• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 156
  • 107
  • 23
  • 19
  • 7
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 370
  • 370
  • 100
  • 95
  • 71
  • 64
  • 50
  • 48
  • 46
  • 40
  • 38
  • 38
  • 37
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Teoria do momento angular em sistemas complexos / Theory of angular momentum in complex systems

Gilberto Medeiros Nakamura 16 May 2017 (has links)
A emergência de fenômenos coletivos e correlações de longo alcance impossibilitam a inferência de propriedades de sistemas como um todo a partir de suas partes componentes. A modelagem destes sistemas frequentemente ocorre mediante emprego de operadores de spin localizados em grafos com topologias não-triviais. Aqui, mostramos que o operador de momento angular de muitos corpos une o estudo de diversos sistemas complexos, desde a sistemas epidêmicos até cadeias magnéticas de spin. Para o modelo epidêmico SIS, determinamos a matriz de transição do processo estocástico correspondente e mostramos suas soluções para grafos regulares e aleatórios, por meio de técnicas geralmente empregadas em sistemas fortemente correlacionados. Já no modelo de Dicke, identificamos o vínculo que explica a relevância e o efeito finito de operadores anti-girantes para duas espécies atômicas confinadas numa cavidade óptica que interagem com radiação eletromagnética. Por fim, o papel do momento angular também é identificado para duas cadeias quânticas de spin 1/2 acopladas, as quais modelam nanoestruturas magnéticas heterogêneas. A estrutura de bandas é calculada, enquanto efeitos espúrios de superfície são removidos pela introdução de quasipartículas dotadas de grau de liberdade de spin adicional / The emergence of collective phenomena and long range correlations makes it impossible to infer the properties of whole systems from their components. Their modeling often occurs through the use of localized spin operators, taking place within graphs with non-trivial topologies. Here, we show that the many-body angular momentum operator connects the study of several complex systems, ranging from epidemic systems to magnetic spinchains. For the SIS epidemic model, we calculate the transition matrix of the corresponding stochastic process and show the corresponding solutions for regular and random graphs, using techniques generally employed in strongly correlated systems. For the Dicke model we identify the constraint that explains the relevance and finite size effect of anti-rotating operators, for two atomic species, confined within an optical cavity, and interacting with electromagnetic radiation. Finally, the role of angular momentum is also identified for two coupled quantum spinchains 1/2 which model heterogeneous magnetic nanostructures. The band structure is calculated, while spurious surface effects are removed due to the introduction of quasiparticles with an additional spin degree of freedom.
112

Efeitos do Campo Magnético e do Campo Cristalino no Diagrama de Fases do Modelo ANNNI / Effects of magnetic field and crystalline field in phases diagram of Annni model.

Francisco Ferreira Barbosa Filho 22 November 1996 (has links)
Neste trabalho estudamos o efeito da temperatura T e do campo magnético externo H sobre o modelo de Ising de spin 1/2 com interações competitivas J1 e J2 = -pJ1 entre primeiros e segundos vizinhos, respectivamente, numa direção axial (modelo ANNNI), e o efeito do campo de anisotropia cristalina D sobre o estado fundamental de um modelo ANNNI de spin maior que 1/2. No primeiro modelo levantamos os diagramas de fases p-T e H-T na aproximação de campo médio. Nestes diagramas encontramos diversos tipos de transições de fases tais como transições quase-contínuas e transições singular-contínuas. Encontramos também evidências da existência de pontos ípsilon () e pontos superdegenerados até então só encontrados nos diagramas de fases do estado fundamental de modelos do tipo Frenkel-Kontorova. No segundo modelo levantamos os diagramas p-D a T=0 para os dez primeiros valores de spin S. Estudamos a evolução das fronteiras de fases e de pontos de encontro de mais que duas fases sobre estas fronteiras conforme S é variado. Constatamos que as diferenças entre diagramas com S inteiro e diagramas com S semi-inteiro tendem a desaparecer com o crescimento de S. / In this work we studied the effect of the temperature T and external magnetic field H on the spin 1/2 lsing model with competing interactions J1 and J2 = -pJ1 between the first- and second-neighbors, respectively, along an axial direction (ANNNl model), and the effect of the crystal field anisotropy D on the ground state of the ANNNl model with spins greater than 1/2. In the first model we built the p-T and H-T phase diagrams in the mean-field approximation. In these phase diagrams we found various types of phase transitions such as quasi-continuous and singular-continuous phase transitions. We also found evidences for the upsilon point (1) and superdegenerate points, which have previously been found only on the groundstate phase diagrams of Frenkel-I<ontorova type models.
113

Ab initio prediction of crystalline phases and their electronic properties : from ambient to extreme pressures / Étude ab initio des structures cristallines et de leurs propriétés électroniques : des conditions ambiantes jusqu’aux pressions extrêmes

Shi, Jingming 06 July 2017 (has links)
Dans cette thèse nous utilisons des méthodes globaux de prédiction des structures cristallographiques combinés à des techniques de grande capacité de traitement de données afin de prédire la structure cristalline de différents systèmes et dans des conditions thermodynamiques variées. Nous avons réalisé des prédictions structurales utilisant l'analyse cristalline par optimisation par essaims particuliers (CALYPSO) combinés avec la Théorie Fonctionnel de la Densité (DFT) ce qui a permis de mettre en évidence la stabilité de plusieurs composés jusqu'à la inconnus dans le digramme de phases du système Ba-Si et dans le système N-H-O. Nous avons également réalisé une étude à haute capacité de traitement de données sur un système ternaire de composition ABX2. Nous avons utilisé la Théorie Fonctionnel de la Densité combinant calculs de prototypes structuraux à partir des prédictions structurelles avec la méthode. Dans les paragraphes suivants nous résumons le contenu de différents chapitres de cette thèse. Le premier chapitre qui constitue une brève introduction au travail de cette thèse est suivi du chapitre 2 présentant les aspects théoriques utilisés dans ce travail. D'abord il est fait une brève introduction à la Théorie Fonctionnel de la Densité. A continuation nous décrivons quelques fonctions d'échange-corrélation choisies qui constituent des approximations rendant l'utilisation de la DFT efficace. Ensuite nous présentons différents procédés de prédiction structurale, et en particulier les algorithmes d'optimisation par essaims particuliers et de « Minima Hopping » qeu nous avons utilisés dans cette thèse. Finalement il est discuté comment doit-on se prendre pour évaluer la stabilité thermodynamique des nouvelles phases identifiées. Dans le chapitre 3, nous considérons le système Ba-Si. A travers l'utilisation d'une recherche structurale non-biaisée basée sur l'algorithme d'optimisation par essaims particuliers combinée avec des calculs DFT, nous faisons une étude systématique de la stabilité des phases et de la diversité structurale du système binaire Ba-Si sous haute pression. Le diagramme de phases résultant est assez complexe avec plusieurs compositions se stabilisant et se déstabilisant en fonction de la pression. En particulier, nous avons identifié des nouvelles phases de stœchiométrie BaSi, BaSi2, BaSi3 et BaSi5 qui devraient pouvoir être synthétisées expérimentalement dans un domaine de pressions étendu. Dans le chapitre 4 est présentée notre étude du diagramme de phases du système N-H-O. S'appuyant sur une recherche structural «évolutive » de type ab initio, nous prédisons deux nouvelles phases du système ternaire N-H-O qui sont NOH4 et HNO3 à de pressions allant jusqu'à 150 GPa. La nouvelle phase de NOH4 est stable entre 71 et 150 GPa, tandis que HNO3 est stable entre 39 et 150 GPa (la pression maximum de cette étude). Ces deux nouvelles phases sont lamellaires. Nous confirmons également que la composition NOH5 perd son stabilité pour des pressions supérieures à 122 GPa se décomposant en NH3 et H2O à cette pression. Le chapitre 5 se focalise sur les électrodes transparentes de type-p à base des chalcogénures ternaires. Nous utilisons une approche à grande capacité de traitement de données basée sur la DFT pour obtenir la delafossite et d'autres phases voisines de composition ABX2. Nous trouvons 79 systèmes qui sont absents de la base de données « Materials project database », qui sont stables du point de vue thermodynamique et qui cristallisent soit dans la structure delafossite, soit dans des structures très proches. Cette caractérisation révèle une grande diversité de propriétés allant depuis les métaux ordinaires aux métaux magnétiques et permettant d'identifier quelques candidats pour des électrodes transparents de type-p. Nous présentons enfin à la fin du manuscrit nos conclusions générales et les perspectives de ce travail / In this thesis we use global structural prediction methods (Particle Swarm Optimization and Minima Hopping Method) and high-throughput techniques to predict crystal structures of different systems under different conditions. We performed structural prediction by using the Crystal structure Analysis by Particle Swarm Optimization (CALYPSO) combined with Density Functional Theory (DFT) that made possible to unveil several stable compounds, so far unknown, on the phase diagrams of Ba-Si systerm and N-H-O system. Afterwards, we performed a high-throughput investigation on ternary compounds of composition ABX2, where A and B are elements of the periodic table up to Bi, and X is a chalcogen (O, S, Se, and Te) by using density functional theory and combining calculations of crystal prototypes with structural prediction (Minima Hopping Method). The following paragraphs summarize the content by chapter of this document. Chapter 1 is a short introduction of this thesis. Chapter 2 consists of the basic theory used in this thesis. Firstly, a short introduction of Density Function Theory (DFT) is presented. Then, we describe some approximate exchange- correlation functions that make DFT practical. Next, we introduce different structural prediction algorithms, especially Particle Swarm Optimization and Minima Hopping Method which we used in this thesis. Finally, we discuss the thermodynamic stablility criteria for a new a new structure. In Chapter 3, we first consider Ba–Si system. Using an unbiased structural search based on a particle-swarm optimization algorithm combined with DFT calculations, we investigate systematically the ground-state phase stability and structural diversity of Ba–Si binaries under high pressure. The phase diagram turns out to be quite intricate, with several compositions stabilizing/destabilizing as a function of pressure. In particular, we identify novel phases of BaSi, BaSi2, BaSi3, and BaSi5 that might be synthesizable experimentally over a wide range of pressures. Chapter 4 contains the investigation of the phases diagram of the N–H–O system. By using ab initio evolutionary structural search, we report the prediction of two novel phases of the N–H–O ternary system, namely NOH4 and HNO3 (nitric acid) at pressure up to 150 GPa. Our calculations show that the new C2/m phase of NOH4 is stable under a large range of pressure from 71 GPa to 150 GPa while the P21/m phase of HNO3 (nitric acid) is stable from 39 GPa to 150 GPa (the maximum pressure which we have studied). We also confirmed that the composition NOH5 (NH3H2O) becomes unstable for pressures above 122 GPa. It decomposes into NH3 and H2O at this pressure. Chapter 5 focuses on p-type transparent electrodes of ternary chalcogenides. We use a high-throughput approach based on DFT to find delafossite and related layered phases of composition ABX2, where A and B are elements of the periodic table, and X is a chalcogen (O, S, Se, and Te). From the 15 624 compounds studied in the trigonal delafossite prototype structure, 285 are within 50 meV/atom from the convex hull of stability. These compounds are further investigated using global structural prediction methods to obtain their lowest- energy crystal structure. We find 79 systems not present in the "Materials project database" that are thermodynamically stable and crystallize in the delafossite or in closely related structures. These novel phases are then characterized by calculating their band gaps and hole effective masses. This characterization unveils a large diversity of properties, ranging from normal metals, magnetic metals, and some candidate compounds for p-type transparent electrodes. At the end of the thesis, we give our general conclusion and an outlook
114

Structural Characterization of Metal Hydrides for Energy Applications

George, Lyci 19 May 2010 (has links)
Hydrogen can be an unlimited source of clean energy for future because of its very high energy density compared to the conventional fuels like gasoline. An efficient and safer way of storing hydrogen is in metals and alloys as hydrides. Light metal hydrides, alanates and borohydrides have very good hydrogen storage capacity, but high operation temperatures hinder their application. Improvement of thermodynamic properties of these hydrides is important for their commercial use as a source of energy. Application of pressure on materials can have influence on their properties favoring hydrogen storage. Hydrogen desorption in many complex hydrides occurs above the transition temperature. Therefore, it is important to study the physical properties of the hydride compounds at ambient and high pressure and/or high temperature conditions, which can assist in the design of suitable storage materials with desired thermodynamic properties. The high pressure-temperature phase diagram, thermal expansion and compressibility have only been evaluated for a limited number of hydrides so far. This situation serves as a main motivation for studying such properties of a number of technologically important hydrides. Focus of this dissertation was on X-ray diffraction and Raman spectroscopy studies of Mg2FeH6, Ca(BH4)2, Mg(BH4)2, NaBH4, NaAlH4, LiAlH4, LiNH2BH3 and mixture of MgH2 with AlH3 or Si, at different conditions of pressure and temperature, to obtain their bulk modulus and thermal expansion coefficient. These data are potential source of information regarding inter-atomic forces and also serve as a basis for developing theoretical models. Some high pressure phases were identified for the complex hydrides in this study which may have better hydrogen storage properties than the ambient phase. The results showed that the highly compressible B-H or Al-H bonds and the associated bond disordering under pressure is responsible for phase transitions observed in brorohydrides or alanates. Complex hydrides exhibited very high compressibility suggesting possibility to destabilize them with pressure. With high capacity and favorable thermodynamics, complex hydrides are suitable for reversible storage. Further studies are required to overcome the kinetic barriers in complex hydrides by catalytic addition. A comparative study of the hydride properties with that of the constituting metal, and their inter relationships were carried out with many interesting features.
115

EXPLORATION OF NOVEL MAGNETOCALORIC MATERIALS FOR APPLICATIONS IN MAGNETIC COOLING TECHNOLOGY

Aryal, Anil 01 May 2020 (has links)
The effect of doping on the crystal structure, magnetic, magnetocaloric and transport properties of MnM′Ge (M′ = Ni, Co) intermetallic compounds and NiMnX (X = Sn, In) Heusler alloys have been studied by room temperature X-ray diffraction (XRD), differential scanning calorimetry (DSC), and magnetization measurements. The studied magnetic systems include Ni1-xCrxMnGe1.05 (0 ≤ x ≤ 0.120), Mn1-xAlxCoGe (0 ≤ x ≤ 0.05), MnCo1-xZrxGe (0.01 ≤ x ≤ 0.04), Mn1-xAgxCoGe (0.01 ≤ x ≤ 0.10), Ni50-xRxMn35Sn15 (x = 0, 1 and R = La, Pr, Sm), Ni43-xRxMn46Sn11 (x = 0, 1 and R = Pr, Gd, Ho, Er), and Ni50Mn35In15-xBix (0 ≤ x ≤ 1.5).A temperature induced first-order structural transition characterized by a change in crystal structure from high temperature austenite phase (AP) with Ni2In-type Hexagonal structure to low temperature martensite phase (MP) with TiNiSi-type orthorhombic structure was observed at T = TM (martensitic transition temperature) in some of the MnM′Ge-based compounds. The partial substitution of doping elements such as Cr, Al, Zr, and Ag resulted in a decrease in TM and at certain concentration, TM was found to decrease below / coincide with the ferromagnetic transition temperature (TC) of AP. Therefore, such system show a first-order magnetostructural transition (MST).In Ni1-xCrxMnGe1.05, a MST from antiferromagnetic (AFM) orthorhombic to ferromagnetic (FM) hexagonal phase was observed for 0.105 ≤ x ≤ 0.120. Both direct and inverse MCE were observed in this compound. The peak values of the magnetic entropy change (ΔSMpeak ) in the vicinity of TC for ΔH = 5T were found to be 4.5 J/kg K, 5.6 J/Kg K, and 5.1 J/Kg K for x = 0.105, 0.115, and 0.120 respectively. A magnetic field-induced transition from an AFM to a FM state in the martensite structure was observed in annealed Ni0.895Cr0.105MnGe1.05 melt-spun ribbons, which led to a coupled MST from a FM martensite to a PM austenite phase with a large change in magnetization. As a result of the field-induced MST, a large ΔSMpeak value of 16.1 J kg-1 K-1 (which is about a four times larger than the bulk) and Refrigeration capacity (RC-1) =144 J kg-1 at μ0∆H = 5 T was found. It was also found that the ribbon samples showed excellent magnetic reversibility that is important for application. MCE parameters, adiabatic temperature change (∆Tad) and |〖∆S〗_M |, with maximum value of ~ 2.6 K (µoH = 10 T) and 4.4 J kg-1 K-1(µo∆H = 5 T), respectively, were observed in the vicinity of TC. The ∆Tad (T) curves obtained for µoΔH = 10 T and magnetization isotherms were found to be completely reversible, which indicates the reversibility of the MCE in this system. A large temperature span (of about 61 K) and a non-saturating behavior of ∆Tad were observed at magnetic fields up to 10 T. The adiabatic temperature change was found to be a linear function of (µoH)2/3 near TC in accordance with Landau’s theory of phase transitions.In MnCoGe compounds doped with Al, Zr, and Ag, a tunable MST from the paramagnetic hexagonal to ferromagnetic orthorhombic phase was observed. The maximum ΔSM values of about 18, 7.2, and 22 J kg-1 K-1for ∆H = 5T at TM was observed for Al, Zr, and Ag doped compounds, respectively. The corresponding maximum value of RC was found to be (303, 266, and 308) JKg-1.The new compounds containing low concentration of rare earth (R) metals: Ni50-xRxMn35Sn15, Ni43-xRxMn46Sn11, with R = La, Pr, Sm, Gd, Ho, Er and Ni50Mn35In15-xBix were synthesized. The compounds crystallized in the cubic L21 austenite phase (AP) or a mixture of AP and low temperature martensitic phase (MP) at room temperature. For Ni50-xRxMn35Sn15 and Ni43-xRxMn46Sn11 alloys, TM shifted towards higher temperature with rare-earth doping, thus stabilizing the MP at higher temperature. A maximum shift in TM by ~ 60-62 K relative to the parent compound (TM = 190-195 K) was observed for the Ni49LaMn35Sn15 and Ni42PrMn46Sn11. TM shifted towards lower temperature if Bi is placed in In position in Ni50Mn35In15-xBix. A maximum shift of ~ 36 K was detected for x = 1.5. Abnormal shifts in TC and TM to higher temperatures were observed at high field for Bi concentration ≥ 0.5.The ground state magnetization decreased with the rare-earth doping and increasing Bi content. The compounds exhibit both inverse and normal magnetocaloric effects. Large values of ∆SM = 12 (Ni49PrMn35Sn15), 32 Jkg-1K-1(Ni42PrMn46Sn11), 28 Jkg-1K-1 (Ni42GdMn46Sn11), 25 Jkg-1K-1 (Ni42HoMn46Sn11), 40 J/kg K (Ni50Mn35In15) and 34 J/kg K (Ni50Mn35In15-xBix, x = 0.25) were found at TM for ∆H = 5T that can be tuned in a wide temperature range. RC values ranging from 267-336 Jkg-1 at TC, 182 -250 Jkg-1 at TM and 144-165 Jkg-1 at TC were found with ∆H = 5T for Ni50-xRxMn35Sn15, Ni43-xRxMn46Sn11, and Ni50Mn35In15-xBix, respectively. Significant magnetoresistance (MR) values of -30%, -20 % and -30% were observed in Ni49LaMn35Sn15, Ni42GdMn46Sn11, and Ni50Mn35In14.5Bi0.5 compounds, respectively, at TM and ∆H = 5T. A large exchange bias effect with HEB ~ 1.1 kOe at 10 K was observed for the Ni42PrMn46Sn11 compound in its MP. Thus, the pronounced multifunctional properties such as shape memory effects, MCE, EB, and MR make these new systems promising for the ongoing development of magnetocaloric and multifunctional technologies.
116

Enkapsulace léčiv v termocitlivých micelárních gelech / Drugs Loading in Thermosensitive Micellar Gels

Smolková, Miroslava January 2017 (has links)
Presented diploma thesis deals with drug encapsulation of Sulfathiazole (STA) in thermosensitive hydrogel composed of amphiphilic fibrous molecules of copolymer poly(D,L-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(D,L-lactide-co-glycolide) (PLGA-PEG-PLGA). In the experimental part, the structure of the micelles which is dependent on the concentration of the default copolymer, was thoroughly described. The method of dynamic light scattering (DLS) was used to dimensionally characterize the micellar size in aqueous solution. At the same time, the Cryo-Transmission Electron Microscopy (Cryo-TEM) imaging technique confirmed the transition from spherical micelles to fibrous branched structures with a number of topological interactions. The change in viscoelastic properties of micellar hydrogel after addition of STA was studied by rheological analysis. The studied triblock copolymer appears to be a suitable tissue engineering material as a carrier in applications for targeted drug delivery and tissue regeneration.
117

Investigations on the parent compounds of Fe-chalcogenide superconductors

Koz, Cevriye 22 June 2015 (has links)
This work is focused on the parent compounds of the Fe-chalcogenide superconductors. For this purpose poly- and single-crystalline forms of tetragonal β-FexSe, Fe1+yTe, Fe1+yTe1-xSex and Fe(1+y)-xMxTe (M = Ni, Co) have been prepared. Second focal points of this study are the low-temperature structural phase transitions and physical property changes in tetragonal Fe1+yTe which are induced by composition, external pressure, and cationic substitution.
118

Nukleace v komplexních systémech / Nucleation in complex systems

Kulveit, Jan January 2019 (has links)
Title: Nucleation in complex systems Author: Jan Kulveit Institute: Institute of Physics of the Czech Academy of Sciences Supervisor: prof. Pavel Demo, Institute of Physics of the Czech Academy ofSciences, Department of Optical Materials Abstract: We studied nucleation in progressively more abstract contexts and systems, starting from classical nucleation theory and ending with nucleation in complex networks. The cases studied include impurity nucleation in a solid matrix on several alkali halide crystals, where we determined formation energies for clusters, treated as defects, starting from single impurity-vacancy dipole and small aggregates to possible configurations of larger clusters. In the next part, we turn to the study of heterogeneous nucleation. While in the usual treatment of heterogeneous nucleation the surface energy is assumed to be homogenous, we ask the question what happens if we consider the surface energy to be heteroge- neous.Utilizing umbrella sampling computer simulations we find the nucleation barrier can be significantly lowered in the presence of surface heterogeneity, even if the average surface energy is kept constant. In the last part we study influence of clustering coefficient on phase transitions in scale-free networks, using forward flux sampling (FFS). Keywords: nucleation,...
119

Algebraické přístupy k elementárním excitacím v prostředích s narušenou invariancí vůči prostorové nebo časové inverzi / Algebraic approaches to elementary excitations in media with broken spatial or time-reversal symmetry

Erb, Kay Condie January 2019 (has links)
Title: Algebraic Approaches to Elementary Excitations in Media with Broken Spatial or Time-reversal Symmetry Author: Kay Condie Erb Institute: Institute of Physics of the Czech Academy of Sciences Supervisor: Ing. Jiří Hlinka, Ph.D., Institute of Physics of the Czech Academy of Sciences Abstract: Structural phase transitions with macroscopic symmetry breaking can be divided into 212 non-magnetic species according to the mutual spatial orien- tation of the point groups of both phases. Classification into the given species implies a set of universal transition properties such as the number of macroscopic domain states of the low-symmetry phase and their distinguishability by order parameter. In this work, the distinguishability of macroscopic domain states by all order pa- rameters which transform as vectors or vectorlike quantities (called bidirectors) was studied. For solving this task, a computer algorithm was designed which enabled an explicit listing of all vector and vectorlike order parameters, not only for the 212 non-magnetic species, but even for all 1602 magnetic species which includes transitions between crystallographic gray and bicolor point groups. In addition, irreducible representations of the 122 magnetic crystallographic point groups which transform as vectors or vectorlike quantities are...
120

Theoretical and Experimental Investigations on Solid State Reactions: Phase Transition Mechanisms, Ionic Conduction, Domain Formation and Interface Reactivity

Leoni, Stefano 02 December 2009 (has links)
In the practice of solid state chemistry, structural phase transitions are fairly common events. Nonetheless, their understanding, in terms of both: A rationalization of the observed changes in symmetry pattern and; An understanding of the mechanisms allowing for a particular transformation, are outstanding problems. The thermodynamic classification of phase transitions distinguishes between first and second order transitions, on the basis of the discontinuous behavior of quantities related to first or second derivatives of the free energy, respectively. Small atomic displacements are typically associated with second order phase transitions, and latent heat changes amount to a few calories per gram only. Additionally, the symmetries of the phases surrounding the transition are typically in the relation of a group and a subgroup. Reconstructive phase transitions, on the contrary, involve breaking of (large) parts of the bond scaffolding of the initial structure, and exhibit drastic changes at the transition point, with large latent heat and hysteresis effects. The corresponding atomic displacements can be in the order of the lattice parameters, and no group-subgroup is found, between the symmetry of the phases. These type of transitions have generally a strong first-order character. Landau theory accounts for continuous, second-order phase transitions. As a phenomenological theory, it does not establish the existence of a phase transition, which remains an experimental fact. It only bridges microscopic characteristics, like space-group symmetries and structural changes, or phonon softening effects, with measurable macroscopic quantities. Therein, distortions are carried by an order parameter, which fully specifies the form of the analytical variational free energy. The latter is continuous and derivable with respect to temperature, pressure and atomic displacement, at the transition point. First order, non-continuous phase transitions are still within the scope of Landau theory in the mentioned special case of the existence of a group-to-(isotropic) subgroup relationship. In the majority of cases, however, and for the most interesting phase transitions (for basic and applied research), such a relationship is missing, making the choice of an order parameter less straightforward. Most of the allotropic transformations of the elements, many intermetallic systems, and numerous insulating systems belongs to this class. This class also includes most interesting and fundamental electronic effects, like metallization in perovskites or spinel oxides for example. This very simple fact of a missing symmetry condition has helped reinforcing the opinion of first-order phase transitions being a world apart, and possibly contributed to discouraging a firm theory to develop, able to account for their transformation mechanisms and the change of physical properties across phase transition. The thermodynamic distinction between first and second order phase transitions is too narrow, as, in case of first order phase transitions, it embraces both weakly discontinuous transition and reconstructive ones, where bonds are being strongly modified. Especially, a mean to qualify the distance between two structures (geometric, with respect to symmetry, a.s.o.), is missing. Clearly, a group-subgroup relationship may, and typically does imply shortest shifting distances, as a tiny atomic displacement can already do for a symmetry lowering. Naively, missing such a relation means no constraints, and apparently no means to conclude at a connection of two structures in general, let alone a full mechanistic analysis. First order phase transitions proceed by nucleation and subsequent growth of the new phase from the initial one. Different from (second-order) continuous phase transitions, they do imply coexistence of the transforming motifs. The discontinuity in some order parameter between the two phases is driven by lowering of the free energy as the new phase forms. However, close to the transition, the original phase remains metastable, and a fluctuation is needed to cause the formation of the new phase to set in. Such a process responds to thermal changes, and depending on the height of the nucleation barrier, its rate may be slower or faster. In the former case, large deviations from equilibrium may be required to achieve transformation to the stable phase, which means that large hysteresis effects will be observed in the course of transformation. The intent of this work consists in giving a face to the intermediate configurations appearing in first order phase transitions, in solid-solid reconstructive processes. Apart of a mechanistic elucidation, consisting in answering the question “Which atomic displacements bring structural motif A into structural motif B ?”, another purpose of this work is a rather pedagogical one, that is, showing that first-order phase transitions can be understood in detail, not only in principle but in fact. The core of the examples illustrated in this work is concerned with phase transformations where pressure represents the thermodynamic controlling parameter. Pressure is extensively used in chemical synthesis, as a mean to achieve novel properties, optical or mechanical just to mention a few. Additionally, reports on novel high-pressure polymorphs are regularly appearing. In this sense, pressure is a relevant parameter for approaching fundamental questions in solid state chemistry.

Page generated in 0.0557 seconds