Spelling suggestions: "subject:"338"" "subject:"838""
61 |
SCRIBBLE: A POTENTIAL DUAL KINASE INHIBITORChristofakis, Steven 05 May 2010 (has links)
Extracellular signal-regulated kinases (ERKs) modulate cellular activities in response to extracellular stimuli and play important biological roles. Thus, perturbed kinase pathways induce pathological conditions, such as tumor development. Rit, a novel member of the Ras family GTPases, activase ERK6, and its over-expression confers tumorigenicity. We hypothesized the presence of scaffolding molecules specific to ERK6, similar to other known MAP kinases. We performed yeast two-hybrid assays using ERK6 as bait, and Scribble was identified as a binding partner. Scribble contains 16 LRR domains and four PDZ domains. We performed immunoprecipitation (IP) assays and discovered ERK2 as another binding partner. Surprisingly, no interaction was observed with the highly homologous MAP kinase, ERK1. No other representative kinases showed binding capabilities with Scribble. IP data confirmed that both ERK2 and ERK6 bind to Scribble through its LRR and PDZ domains. Deletion of ten aminoi acids from the C-terminus of ERK2 and ERK6 abolished these interactions. In vitro kinase assays indicated the kinase suppressing ability of Scribble. Focus formation assays were performed with RitQ79L and H-RasV12 as constitutive activators of ERK6 and ERK2, respectively, in the presence of Scribble. Results confirmed the role of Scribble as a tumor suppressor.
|
62 |
Insulin-like growth factor binding protein-3 (IGFBP-3) plays an essential role in cellular senescence: molecular and clinical implications.Garza, Amanda 29 April 2010 (has links)
Normal somatic cells have a limited proliferative capacity in vivo and in vitro, termed senescence and later, thought to contribute to molecular and cellular organismal aging. There are several studies that demonstrate the importance of the GH/IGF axis in longevity, aging and cellular senescence. One primary component of the IGF signaling involves IGFBP-3. It is well documented that IGFBP-3 levels are significantly increased in senescent human diploid fibroblasts however IGFBP-3 function is not known in this system. Interestingly, Werner syndrome fibroblasts, commonly used as a model of cellular aging, have upregulated IGFBP-3 levels in young and late passage cells compared to age matched normal fibroblasts. It is known that suppression of p38 MAPK activity in WS fibroblasts can reverse the senescence and promotes cell proliferation. As increased IGFBP-3 expression is associated with cellular senescence, and suppression of p38 MAPK can reverse senescence in WS fibroblasts, it is hypothesized that “IGFBP-3 can induce senescence, by activating the p38 MAPK signaling pathway.” Our studies demonstrate IGFBP-3 and novel IGFBP-3R can induce senescence in young fibroblasts, while suppression of IGFBP-3 in pre-senescent fibroblasts, can delay the onset of replicative senescence. We identified ROS accumulation in IGFBP-3/IGFBP-R-induced senescent cells which we speculated may be signaling p38 MAPK activation. Inhibition of ROS accumulation suppressed p38 signaling and prevented IGFBP-3/IGFBP-3R-induced senescence. To evaluate the sequence of activation we inhibited p38 activity prior to senescence induction. Interestingly, p38 inhibition prevented IGFBP-3/IGFBP-3R-induced senescence, suggesting IGFBP-3 signals ROS induction which activates p38 signaling. We next examined the significance of IGFBP-3R in IGFBP-3-induced senescence. Suppression of endogenous IGFBP-3R inhibits IGFBP-3-induced senescence. We aimed to identify a possible regulatory mechanism for IGFBP-3 upregulation. Using sequence analysis software we identified 3 possible highly conserved miRNA sequences aligned to IGFBP-3. miR-19a appeared to have the most significant downregulated expression in late passage fibroblasts compared to early passage. Furthermore, overexpression miR-19a in late passage cells, significantly decreased IGFBP-3 expression, suggesting miR-19a may silence IGFBP-3 expression in senescence. Making a direct mechanistic connection between senescence and aging is significant and unraveling how IGFBP-3/IGFBP-3R can induce senescence could prove beneficial in understanding the aging process.
|
63 |
Étude des voies de signalisation et des mécanismes moléculaires impliqués dans [l']apoptose des cellules leucémiques HL-60 traitées avec des inhibiteurs de topoisomérases I et IIBergeron, Stéphane January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
64 |
Transforming growth factor beta 1 modulates electrophysiological parameters of vas deferens epithelial cellsYi, Sheng January 1900 (has links)
Doctor of Philosophy / Department of Anatomy and Physiology / Bruce Schultz / Transforming growth factor β1 (TGF-β1) is a cytokine that reportedly affects the severity of cystic fibrosis lung disease. The goal of this project was to define the effect of TGF-β1 on vas deferens, an organ that is universally affected in male cystic fibrosis patients.
In the first study, experiments were conducted using freshly isolated porcine vas deferens epithelial cells. Primary porcine vas deferens epithelial cells exposed to TGF-β1 exhibited a significantly reduced basal transepithelial electrical resistance (Rte). TGF-β1-induced reduction in Rte was prevented by SB431542, a TGF-β receptor I inhibitor, indicating that the effect of TGF-β1 requires the activation of TGF-β receptor I. Western blot and immunohistochemistry results showed the expression of TGF-β receptor I in native vas deferens epithelia, indicating that the impaired barrier function and anion secretion that were observed in cultured vas deferens cells can likely be observed in the native context. Immunohistochemical outcomes showed that TGF-β1 exposure led to loss of organization of tight junction proteins occludin and claudin-7. These outcomes suggest that TGF-β1 impairs the barrier integrity of epithelial cells lining the vas deferens.
In a parallel study that employed PVD9902 cells that are derived from porcine vas deferens, TGF-β1 exposure significantly reduced anion secretion stimulated by forskolin, forskolin/IBMX, and 8-pCPT-cAMP, suggesting that TGF-β1 affects downstream targets of the cAMP signaling pathway. Real-time RT-PCR and western blot analysis showed that TGF-β1 exposure reduced both the mRNA and the protein abundance of cystic fibrosis transmembrane conductance regulator (CFTR). Pharmacological studies showed that the inhibitory effect of TGF-β1 on forskolin-stimulated anion secretion was abrogated by SB431542 and attenuated by SB203580, a p38 mitogen-activated protein kinase (MAPK) inhibitor. These outcomes suggest that TGF-β1, via the activation of TGF-β receptor I and p38 MAPK signaling, reduces CFTR expression, and thus impairs CFTR-mediated anion secretion.
Outcomes from these studies suggest that, in epithelial cells lining the vas deferens, TGF-β1 exposure leads to an impaired physical barrier and/or reduced anion secretion, which is expected to modify the composition and the maintenance of the luminal environment and thus, is expected to reduce male fertility.
|
65 |
Rôle du couple Flt3-ligand/Flt3 et de l'activation des "Mitogen-activated protein kinases" p38 dans la dysmégacaryopoïèse des patients atteints de myélofibrose primitive.Desterke, Christophe 25 May 2011 (has links) (PDF)
La myélofibrose primitive (MFP) est un néoplasme myéloprolifératif (NMP) chronique BCR-ABL1-négatif associant une dérégulation de l'hématopoïèse (myéloprolifération, dysmégacaryopoïèse et migration des cellules souches et progéniteurs hématopoïétiques (CSH/PH)) à une altération du stroma médullaire et splénique (fibrose ostéomyélosclérose, néoangiogenèse). Le mégacaryocyte (MK) est un acteur majeur de sa pathogenèse, via la production de cytokines et facteurs fibrosants, dans un contexte inflammatoire. Plusieurs arguments suggèrent que les mutations JAK2V617F et MPL515L/K qui caractérisent les NMP ne sont pas les événements initiaux de la MFP car elles ne sont retrouvées que chez la moitié des patients. L'objectif de mon travail a été de rechercher si d'autres anomalies, géniques ou non, pouvaient expliquer la pathogenèse de la MFP. Pour cela, parallèlement à une démarche génomique (transcriptome et CGH array), nous avons développé une approche de biologie cellulaire ciblée sur le rôle du stroma hématopoïétique. Bien que n'ayant pas identifié d'autres anomalies génomiques que celles décrites dans la littérature et en particulier, la délétion 13q, les approches génomiques que nous avons développées nous ont permis de préciser les bornes de cette délétion dans les PH CD34+ et les polynucléaires des patients. Cette délétion (région chromosomique minimale 13q14-13q21) est située à 2 mégabases (télomérique) du cluster FLT où est localisé le gène FLT3. Plusieurs arguments nous ont ensuite conduits à rechercher si le couple Flt3-ligand/Flt3 était impliqué dans la dérégulation de l'hématopoïèse et plus particulièrement dans la dysmégacaryopoïèse observée chez les patients. Parmi ceux-ci, citons : 1) l'existence d'une modulation d'expression de gènes inclus dans la zone de délétion 13q et dans le cluster FLT, dont le gène FLT3 et 2) le fait que Flt3, un récepteur clé de la régulation de l'hématopoïèse primitive, soit souvent impliqué dans la pathogenèse d'hémopathies malignes et que son ligand, Flt3-ligand, soit majoritairement produit par le stroma hématopoïétique. Notre étude montre une dérégulation de Flt3 et des MAPKs p38 dans les PH CD34+ et les MK des patients atteints de MFP et ceci, quelque soit leur statut mutationnel Jak2. Elle démontre également que la persistance de la stimulation de l'axe Flt3/p38 en réponse à une production accrue de Flt3 ligand, participe à la dysmégacaryopoïèse qui caractérise la maladie. En effet, nous avons mis en évidence : 1) une augmentation du taux sérique de Flt3 ligand et de son expression par les cellules du stroma médullaire et splénique ainsi que par les PH des patients atteints de MFP, 2) une surexpression spécifique de son récepteur Flt3 et de sa phosphorylation dans les CSH/PH CD34+ et les progéniteurs mégacaryocytaires (MK), qui persistent au cours de la différenciation MK, quelque soit le statut mutationnel de Jak2 des patients, 3) une activation de Flt3 dans les progéniteurs MK en réponse au Flt3 ligand conduisant à la phosphorylation en cascade de la voie de signalisation des MAPKs p38 et à l'expression de ses gènes cibles tels que AP-1, p53, NFATc4, ATF2, IL-8, 4) une restauration de la mégacaryopoïèse et une inhibition de la migration (Flt3-ligand)-dépendante des progéniteurs MK des patients après inhibition de Flt3 ou de p38.Nos résultats confirment l'importance d'une altération des MAPKs dans une dérégulation de l'hématopoïèse et soulignent le rôle d'une activation persistante de la voie p38, via le couple Flt3-ligand/Flt3, dans la dysmégacaryopoïèse qui caractérise la myélofibrose primitive. Ils suggèrent également que cette dérégulation participe au processus inflammatoire à l'origine de la réaction stromale et " lit " d'une transformation leucémique potentielle. Ce dialogue altéré entre les cellules hématopoïétiques pathologiques (Bad seeds), en particulier mégacaryocytaires et les cellules stromales (Bad soil), conforte notre concept " Bad seeds in Bad soil ". Ce travail pourrait contribuer à l'amélioration de ce dialogue par des approches thérapeutiques ciblées sur l'axe Flt3-ligand/Flt3 médié par l'activation de p38 qui, en réduisant le processus inflammatoire, rétablirait un lien entre le " Seed " et le " Soil ".
|
66 |
Role of MAP Kinases in the Life and Death of Beta-cellsMakeeva, Natalia January 2006 (has links)
<p>The development of diabetes mellitus depends on the balance between beta-cell proliferation and death. As mitogen-activated protein kinases (MAPK) may control this balance, the aim of this study was to investigate the events leading to MAPK activation in beta-cells and the consequences of these events. Overexpression of the SH2-domain containing adaptor protein Shb resulted in the assembly and activation of multiunit complex consisting of at least Shb, IRS-1, IRS-2, FAK and PI3K. Consequently, the phosphorylation of Akt was enhanced under basal conditions in Shb overexpression cells. This was paralleled by an attenuated activation of the MAP kinases ERK1/2. Thus, Shb-induced alterations in the IRS-1/PI3K/Akt/ERK pathway might explain the increased proliferation and apoptosis of beta-cells overexpressing Shb.</p><p>The importance of the MAP kinase p38 in nitric oxide- and cytokine-induced beta-cell death was also investigated. Knock-down of p38 expression resulted in a lowered cell death rate in response to a nitric oxide donor. In transient transfections MKK3 over-expression resulted in increased p38 phosphorylation in RIN-5AH cells. In addition, a short-term MKK3 expression resulted in increased cytokine-induced cell death. A nitric oxide synthase inhibitor abolished the MKK3-potentiating effect on cytokine-induced cell death and inhibitors of phosphatases enhanced MKK3-stimulated p38 phosphorylation. Finally, as the dominant negative mutant of MKK3 did not affect cytokine-induced p38 phosphorylation, and as wild type MKK3 did not influence p38 autophosphorylation, it may be that p38 is activated by MKK3/6-independent pathways in response to cytokines and nitric oxide.</p><p>In further support for an MKK3/6-indepedent mechanism, the adaptor protein TAB1 significantly increased the cytokine- and nitric oxide-stimulated phosphorylation of p38. The TAB1-mediated activation of p38 was paralleled by a compensatory inhibition of ERK and JNK. In summary, p38 MAPK, activated mainly by TAB1, promotes, at least in part, beta-cell death in response to cytokines or nitric oxide.</p>
|
67 |
Role of MAP Kinases in the Life and Death of Beta-cellsMakeeva, Natalia January 2006 (has links)
The development of diabetes mellitus depends on the balance between beta-cell proliferation and death. As mitogen-activated protein kinases (MAPK) may control this balance, the aim of this study was to investigate the events leading to MAPK activation in beta-cells and the consequences of these events. Overexpression of the SH2-domain containing adaptor protein Shb resulted in the assembly and activation of multiunit complex consisting of at least Shb, IRS-1, IRS-2, FAK and PI3K. Consequently, the phosphorylation of Akt was enhanced under basal conditions in Shb overexpression cells. This was paralleled by an attenuated activation of the MAP kinases ERK1/2. Thus, Shb-induced alterations in the IRS-1/PI3K/Akt/ERK pathway might explain the increased proliferation and apoptosis of beta-cells overexpressing Shb. The importance of the MAP kinase p38 in nitric oxide- and cytokine-induced beta-cell death was also investigated. Knock-down of p38 expression resulted in a lowered cell death rate in response to a nitric oxide donor. In transient transfections MKK3 over-expression resulted in increased p38 phosphorylation in RIN-5AH cells. In addition, a short-term MKK3 expression resulted in increased cytokine-induced cell death. A nitric oxide synthase inhibitor abolished the MKK3-potentiating effect on cytokine-induced cell death and inhibitors of phosphatases enhanced MKK3-stimulated p38 phosphorylation. Finally, as the dominant negative mutant of MKK3 did not affect cytokine-induced p38 phosphorylation, and as wild type MKK3 did not influence p38 autophosphorylation, it may be that p38 is activated by MKK3/6-independent pathways in response to cytokines and nitric oxide. In further support for an MKK3/6-indepedent mechanism, the adaptor protein TAB1 significantly increased the cytokine- and nitric oxide-stimulated phosphorylation of p38. The TAB1-mediated activation of p38 was paralleled by a compensatory inhibition of ERK and JNK. In summary, p38 MAPK, activated mainly by TAB1, promotes, at least in part, beta-cell death in response to cytokines or nitric oxide.
|
68 |
The Angiogenic Functions and Signaling of Delta-Like 1 Homologue Extracellular Domain in Endothelial CellsChang, Tzu-Ting 22 August 2007 (has links)
Delta-like 1 Homologue (DLK1), a transmembrane protein of 383 amino acids, belongs to a family of epidermal growth factor (EGF)-like repeat-containing proteins that include Notch/Delta/Serrate, which are involved in cell fate determination. DLK1 is also known as preadipocyte factor-1, pG2, and FA-1, which are identical or polymorphic products of a single gene. Structural analysis revealed that DLK1 consists of an extracellular domain with six EGF-like repeats, a transmembrane domain, and an intracellular domain. The extracellular EGF-like region of DLK1 (DLK1-EC) can be released to the medium by the action of tumor necrosis factor alpha converting enzyme (TACE). DLK1 participates in various differentiation processes including adipogenesis, hematopoiesis, and adrenal gland differentiation. Besides, DLK1 overexpression was observed in patients with biliary atresia and in glioblastoma. Recently, the extracellular domain of thrombomodulin, which also contains six EGF¡Vlike structures, has been delineated to stimulate angiogenesis in vitro and in vivo. This prompted us to investigate whether DLK1-EC played a role in angiogenesis. To test such hypothesis, recombinant DLK1-EC was expressed and purified in E. coli. Adding DLK1-EC recombinant protein inhibited the adipogenesis of adipocytes-derived stem cells in a dose-dependent manner. Despite marginal effect on matrix-metalloproteinase secretion, exogenous DLK1-EC significantly stimulated the proliferation, motility and tube-forming capability of cultured endothelial cells. Above all, implantation of DLK1-EC-containing hydron pellets induced cornea neovascularization in a dose-dependent manner. Western blot analysis revealed that exogenous DLK1-EC induced angiogenesis through Notch1 activating downstream gene Hes1 and subsequently signaling such as Akt/eNOS, p38 MAPK, and ERK pathway to perform its function. Indeed, blockade of Notch1 signaling using £^-secretase inhibitor leads to decreased angiogenesis and inhibits DLK1 EC-induced
endothelial cell tubular formation in vitro and in vivo. These findings indicate that
DLK1-EC induced Notch1 activation mediated by £^-secretase and tansactivation
Akt/eNOS pathway and that Notch1 is critical for DLK1 EC-induced angiogenesis.
These results may bring further insights into the physiological and pathological
functions of DLK1
|
69 |
The Role of Podocyte Prostaglandin E2 and Angiotensin II Receptors in Glomerular DiseaseStitt, Erin Maureen 24 February 2011 (has links)
The incidence of chronic kidney disease (CKD) is increasing. CKD is characterized by a gradual decrease in renal function leading to end stage renal disease (ESRD). Damage to the glomerular podocytes, is one of the first hallmarks of CKD. We hypothesized that podocyte prostaglandin E2 (PGE2) receptors contribute to the progression of glomerular injury in models of CKD. To test this hypothesis, transgenic mice were generated with either podocyte-specific overexpression or deletion of the PGE2 EP4 receptor (EP4pod+and EP4pod-/- respectively). Mice were next tested in the 5/6 nephrectomy (5/6 Nx) or angiotensin II (Ang II) models of CKD. These studies revealed increased proteinuria and decreased survival for EP4pod+ mice while EP4pod-/- mice were protected against the development of glomerular injury. Furthermore, our findings were supported by in vitro studies using cultured mouse podocytes where an adhesion defect was uncovered for cells overexpressing the EP4 receptor. Additionally, our investigations have demonstrated a novel synergy between angiotensin II AT1 receptors and prostaglandin E2 EP4 receptors. This was revealed by in vitro studies using isolated mouse glomeruli. There we were able to show that Ang II stimulation leads to increased expression of cyclooxygenase 2 (COX-2), the enzyme responsible for synthesis of PGE2, in a p38 mitogen activated protein kinase (MAPK) dependent fashion. Moreover increased PGE2 synthesis was measured in response to Ang II stimulation. We confirmed the presence of this synergy in our cultured mouse podocytes and showed an adhesion defect in response to Ang II stimulation which was COX-2 and EP4 dependent. These findings suggest that Ang II AT1 receptors and PGE2 EP4 receptors act in concert to exacerbate glomerulopathies. Studies using mice with either podocyte-specific overexpression of a dominant negative p38 MAPK or mice with global deletion of the EP1 receptor did not provide conclusive results as to their respective signaling involvement in podocyte injury. Altogether our findings provide novel insight for podocyte PGE2 EP4 and Ang II AT1 receptor signaling in models of CKD. These studies provide novel avenues for pursuing therapeutic interventions for individuals with progressive kidney disease.
|
70 |
P38(MAPK) negatively regulates monoamine oxidase-A activity as well as its sensitivity to Ca2+Cao, Xia 04 January 2008
Monoamine oxidase (MAO) is a mitochondrial deaminating enzyme that exists as two isoforms, MAO-A and -B. The MAO-mediated reaction generates hydrogen peroxide (H2O2) as a normal by-product. Dysregulation of MAO has been implicated in a variety of neuropsychiatric and neurodegenerative disorders, as well as in the aging process. Endogenous regulators of MAO-A function include calcium (Ca2+) and the p38 mitogen-activated protein kinase (MAPK). Although the effect of p38(MAPK) is thought to rely on induction of mao-A gene expression, post-translational modification of the MAO-A protein is also possible. <p>Using standard biochemical approaches in combination with pharmacological interventions and recombinant DNA strategies, specific aspartic acid residues (within putative Ca2+-binding motifs) were demonstrated to contribute to MAO-A activity. Furthermore, MAO-A activity and its sensitivity to Ca2+ was negatively regulated by the p38(MAPK), which is usually activated during cell stress. The effect of p38(MAPK) on MAO-A function relies specifically on Serine209 in MAO-A, which resides in a p38(MAPK) consensus motif. The serine phosphorylation status of MAO-A determines its capacity for generating peroxy radicals and its toxicity in established cell lines (e.g. C6, N2a, HEK293A, HT-22) and in primary cortical neurons. p38(MAPK)-regulated MAO-A activity is also linked to neurotoxicity associated with the Alzheimer disease-related peptide, Ò-amyloid (AÒ). These data suggest a unique neuroprotective role for p38(MAPK) centered on a negative feedback regulation of the Ca2+-sensitive, H2O2-generating enzyme MAO-A.
|
Page generated in 0.0262 seconds