dieser Arbeit wurden morphologische Eigenschaften der Osteozyten-Lakunen (OL) in humanem Knochen mittels Synchrotron-µCT untersucht. Dabei wurden sowohl gesunde als auch mit BP behandelte Spender verglichen. Anschließend haben wir Synchrotron-Nano-CT in Kombination mit Phasenkontrast angewandt, um unsere Untersuchungen auf die Morphologie des lakuno-kanalikulären Netzwerkes (LKN) und die Gewebeeigenschaften in der Umgebung des LKN auszuweiten. Wir nahmen an, dass der sekundäre Mineralisierungsprozess mittels eines Diffusionsprozesses durch die Grenzfläche der extrazellulären Flüssigkeit im LKN stattfindet, was zu Gradienten der Massendichte in der Umgebung des LKN führen sollte. Unsere Untersuchungen haben gezeigt, dass sowohl in der Umgebung der OL als auch der Kanäle Massendichtegradienten existieren. Daraus schließen wir, dass der Mineralienaustausch zwischen der extrazellulären Flüssigkeit und der mineralisierten Matrix an der gesamten Oberfläche des LKN stattfindet. Wir schätzten, dass die Kapazität, unter Berücksichtigung des gesamten LKN, Mineralien auszutauschen etwa eine Größenordnung höher ist, gegenüber der Annahme, dass der Austausch lediglich an den Grenzflächen der OL stattfindet. Zukünftige Studien sollten nicht nur die peri-LKN Gewebeeigenschaften während der sekundären Mineralisierung untersuchen, sondern auch Schwankungen der Mineralienkonzentration bei hohen Kalziumanforderungen des Körpers berücksichtigen. / Under healthy conditions human bone undergoes permanent remodeling to adjust to mechanical demands, to repair micro-cracks and to maintain mineral homeostasis. This process of remodeling is performed by osteoblasts and osteoclasts: bone-forming and bone-resorbing cells. The activity of osteoclasts and osteoblasts is triggered by osteocytes, the most frequently occurring type of bone cell, via mechanosensation processes. Bisphosphonates (BP) prescribed during treatment for osteoporosis or bone metastasis inhibit osteoclast activity and thus decrease the bone turnover. In this work, the distribution and morphology of osteocyte lacunae of human cortical jaw bone was investigated in 3D, and a comparison between healthy and BP-treated donors was performed using synchrotron radiation (SR) µCT. In a second approach, we used SR nano-CT with phase contrast to investigate the morphology of the canalicular network and the bone tissue properties in the vicinity of the lacuna-canalicular network of human jaw bone, originating from both healthy subjects and patients treated with BPs. We hypothesized that secondary mineralization takes place via a diffusion process through the fluid-matrix interface at both the lacunar and the canalicular surfaces. This should result in mass density gradients with respect to the distance to the pore boundary. Such mass density gradients were indeed observed at both lacunar and canalicular interfaces. We concluded that mineral exchange between extracellular fluid and mineralized matrix occurs at all bone surfaces, including the canaliculi. Our data suggested that the capacity of the pore network to exchange mineral with the bone matrix would increase by one order of magnitude if the canalicular surface is taken into account. However, more studies should be performed, targeting not only the changes of tissue properties during secondary mineralization, but also during fluctuations of mineral concentration in periods of high mineral demand.

Page generated in 0.0259 seconds