201 |
Relaxation de spin dans les semi-conducteurs dopés et dans les nanostructures à base de semi-conducteurs / Spin relaxation in doped semiconductors and semiconductor nanostructuresIntronati, Guido Alfredo 24 April 2013 (has links)
Dans cette thèse nous considérons un semi-conducteur de GaAs dopé, où nous étudions la relaxation du spin du côté métallique de la transition metal-isolant. Nous considérons deux types différents d'interaction de spin-orbite. Le premier d'entre eux est associé aux impuretés et l'autre est de type Dresselhaus. La dynamique du spin est traitée à travers une formulation analytique basée sur la diffusion du spin de l'électron, et un calcul numérique de la durée de vie du spin.Ensuite, nous considérons une boîte quantique hébergée dans un nanofil de matériau InAs (avec une structure cristalline de type wurtzite), afin d'étudier l'effet de l'interaction spin-orbite sur les états propres du système. Nous développons ici une solution analytique pour la boîte quantique en incluant l'interaction spin-orbite (de type Dresselhaus propre à la structure wurtzite). Nous avons calculé le facteur g effectif, ainsi que la relaxation du spin dûe aux phonons acoustiques, en utilisant les potentiels d'interaction electron-phonon propres à la structure wurtzite. / In the first part of this thesis we consider a doped GaAs semiconductor and study the spin relaxation on the metallic side of the metal-insulator transition. We take into account two different types of spinorbit coupling, the first of them being associated to the presence of extrinsic impurities, while the other one is the Dresselhaus coupling. To tackle the spin dynamics problem, we develop an analytical formulation based on the spin diffusion of an electron in the metallic regime of conduction of the impurity band. The full derivation provides us with an expression for the spin-relaxation time ,which is free of adjustable parameters. We complement this approach and back our analytical results with the numerical calculation of the spin lifetime.In the second part of the thesis we consider a quantum dot hosted in an InAs nanowire (with awurtzite crystalline structure) and study the effect of spin-orbit coupling on the eigenstates of the zero-dimensional system. We develop here an exact analytical solution for the quantum dot, takinginto account the proper effective spin-orbit coupling for this type of material. We focus on the Dresselhaus coupling, which presents a cubic-in-k term, along with a linear term, characteristic of wurtzite materials. A Zeeman interaction from an external magnetic field is included as well and we compute the effective g-factor as a function of the dot size. Finally, we calculate the spin-relaxation due to acoustic phonons, taking into account the phonon potentials corresponding to the wurtzite structure.
|
202 |
Propriedades vibracionais de defeitos de nitrogênio em nanotubos de carbono / Vibrational Properties of Nitrogen Defects on Carbon NanotubesLeandro de Andrade Silva 03 November 2008 (has links)
O trabalho anteriormente realizado pelo nosso grupo, onde foram simulados defeitos de nitrogênio em nanotubos de carbono, apresentou resultados interessantes relativos às energias e propriedades eletrônicas. A interpretacão dos resultados teóricos obtidos levou à proposta da Divacância rodeada por 4 Nitrogênios como estrutura mais estável para o nitrogênio tipo piridina, em constraste com aquela proposta pelos experimentais, uma Monovacância rodeada por 3 Nitrogênios. Os cálculos das propriedades eletrônicas da Divacância reproduziram as medidas experimentais na investigação de sensores de amônia. Dessa forma, como informação adicional na determinaçã da estrutura mais estável, o presente trabalho investigou as propriedades vibracionais daqueles sistemas que apresentaram menor energias de formação. Foram calculadas as freqüências vibracionais dos seguintes três defeitos: Nitrogênio Substitucional (1N), Monovacância rodeada por 3 Nitrogênios (3NV) e Divacância rodeada por 4 Nitrogênios (4ND) e comparadas com os resultados para os tubos puros. Utilizou-se a aproximação de supercélula, com 140 átomos para um tubo metálico (5,5) e 160 para um tubo semicondutor (8,0). Como o objetivo é identificar as características de cada sistema, focalizou-se na comparação dos valores das freqüências Raman ativas mais intensas. Os cálculos foram realizados com o código SIESTA, utilizando DFT com o formalismo dos pseudopotenciais e a aproximação GGA-PBE. As freqüências foram obtidas pelo Método Direto pelo mesmo programa. Os resultados mostraram diferenças quanto à quebra de degenerescências, que ocorre devido à quebra da simetria do sistema puro e quanto à mudança dos valores das freqüências dos modos. Como característica geral, os defeitos fazem com que as freqüências da banda mais baixa de energia do espectro Raman sofram shifts negativos, ou seja, afastam os picos para energias mais baixas. O modo de freqüência intermediária sofre um shift positivo e os modos da banda G voltam a apresentar valores negativos. Os splittings, bem como os valores numéricos dos shifts variam conforme o tipo de defeito e o tipo de sistema dopado (armchair ou zig-zag). Apesar de não apresentar diferenças consideravelmente grandes para os valores de shifts e splittings entre os defeitos, o comportamento qualitativo distinto para os modos RBMs é uma boa ferramenta para a diferenciação desses defeitos através de espectroscopia vibracional. / A previous work developed in our own group on which nitrogen defects on carbon nanotubes were simulated presented very interesting results regarding the energetics and the electronic properties. The interpretation of the theoretical outcomes led us to propose the Divacancy surrounded by 4 nitrogen atoms as the most stable structure for a pyridine-like nitrogen, in contrast to the one proposed by the experimentalists, namely the Monovacancy surrounded by 3 nitrogen atoms. Calculations of the electronic properties of the Divacancy have reproduced the experimental data. In this way as additional information for determining the actual most stable structure the present work investigated the vibrational properties of those systems that showed the lowest formation energies. We performed the calculations of the vibrational frequencies for the following three defects: Substitutional nitrogen atom (1N), Monovacancy surrounded by 3 nitrogen atoms (3NV) and Divacancy surrounded by 4 nitrogen atoms (4ND). Then the frequencies were compared to those ones from the pure tubes. We used the supercell approximation with 140 atoms for a (5,5) metallic tube and 160 for a (8,0) semiconducting tube. Since the present work aims to identify the main features of each system we focused on the comparison of the values of the strongest Raman active modes. All the calculations were carried out by the SIESTA code, using DFT with the pseudopotential formalism and GGA approximation. Then the frequencies were evaluated using the Direct Method. The results showed differences on the degeneracy splittings, which are caused by the symmetry-breaking due to the introduction of defects, and also differences on the shifts of the numerical values of the frequencies. As general feature, the defects caused the low band frequencies modes of Raman spectrum to have a negative shift, i.e. they push the peaks further to lower energies. The intermediate mode shifts positively and the G band modes show negative shifts again. The splittings as well as those shifts change depending on the type of the defect and the type of the doped system (armchair or zig-zag). Although not showing significant differences for shifts and splittings between the defects, the qualitatively distinct behavior for RBMs modes is a good tool to tell them apart using vibrational spectroscopy.
|
203 |
Structural, Electronic And Vibrational Properties Of n-layer Graphene With And Without Doping : A Theoretical StudySaha, Srijan Kumar 04 1900 (has links) (PDF)
Graphene – a two-dimensional honeycomb lattice of sp2-bonded carbon atoms – has been attracting a great deal of research interest since its first experimental realization in 2004, due to its various novel properties and its potential for applications in futuristic nanodevices. Being the fundamental building block for carbon allotropes of other dimensionality, it can be stacked to form 3d graphite or rolled into 1d nanotube. Graphene is the thinnest known material in the universe, and one of the strongest materials ever measured in terms of its in-plane Young modulus and elastic stiffness. The charge carriers in graphene exhibit giant mobility as high as 20 m2/Vs, have almost zero effective mass, and can travel for micrometers without scattering even at ambient conditions. Graphene can sustain current densities six orders of magnitude higher than that of copper, shows record thermal conductivity and stiffness, is impermeable to gases, and renders easy accessibility to optical probes. Electron transport in graphene is described by a Dirac-type equation, which allows the investigation of “relativistic” quantum phenomena in a benchtop experiment. This results in the observation of a number of very peculiar electronic properties from an anomalous quantum Hall effect to Kien paradox and the absence of localization.
All these enticing features make this material an excellent candidate for application in various electronic, photonic and optoelectronic devices. For instance, its ballistic ambipolar transport and high carrier mobility are the most useful traits for making ultrafast and low-power electronic devices. Its high surface area shouldmake it handy in manufacturing tough composite materials. The extreme thinness of graphene could also lead to more efficient field emitters that release electrons in the presence of strong electric
fields. Its robustness and light weight are useful for micromechnical resonators. The tunability of its properties could make it possible to build so-called spin-valve transistors, as well as ultra-sensitive chemical detectors.
Many of such applications of graphene require tuning of its properties, which can be achieved by varying the number of layers or/and by doping. There are several ways to dope graphene: (i)electrochemically gated doping, (ii)molecular charge-transfer doping, and (iii) substitutional doping by atoms like Boron or Nitrogen.Moreover, for graphene, a zero band gap semiconductor in its pristine form, to become a versatile electronic device material it is mandatory to find means to open up a band gap and tune the size of the band gap. Several strategies have been adopted to engineer such a band gap in graphene in a controlled way. Some of these are based on the ability to control the geometry of graphene layers, some use graphene-substrate interactions, while others are based on chemical reactions of atoms or molecules with the graphene layer.
Motivated by these considerations, in this thesis we present a systematic and thorough study of the structural, electronic and vibrational properties of graphene and their dependence on the number of layers, and on doping achieved electrochemically, molecularly and substitutionally, using first principles density functional theory (DFT).
In Chapter 1, we give an introduction to the hitherto beguiling world of graphene. Here, we briefly discuss the structure, novel properties and potential applications of graphene, and the motivation for this thesis.
In Chapter 2, an overview of the DFT formalism adopted here is given. We clearly state the theorems of the formalism and the approximations used when performing calculations. We succinctly explain how the various quantities like total energies, forces, stresses etcetera are calculated within this formalism. We also discuss how phonon frequencies, eigenvectors, electron-phonon couplings are obtained by using density functional perturbation theory (DFPT), which calculates the full dynamical matrices through the linear response of electrons to static perturbations induced by ionic displacements. Calculations are done first using a fully ab-initio approach within the standard Born-Oppenheimer approximation, and then time-dependent perturbation theory is used to explore the effects of dynamic response.
In Chapter 3, using such first-principles density-functional theory calculations, we determine the vibrational properties of ultra-thin n(1,2,...,7)-layer graphene films and present a detailed analysis of their zone-center phonons. We present the results (including structural relaxations, phonons, mode symmetries, optical activities) for bulk Graphite, single-layer graphene and ultrathin n-layer graphene films. and discuss the underlying physics of our main results together with a pictorial representation of the phonon modes. We demonstrate that a low-frequency (∼ 112 cm−1 ) optical phonon with out-of-plane displacements exhibits a particularly large sensitivity to the number of layers, although no discernible change in the interlayer spacing is found as n varies. Frequency shifts of the optical phonons in bilayer graphene are also calculated as a function of its interlayer separation and interpreted in terms of the inter-planar interaction.
The surface vibrational properties of n-layer graphene films are presented in Chapter 4, which renders a detailed and thorough analysis of all the surface phonon modes by determining, classifying and identifying them accurately. The response of surface modes to the presence of adsorbed hydrogen molecules is determined. As an illustrative adsorbate, hydrogen is chosen here mainly because of its huge importance in fuel cell technology and as a molecular sensor. We demonstrate that a doubly degenerate surface phonon mode with low-frequency (~ 35cm−1)exhibits a particularly large sensitivity to the adsorption of hydrogen molecules, as compared to other surface modes. Futhermore, we show that a low-frequency (108.8 cm−1)bulk-like phonon with out-of-plane displacements is also very sensitive and gets upshifted by as much as 21 cm−1 due to this adsorption.
In Chapter 5, we determine the adiabatic frequency shift of the and phonons in a monolayer graphene as a function of both electron and hole doping. The doping is simulated here to correspond to electrochemically gated graphene. Compared to the results for the E2g -Γ phonon (Raman G band), the results for the phonon are dramatically different, while those for the phonon are not so different. Furthermore, we calculate the frequency shifts, as a function of the charge doping, of the (K + ΔK) phonons responsible for the Raman 2D band –a key finger print of graphene, where [ΔK] is determined by the double resonance Raman process.
Doping graphene with electron donating or accepting molecules is an interesting approach to introduce carriers into it, analogous to electrochemical doping accomplished in graphene when used in a field-effect transistor. In Chapter 6, we use first-principles density-functional theory to determine changes in the electronic structure and vibrational properties of graphene that arise from the adsorption of aromatic molecules such as aniline and nitrobenzene. Identifying the roles of various mechanisms of chemical interaction between graphene and the adsorbed molecules, we bring out the contrast between electrochemical and molecular doping of graphene. Our estimates of various contributions to shifts in the Raman active modes of graphene with molecular doping are fundamental to the possible use of Raman spectroscopy in (a)characterization of the nature and concentration of carriers in graphene arising from molecular doping, and (b) graphene-based chemical sensors.
Graphene doped electrochemically or through charge-transfer with electron-donor and acceptor molecules, shows marked changes in electronic structure, with characteristic signatures in the Raman spectra. Substitutional doping, universally used in tuning properties of semiconductors, could also be a powerful tool to control the electronic properties of graphene. In Chapter 7, we present the structure and properties of boron and nitrogen doped graphenes, again using first-principles density functional theory. We demonstrate systematic changes in the carrier-concentration and electronic structure of graphenes with B/N-doping, accompanied by a stiffening of the G-band and change of the defect related D-band in the Raman spectra. Such n/p -type graphenes obtained without external fields or chemical agents should find device applications.
|
204 |
Phonons And Thermal Transport In NanostructuresBhowmick, Somnath 09 1900 (has links) (PDF)
No description available.
|
205 |
Phonon Anomalies And Phase Transitions In Pyrochlore Titanates, Boron Nitride Nanotubes And Multiferroic BiFeO3 : Temperature- And Pressure-Dependent Raman StudiesSaha, Surajit 10 1900 (has links) (PDF)
This thesis presents experimental and related theoretical studies of pyrochlore titanate oxides, boron nitride nanotubes, and multiferroic bismuth ferrite. We have investigated these systems at high pressures and at low temperatures using Raman spectroscopy. Below, we furnish a synoptic presentation of our work on these three systems.
In Chapter 1, we introduce the systems studied in this thesis, viz. pyrochlores, boron nitride nanotubes, and multiferroic BiFeO3, with a review of the literature pertaining to their structural, electronic, vibrational, and mechanical properties. We also bring out our interests in these systems.
Chapter 2 includes a brief description of the theory of Raman scattering and infrared absorption. This is followed by a short account of the experimental setups used for Raman and infrared measurements. We also present the technical details of high pressure technique including the alignment of diamond anvil cells, gasket preparation, calibration of the pressure, etc.
Chapter 3 furnishes the results of our pressure-and temperature-dependent studies of pyrochlore oxides which has been divided into eight different parts.
In recent years, magnetic and thermodynamic properties of pyrochlores have received a lot of attention. However, not much work has been reported to address the quasiparticle excitations, e.g., phonons and crystal-field excitations in these materials. A material that shows exotic magnetic behavior and high degree of degenerate ground states can be expected to have low-lying excitations with possible couplings with phonons, thereby, finger-printing various novel properties of the system. Raman and infrared absorption spectroscopies can, therefore, be used to comprehend the novel role of phonons and their role in various phenomena of frustrated magnetic pyrochlores. Recently, there have been reports on various novel properties of these systems; for example, Raman and absorption studies [Phys. Rev. B 77, 214310 (2008)] have revealed a loss of inversion symmetry in Tb2Ti2O7 at low temperatures which has been suggested as the key reason for this frustrated magnet to remain in spin-liquid state down to 70 mK. Powder neutron-diffraction experiments [Nature 420, 54 (2002)] have shown that an application of isostatic pressure of about 8.6 GPa in spin-liquid Tb2Ti2O7 induces a long-range magnetic order of the Tb3+ spins coexisting with the spin-liquid phase ascribing this transition to the breakdown of the delicate balance among the various fundamental interactions. Moreover, Raman and x-ray studies have shown that Tb2Ti2O7,Sm2Ti2O7,and Gd2Ti2O7 undergo a structural transition followed by an irreversible amorphization at very high pressures (~ 40 GPa or above) [Appl. Phys. Lett. 88, 031903 (2006)].
In this chapter, therefore, we present our temperature-and pressure-dependent Raman studies of A2Ti2O7 pyrochlores, where ‘A’ is a trivalent rare-earth element (A = Sm, Gd,Tb, Dy,Ho, Er,Yb, and Lu; and also Y). Since all the group theoretically predicted Raman modes of this cubic lattice are due to oxygen vibrations only, in Part (A), we revisit the phonon assignments of pyrochlore titanates by performing Raman measurements on the O16 /O18 − isotope based Dy2Ti2O7 and Lu2Ti2O7 and find that the vibrations with frequencies below 250 cm−1 do not involve oxygen atoms. Our results lead to a reassignment of the pyrochlore Raman phonons thus proposing that the mode with frequency ~ 200 cm−1, which has earlier been known as an F2g phonon due to oxygen vibration, is a vibration of Ti4+ ions. Moreover, we have performed lattice dynamical calculations using Shell model that help us to assign the Raman phonons.
In Part (B), we have explored the temperature dependence of the Raman phonons of spin-ice Dy2Ti2O7 and compared with the results of two non-magnetic pyrochlores, Lu2Ti2O7 and Y2Ti2O7. Our results reveal anomalous red-shift of some of the phonons in both magnetic and non-magnetic pyrochlores as the temperature is lowered. The phonon anomalies can not be understood in terms of spin-phonon and crystal field transition-phonon couplings, thus attributing them to phonon-phonon anharmonic interactions. We also find that the anomaly of the disorder activated Ti4+ Raman vibration (~ 200 cm−1) is unusually high compared to other phonons due to the large vibrational amplitudes of Ti4+-ions rendered by the vacant Wyckoff sites in their neighborhood. Later, we have quantified the anharmonicity in Dy2Ti2O7.
We have extended our studies on spin-ice compound Dy2Ti2O7 by performing simultaneous pressure-and temperature-dependent Raman measurements, presented in Part (C). We show that a new Raman mode appears at low temperatures below TC ~ 110 K, suggesting a structural transition, also supported by our x-ray measurements. There are reports [Phys. Rev. B 77, 214310 (2008), Phys.Rev.B 79, 214437 (2009)] in the literature where the new mode in Dy2Ti2O7 at low temperatures has been assigned to a crystal field transition. Here, we put forward evidences that suggest that the “new” mode is a phonon and not a crystal field transition. Moreover, the TC is found to depend on pressure with a positive coefficient.
In Part (D), we have presented our results of temperature-and pressure-dependent Raman and x-ray measurements of spin-frustrated pyrochlores Gd2Ti2O7, Tb2Ti2O7,and Yb2Ti2O7. Here, we have estimated the quasiharmonic and anharmonic contributions to the anomalous change in phonon frequencies with temperature. Moreover, we find that Gd2Ti2O7 and Tb2Ti2O7 undergo a subtle structural transition at a pressure of ~ 9 GPa which is absent in Yb2Ti2O7. The implication of this structural transition in the context of a long-range magnetically ordered state coexisting with the spin-liquid phase in Tb2Ti2O7 at high pressure (8.6 GPa) and low temperature (1.5 K), observed by Mirebeau et al. [Nature 420, 54 (2002)], has been discussed.
As we have established in the previous parts that the anomalous behavior of pyrochlore phonons is due to phonon-phonon anharmonic interactions, we have tuned the anharmonicity in the first pyrochlore of the A2Ti2O7 series, i.e., Sm2Ti2O7,by replacing Ti4+-ions with bigger Zr4+-ions, presented in Part (E). Our results suggest that the phonon anomalies have a very strong dependence on the ionic size and mass of the transition element (i.e., the B4+-ion in A2B2O7 pyrochlores). We have also observed signatures of coupling between a phonon and crystal-field transitions in Sm2Ti2O7.
In Part (F), we have studied spin-ice compound Ho2Ti2O7 and compared the phonon anomalies with the stuffed spin-ice compounds, Ho2+xTi2−xO7−x/2 by stuffing Ho3+ ions into the sites of Ti4+ with appropriate oxygen stoichiometry. We find that as more and more Ho3+-ions are stuffed, there is an increase in the structural disorder of the pyrochlore lattice and the phonon anomalies gradually disappear with increasing Ho3+-ions. Moreover, a coupling between phonon and crystal field transition has also been observed.
In Part (G), we have examined the temperature dependence of phonons of “dynamical spin-ice” compound Pr2Sn2O7 and compared with its non-pyrochlore (monoclinic) counterpart Pr2Ti2O7. Our results conclude that the anomalous behavior of phonons is an intrinsic property of pyrochlore structure having inherent vacant sites. We also find a coupling between phonon and crystal-field transitions in Pr2Sn2O7.
In the last part of this chapter, Part (H), we present our Raman studies of Er2Ti2O7. Here, we show that in addition to the anomalous phonons, there are modes that originate from photoluminescence transitions and some of these luminescence lines show anomalous temperature dependence which have been understood using the theory of optical dephasing in crystals, developed by Hsu and Skinner [J. Chem. Phys. 81, 1604 (1984)]. Temperature dependence of a few Raman modes and photoluminescence bands suggest a phase transition at 130 K.
In Chapter 4, we furnish our pressure-dependent Raman studies of boron nitride multi-walled nanotubes (BNNT) and hexagonal boron nitride (h-BN) and compare the results with those of their carbon counterparts.
Using Raman spectroscopy, we show that BNNT undergo an irreversible transition at ~ 12 GPa while the carbon counterpart, multi-walled carbon nanotubes, show a similar transition at a much higher pressure of ~ 51 GPa. In sharp contrast, the layered form of both the systems (i.e. h-BN and graphite) undergo a hexagonal to wurtzite phase at nearly similar pressure (~ 13 GPa of h-BN and ~ 15 GPa for graphite). A molecular dynamical simulation on boron nitride single-walled nanotubes has also been undertaken that suggests that the polar nature of the B−N bonds may be responsible for the irreversibility of the pressure-induced transformations. It is interesting to see that in hexagonal phase both the systems have almost similar mechanical property, but once they are rolled up to make nanotubes, the property becomes quite different.
Chapter 5 presents the temperature dependence of the Raman modes of multiferroic thin films of BiFeO3 and Bi0.7Tb0.2La0.1O3. Though there have been several Raman investigations of BiFeO3 in literature, here we emphasize the observation of unusually intense second order Raman phonons. Our results have motivated Waghmare et al. to suggest a theoretical model to explain the anomalously large second order Raman tensor of BiFeO3 in terms of an incipient metal-insulator transition.
In Chapter 6, we summarize our findings on the three different systems, namely, pyrochlores, boron nitride nanotubes, and BiFeO3 and highlight a few possible experiments that may be undertaken in future to have a better understanding of these systems.
|
206 |
Quantitative Prediction of Non-Local Material and Transport Properties Through Quantum Scattering ModelsPrasad Sarangapani (5930231) 16 January 2020 (has links)
<div> Challenges in the semiconductor industry have resulted in the discovery of a plethora of promising materials and devices such as the III-Vs (InGaAs, GaSb, GaN/InGaN) and 2D materials (Transition-metal dichalcogenides [TMDs]) with wide-ranging applications from logic devices, optoelectronics to biomedical devices. Performance of these devices suffer significantly from scattering processes such as polar-optical phonons (POP), charged impurities and remote phonon scattering. These scattering mechanisms are long-ranged, and a quantitative description of such devices require non-local scattering calculations that are computationally expensive. Though there have been extensive studies on coherent transport in these materials, simulations are scarce with scattering and virtually non-existent with non-local scattering. </div><div> </div><div>In this work, these scattering mechanisms with full non-locality are treated rigorously within the Non-Equilibrium Green's function (NEGF) formalism. Impact of non-locality on charge transport is assessed for GaSb/InAs nanowire TFETs highlighting the underestimation of scattering with local approximations. Phonon, impurity scattering, and structural disorders lead to exponentially decaying density of states known as Urbach tails/band tails. Impact of such scattering mechanisms on the band tail is studied in detail for several bulk and confined III-V devices (GaAs, InAs, GaSb and GaN) showing good agreement with existing experimental data. A systematic study of the dependence of Urbach tails with dielectric environment (oxides, charged impurities) is performed for single and multilayered 2D TMDs (MoS2, WS2 and WSe2) providing guideline values for researchers. </div><div><br></div><div>Often, empirical local approximations (ELA) are used in the literature to capture these non-local scattering processes. A comparison against ELA highlight the need for non-local scattering. A physics-based local approximation model is developed that captures the essential physics and is computationally feasible.</div>
|
207 |
高周波コヒーレントフォノン励起によるBrillouin散乱光の強度改善に関する研究 / コウシュウハ コヒーレント フォノン レイキ ニヨル Brillouin サンランコウ ノ キョウド カイゼン ニカンスル ケンキュウ川部 昌彦, Masahiko Kawabe 22 March 2019 (has links)
博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
|
208 |
Spin and Carrier Relaxation Dynamics in InAsP Ternary Alloys, the Spin-orbit-split Hole Bands in Ferromagnetic InMnSb and InMnAs, and Reflectrometry Measurements of Valent Doped Barium TitanateMeeker, Michael A. 15 December 2016 (has links)
This dissertation focuses on projects where optical techniques were employed to characterize novel materials, developing concepts toward next generation of devices. The materials that I studied included InAsP, InMnSb and InMnAs, and BT-BCN. I have employed several advanced time resolved and magneto-optical techniques to explore unexplored properties of these structures.
The first class of the materials were the ternary alloys InAsP. The electron g-factor of InAsP can be tuned, even allowing for g=0, making InAsP an ideal candidate for quantum communication devices. Furthermore, InAsP shows promises for opto-electronics and spintronics, where the development of devices requires extensive knowledge of carrier and spin dynamics. Thus, I have performed time and polarization resolved pump-probe spectroscopy on InAsP with various compositions. The carrier and spin relaxation time in these structures were observed and demonstrated tunability to the excitation wavelengths, composition and temperature. The sensitivity to these parameters provide several avenues to control carrier and spin dynamics in InAsP alloys.
The second project focused on the ferromagnetic narrow gap semiconductors InMnAs and InMnSb. The incorporation of Mn can lead to ferromagnetic behavior of InMnAs and InMnSb, and enhance the g-factors, making them ideal candidates for spintronics devices. When grown using Molecular Beam Epitaxy (MBE), the Curie temperature (textit{$T_c$}) of these structures is textless 100 K, however structures grown using Metalorganic Vapor phase Epitaxy (MOVPE) have textit{$T_c$} textgreater 300 K. Magnetic circular dichroism was performed on MOVPE grown InMnAs and InMnSb. Comparison of the experimental results with the theoretical calculations provides a direct method to map the band structure, including the temperature dependence of the spin-orbit split-off band to conduction band transition and g-factors, as well as the estimated sp-d electron/hole coupling parameters.
My final project was on the lead-free ferroelectric BT-BCN. Ferroelectric materials are being investigated for high speed, density, nonvolatile and energy efficient memory devices; however, commercial ferroelectric memories typically contain lead, and use a destructive reading method. Reflectometry measurements were used in order to determine the refractive index of BT-BCN with varying thicknesses, which can provide a means to nondestructively read ferroelectric memory through optical methods. / Ph. D. / This dissertation focuses on the characterization of materials that are important for the next generation computer architecture through optical techniques. These materials include the ternary alloy InAsP, the ferromagnetic semiconductors InMnAs and InMnSb, and the lead-free ferroelectric BT-BCN.
InAsP is a ternary alloy composed of the technologically important InAs and InP, and by changing the alloy composition, the band gap and g-factor can be tuned. This allows for InAsP to have band gaps within the communication band, which is important for fiber optic communications as well as infrared photodetectors. As the functionality of these devices depends on the carrier dynamics, I have performed pump-probe spectroscopy in order to probe the carrier and spin relaxation times of this material system. These relaxation times were found to vary with excitation wavelengths, allowing flexibility in the application of this material system for devices.
InAs and InSb are attractive materials for device applications because they offer large electron g-factor, small effective masses, and high mobilities. With the incorporation of Mn, these materials can become ferromagnetic, allowing for their use in ferromagnetic memories as well as other possible devices. The theory of ferromagnetism in semiconductors relies on the interaction between the itinerant holes and the Mn ions, however, in narrow gap semiconductors there is a large band mixing between the conduction and valence band states, and thus the interaction between the conduction band electrons and the Mn is important. In this study, my measurements revealed several interband transitions, which allowed for the calculation of the coupling constants between the electrons, holes and the Mn.
My final study involved the lead-free ferroelectric BT-BCN. Ferroelectric materials are ideal for fast, low power and nonvolatile memories; however, typical implementation utilizes materials that contain lead, and a destructive reading mechanism, requiring a rewrite step. Optical, nondestructive reading methods are being explored based off of the rotation of the polarization of light as it passes through the sample. As this requires knowledge of the refractive index, I performed reflectometry measurements in order to determine the refractive indices of several BT-BCN films.
|
209 |
Ultrafast dynamics of electrons and phonons in graphitic materialsChatzakis, Ioannis January 1900 (has links)
Doctor of Philosophy / Department of Physics / Itzhak Ben-Itzhak / Patrick Richard / This work focuses on the ultrafast dynamics of electrons and phonons in graphitic materials. In particular, we experimentally investigated the factors which influence the transport properties of graphite and carbon nanotubes. In the first part of this dissertation, we used Time-resolved Two Photon photoemission (TR-TPP) spectroscopy to probe the dynamics of optically excited charge carriers above the Fermi energy of double-wall carbon nanotubes (DWNTs). In the second part of this study, time-resolved anti-Stokes Raman (ASR) spectroscopy is applied to investigating in real time the phonon-phonon interactions, and addressing the way the temperature affects the dynamics of single-wall carbon nanotubes (SWNTs) and graphite.
With respect to the first part, we aim to deeply understand the dynamics of the charge carriers and electron-phonon interactions, in order to achieve an as complete as possible knowledge of DWNTs. We measured the energy transfer rate from the electronic system to the lattice, and we observed a strong non-linear increase with the temperature of the electrons. In addition, we determined the electron-phonon coupling parameter, and the mean-free path of the electrons. The TR-TPP technique enables us to measure the above quantities without any electrical contacts, with the advantage of reducing the errors introduced by the metallic electrodes.
The second investigation uses time-resolved ASR spectroscopy to probe in real time the G-mode non-equilibrium phonon dynamics and the energy relaxation paths towards the lattice by variation of the temperature in SWNTs and graphite. The lifetime range of the optically excited phonons obtained is 1.23 ps to 0.70 ps in the lowest (cryogenic temperatures) and highest temperature limits, respectively. We have also observed an increase in the energy of the G-mode optical phonons in graphite with the transient temperature. The findings of this study are important since the non-equilibrium phonon population has been invoked to explain the negative differential conductance and current saturation in high biased transport phenomena.
|
210 |
Dynamics and thermal behaviour of films of oriented DNA fibres investigated using neutron scattering and calorimetry techniquesValle Orero, Jessica 26 June 2012 (has links) (PDF)
The majority of structural studies on DNA have been carried out using fibre diffraction, while studies of its dynamics and thermal behaviour have been mainly performed in solution. When the DNA double helix is heated, it exhibits local separation of the two strands that grow in size with temperature and lead to their complete separation. This work has investigated various aspects of this phenomenon. The experiments reported in this thesis were carried out on films of oriented fibres of DNA prepared with the Wet Spinning Apparatus. Thus, sample preparation and characterisation are essential parts of the research. The structures of two forms of DNA, A and B, have been explored as a function of relative humidity at fixed ionic conditions. A method to eliminate traces of ever-present B-form contamination in A-form samples was established. The high orientation of the DNA molecules within the samples allowed us to investigate dynamical fluctuations and the melting transition of DNA using neutron scattering, which can provide the spatial information crucial to understand a phase transition, probing the static correlation length along the molecule as a function of temperature. The transition has been investigated for A and B-forms in order to understand its dependence on molecular configuration.Furthermore, after the first melting, denatured DNA films show typical glass behaviour. Their thermal relaxation has been explored using calorimetry.Neutron and X-ray inelastic scattering (INS and IXS) were used in the past to measure longitudinal phonons in fibre DNA, and the results shown disagreement. Recent INS measurements supported with phonon simulations have been crucial to understand the different dispersion curves reported to date. Experiments using INS and IXS have been carried out to continue with this investigation. Attempts to observe the transverse fluctuations associated to the thermal denaturing of DNA, never experimentally investigated before, have been made.
|
Page generated in 0.0297 seconds