• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 32
  • 32
  • 16
  • 12
  • 11
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 383
  • 90
  • 84
  • 64
  • 63
  • 49
  • 49
  • 46
  • 46
  • 39
  • 38
  • 38
  • 37
  • 37
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Electromagnetic Phase Engineering With Metamaterials / Elektromagnetisk Fasdesign med Metamaterial

Sjödin, Olof January 2021 (has links)
Metamaterials are artificially designed materials with desired electromagneticresponses for advanced wave manipulation. Their key constituent is often somenoble metal, thanks to its well localized plasmonic effects with highextinction cross section. In this project, a metamaterial based onmetal-insulator-metal (MIM) structure is investigated to create a compactplanar reflector which mimics the function of a parabolic mirror. In such ametamaterial, each MIM unit is essentially a sub-wavelength resonator whichexhibits magnetic-dipole resonance. To achieve focusing effect, phase shift onreflected wave by each MIM unit upon a plane-wave incidence is calculatedrigorously through finite-element method. By carefully selecting unitgeometries and thereby introducing a phase gradient along the reflector plane,one can control propagation direction of reflected wave at each reflectorposition. The principle can be explained in terms of either ray-optics theoryor generalized Snell’s law. As a particular demonstration, we have designed inthe thesis a planar reflector consisting of eleven MIM units with a totaldevice width of 5.5 µm. FEM simulation showed that the reflector focuses lightat 1.2 µm wavelength with a nominal focus length of 6 µm. Such compactmetamaterial devices can be potentially fabricated on chips for sensing andtelecom applications, circumventing many inconveniences of includingconventional lenses in an optical system. / Metamaterial är artificiellt konstruerade material med vissa önskadeelektromagnetiska egenskaper, vilket kan utnyttjas för avancerad styrning avelektromagetisk vågutbredning. Metamaterialet som undersöks i denna rapportär baserad på en metall-isolator-metall (MIM) struktur, denna strukturkommer användas för konstruktion av en platt parabolisk reflektor. Vilket isin tur består av en serie MIM-strukturer med varierande storlekar. VarjeMIM-struktur är i princip en resonator med en storleksordning mycket mindreän våglängden och ger upphov till en magnetisk resonans. För att sedan uppnåfokus genomförs en rigorös beräkning av fasen med hjälp av finita elementmetoden, varpå man kan beräkna fas och amplitud från strukturen efterreflektion från en plan våg. Därefter kan man välja ut de geometrierna somkrävs för att styra riktningen av vågpropagationen med en fasgradient.Fysikaliska principerna kan förklaras genom stråloptik eller med hjälp avgeneraliserade Snell's lag. I denna rapport presenteras en design av en planreflektor med elva MIM strukturer där den totala storleken är 5.5 µm. FEMsimulering visade att reflektorn fokuserade ljuset vid våglängden 1.2 µm medden nominella fokallängden 6 µm. Dessa kompakta metamaterial kan eventuellttillverkas på chip för detektering och telekom, vilket löser problemen medatt inkludera konventionella linser i optiska system.
152

Absorbance Modulation Optical Lithography: Simulating the Performance of an Adaptable Absorbance Mask in the Near-Field.

Foulkes, John Edward January 2010 (has links)
The challenge for lithography today is to continue the reduction of feature size whilst facing severe theoretical and practical limitations. In 2006 Rajesh Menon and Hank Smith proposed a new lithography system named absorbance modulation optical lithography (AMOL) [Menon 2006]. AMOL proposed replacing the normal metal mask of a lithography system with an absorbance modulation layer (AML), made from a photochromic material. This allows, through the competition between two incident wavelengths, the creation of an adaptive absorbance mask. The AML allows intimate contact to an underlying resist and hence the optical near-field may be used to create sub-diffraction limited exposures. The aim of this thesis is to model AMOL and demonstrate the abilities and the limits of the system, particularly focusing on sub-diffraction limited imaging. This thesis describes the construction of a vector electromagnetic simulation to explore the idea and performance of AMOL, and an exploration of the ability of AMOL to propagate sub-diffraction limited images into a photoresist. A finite element method (FEM) model was constructed to simulate the formation of apertures in the AML and light transmission through the system. Three major areas of interest were explored in this thesis; the effect of polarisation on imaging, using a plasmonic reflector layers (PRLs) to improve the depth of focus (DOF), and introducing a superlens to AMOL. Investigations of polarisation demonstrated strong preference for a transverse magnetic (TM) polarised exposing wavelength for near-field exposures. Associated with polarisation, and supporting work with absorbance gratings, the importance of the material parameters of the AML in allowing sub-diffraction limited exposures was discussed. It was also noted that, in common with all near-field systems, the depth of focus (DOF) was poor, worse than comparable metal systems. This thesis also demonstrates that the introduction of a PRL can improve the DOF and process latitude for resist thicknesses up to 60 nm and, although performance was reduced when using a silver PRL, the substantial improvements to the DOF and process latitude make a PRL valuable for an AMOL system. This thesis also models the superlens to an AMOL system, which theoretically allows propagation of the image in the near-field. It is demonstrated that the superlens can project an AMOL image into an underlying resist, but that this image is degraded, especially for thick and non-ideal superlenses. The superlens does have a second useful effect, as it can act as a dichroic filter; decreasing the intensity ratio in the resist by a factor of ten, overcoming issues of resist sensitivity. The superlens can allow image projection and filtering with AMOL, however improvements to the available superlens materials or changes to the AML will be needed to avoid image deterioration. This thesis has developed the first full-vector model of an absorbance modulation optical lithography (AMOL) system. This model has been used to increase the understanding of the complex effects that go into the creation of sub-diffraction limited features with AMOL. In particular the model has been used to investigate polarisation, PRLs and superlenses in AMOL. This thesis demonstrates the ability of AMOL to create narrow apertures and sub-diffraction limited exposures in a photoresist, and describes the limitations of AMOL, including material parameters and DOF. AMOL is a new and interesting lithography technique; this thesis simulates the abilities and challenges of sub-diffraction lithography using an AMOL system.
153

Semiconductor surface plasmons : a route to terahertz waveguides and sensors

Stone, Edmund K. January 2012 (has links)
The terahertz regime has until recently been some what neglected due to the difficulty of generating and measuring terahertz radiation. Terahertz time domain spectroscopy has allowed for affordable and broadband probing of this frequency regime with phase sensitive measurements (chapter 3). This thesis aims to use this tool to add to the knowledge of the interactions between electromagnetic radiation and matter specifically in regard to plasmonics. This thesis covers several distinct phenomena related to plasmonics at terahertz frequencies. The generation of terahertz radiation from metal nanoparticles is first described in chapter 4. It is shown that the field strength of the plasmon appears to relate to the strength of the generated field. It is also shown that the power dependence of the generated terahertz radiation is not consistent with the optical rectification description of this phenomenon. An alternative explanation is developed which appears more consistent with the observations. A simple model for the power dependence is derived and compared to the experimental results. In chapter 5 the parameters that make good plasmonic materials are discussed. These parameters are used to assess the suitability of semiconductors for terahertz surface plasmon experiments. The Drude permittivity of InSb is measured here, leading to a discussion of terahertz particle plasmons in chapter 6. Finite element method modelling is used to show some merits of these over optical particle plasmons. This also includes a discussion of fabrication methods for arrays of these particles. Finally, chapter 7 is a discussion of so called spoof surface plasmons. This includes some experimental work at microwave frequencies and an in depth analysis of open ended square hole arrays supported by model matching method modelling. Perfect endoscope effects are discussed and compared to superlensing. The thesis ends with a brief conclusions chapter where some of the ideas presented are brought together.
154

Disordered Plamonics and Complex Metamaterials

Gongora, J. S. Totero 05 1900 (has links)
Complex systems are ensembles of interconnected elements where mutual interaction and an optimized amount of disorder produce advanced functionalities. These systems are abundant in our daily experience: typical examples are the brain, biological ecosystems, society, and finance. In the last century, researchers have investigated the fundamental properties of disordered systems, unveiling fascinating and counterintuitive dynamics. The main aim of this Dissertation is the study of a new platform of disorder-enhanced photonics systems, denoted as Complex Metamaterials. Due to its ultrafast time scale nanophotonics represents an ideal framework to investigate and harness complex dynamics. Starting from the theoretical modeling of disordered plasmonic systems, I discuss advanced real-life applications, including the generation of highly-resistant structural colors from porous metal surfaces and the realization of early-stage cancer detectors based on surface roughness and self-similarity. In addition to the effects of structural disorder on plasmonic systems I also investigate the complex emission dynamics from non-conventional nanolasers. Lasers represent the quintessential example of a complex photonic system due to the simultaneous presence of strong nonlinearities and multi-mode interactions. At the same time, the integration of nanolasers with silicon-based electronic circuitry represents one of the greatest technological challenges in the field of nanophotonics. By combining ab-initio simulations and analytical modeling, I characterize the nonlinear emission from three-dimensional plasmonic nanolasers known as SPASERs. My results show for the first time the occurrence of a spontaneous rotational emission in spherical SPASERs, which originates from the nonlinear interaction of several lasing modes. I further discuss how rotating nanolasers can be employed as a fundamental building block for integrated quantum simulators, random information sources, and brain-inspired photonics platforms. Leveraging the practical limitations of SPASERs, I also propose a novel concept of near-field nanolaser based on invisible anapole modes. Anapoles constitute a peculiar state of electromagnetic radiation with no far-field emission and they have been recently discovered in dielectric nanoparticles. By integrating anapole lasers in a silicon-compatible platform, I discuss several advanced applications such as spontaneously polarized nanolasers and ultrafast pulse generators on-chip.
155

Light-Matter Interactions in Various Semiconductor Systems

Zandbergen, Sander, Zandbergen, Sander January 2017 (has links)
Semiconductors provide an interesting platform for studying light-matter interactions due to their unique electrically conductive behavior which can be deliberately altered in useful ways with the controlled introduction of confinement and doping, which changes the electronic band structure. This area of research has led to many important fundamental scientific discoveries that have in turn spawned a plethora of applications in areas such as photonics, microscopy, single-photon sources, and metamaterials. Silicon is the prevalent semiconductor platform for microelectronics because of its cost and electrical properties, while III-V materials are optimal for optoelectronics because of the ability to engineer a direct bandgap and create versatile heterojunctions by growing binary, ternary, or quaternary compounds.
156

WAVEFRONT MANIPULATION WITH METASURFACES BASED ON NEW MATERIALS

Sajid Choudhury (6949022) 13 August 2019 (has links)
Metasurfaces, introduced as a compact 2D alternative of metamaterials, have developed into a vast field in recent times for light manipulation at an ultra-compact scale. Metasurface applications have found a place in the literature for compact alternatives to lens, holograms, polarizers, color filters. Plasmonic metasurfaces consisting of noble metals such as gold and silver provide light confinement on an unprecedented scale. Gold and silver grown conventionally on transparent substrates are polycrystalline, and exhibit losses and limit performance of the device. Moreover, these materials have a lower damage threshold and melting point. To circumvent the lower melting point and damage thresholds, new materials, and material growing techniques need to be researched. <br>In the first part of this work, a metasurface for color holography with an epitaxially grown silver thin film on a transparent substrate is shown. The demonstrated metasurface has been the first ever epitaxial silver metasurface that operated in the transmission mode. This plasmonic hologram has also been the thinnest metasurface hologram operating in transmission mode at the time of its reporting. The holographic image of all three basic color components of red, green, and blue has been demonstrated in the transmission mode. The control of color has been achieved by resonant sub-wavelength slits and the phase can be manipulated through altering slit orientation. This amplitude and phase control pave the way to applications of ultra-compact polychromatic plasmonic metasurfaces for advanced light manipulation. In the second part, we explore temperature rise due to the optical absorption in plasmonic structures. Titanium Nitride based metasurfaces structures are fabricated, that work in harsh environmental conditions and high temperature. A time domain thermo reflectance technique for rapid measurement of temperature is explored. Finally, a practical design prototype for thermo-photovoltaic (TPV) emitters using plasmonic metasurfaces is fabricated and characterized.<br><br>
157

Theoretical Studies of Optical Metamaterials / Etude théorique de métamériaux optiques de type fishnet

Yang, Jianji 14 September 2012 (has links)
Les métamatériaux sont des matériaux artificiels qui possèdent de nouvelles propriétés optiques grâce à leur structuration à l’échelle nanométrique. Un des principaux axes de recherche dans le domaine des métamatériaux s’intéresse aux indices de réfraction négatifs qui permettent la réalisation de lentilles « parfaites » ainsi que d’autres applications excitantes. Dans cette thèse, nous étudions théoriquement les propriétés de métamatériaux optiques de type « fishnet », en particulier l’origine de leur indice de réfraction négatif, ainsi que d’autres problèmes théoriques associés. La thèse peut être divisée en quatre parties.Dans la première partie, nous étudions la diffusion de la lumière à l’interface entre l’air et un métamatériau fishnet semi-infini. A l’aide d’une méthode numérique vectorielle, nous calculons les coefficients de diffusion de l’interface et nous démontrons que le transport de l’énergie est dû à un seul mode de Bloch, le mode fondamental du fishnet. Puis, en s’appuyant sur les coefficients de diffusion de l’interface et sur l’indice effectif de ce mode de Bloch, nous proposons un nouvel algorithme d’extraction des paramètres effectifs du métamatériau. Notre approche met l’accent sur le rôle clé joué par le mode de Bloch fondamental et elle permet d’extraire des paramètres effectifs plus stables que ceux obtenus avec les méthodes classiques basées sur le calcul de la réflexion et la transmission d’une couche de métamatériau d’épaisseur finie. Dans la deuxième partie, nous dérivons grâce à l’orthogonalité des modes de Bloch des expressions analytiques pour les coefficients de diffusion à l’interface entre deux milieux périodiques de périodes légèrement différentes. Nous montrons que les expressions analytiques permettent d’obtenir des résultats très précis pour différentes géométries allant de guides d’onde périodiques diélectriques à des métamatériaux métalliques. Ces expressions analytiques constituent donc un outil utile pour la conception et l’ingénierie de structures photoniques périodiques.Le mode de Bloch fondamental est central pour expliquer le phénomène de réfraction négative dans les métamatériaux fishnet. Dans la troisième partie, nous avons développé un modèle semi-analytique pour la constante de propagation complexe du mode de Bloch fondamental du fishnet. Le modèle est basé sur une analyse fine de la propagation et de la diffusion de la lumière à l’intérieur de la structure. Le modèle montre que l’origine des valeurs négatives de l’indice de réfraction sur une large bande spectrale peut être essentiellement comprise comme le résultat d’une résonance plasmonique dans les canaux transverses métal-insolant-métal du fishnet. La résonance plasmonique exalte la réponse « magnétique » du fishnet et les pertes associées à cette résonance peuvent être compensées en incluant du gain dans les couches diélectriques. En outre, le modèle simplifie l’ingénierie des paramètres géométriques des métamatériaux fishnet. C’est la résonance plasmonique dans des structures de type métal-isolant-métal (MIM) qui induit l’indice de réfraction négatif dans les métamatériaux de type fishnet. Dans la dernière partie, nous étudions le comportement asymptotique de nanorésonateurs MIM lorsque leur taille est réduite sous la limite de diffraction. En particulier, nous montrons que le facteur de qualité augmente d’un ordre de grandeur quand le volume du résonateur passe de (λ/2n)3 à (λ/50)3. Une étude complète est réalisée avec un modèle Fabry-Perot semi-analytique. Le modèle reste précis sur toute la gamme de tailles étudiées, même dans le régime quasi-statique où des effets de retard ne sont pas attendus. Ce résultat important et contre-intuitif indique que les résonances plasmoniques localisées dans des nanoparticules peuvent être comprises de la même manière que les résonances délocalisées dans des nanofils métalliques, c’est-à-dire comme des problèmes d’antennes basés sur des effets de retard. / Optical metamaterials are artificial media that exhibit new properties from structuring on the nanometric scale. One of the main researches in metamaterials investigates materials with negative refractive index, which can allow the development of perfect lens and other exciting potential applications. In this thesis, we theoretically study the properties of negative-index optical fishnet metamaterials, especially the origin of their negative-valued refractive index, and also associated theoretical problems. The thesis can be divided into 4 parts. In the first part we study the light scattering at an interface between air and a semi-infinite fishnet metamaterial. With a fully-vectorial numerical method, we calculate the scattering coefficients of the interface and find that the energy transport inside the fishnet is due to a single Bloch mode, the fundamental one. Based on the single-interface scattering coefficients and the effective index of this Bloch mode we propose a new algorithm for retrieving effective optical parameters of the metamaterial. The approach emphasizes the key role played by the fundamental Bloch mode and provides retrieved parameters that are more accurate or stable than those obtained by classical methods based only on light reflection and transmission through finite-thickness metamaterial slabs. Due to the importance of the fundamental Bloch mode in the light transport in metamaterials, in the second part, based on the Bloch mode orthogonality we derive closed-form expressions for the scattering coefficients at an interface between two periodic media with slightly different geometrical parameters, which is a computationally demanding electromagnetic problem. We show that the analytical expressions are very accurate for various geometries, including dielectric waveguides and metallic metamaterials. Thus they can be useful for designing and engineering stacks of periodic structures. As shown in the first part, the fundamental Bloch mode is central to explain the negative refraction phenomenon in fishnet metamaterials. In the third part, we derive an accurate semi-analytical model for the complex propagation constant of the fishnet fundamental Bloch mode. This is achieved by analyzing light propagation and scattering inside the fishnet. The model shows that the origin of broad-band negative index of fishnets can be mainly understood as a plasmon resonance in the transversal metal-insulator-metal (MIM) channels. The plasmon resonance enhances the ‘magnetic’ response of fishnet and the losses associated to this resonance can be compensated by including gain in the dielectric layers of the fishnet. Furthermore, the model allows an easy and precise geometrical tailoring of fishnet metamaterials. As shown in the third part, it is the plasmon resonance in metal-insulator-metal (MIM) structures that induces the negative index of fishnet metamaterials. In the last part, we study the asymptotic behavior of 3D MIM nanoresonators, as the resonator size is shrunk below the diffraction limit. In particular we show that the quality factor increases from 10 to 100 when the resonator volume is scaled down from (λ/2n)3 to (λ/50)3. We provide a comprehensive study with a semi-analytical Fabry-Perot model. The model remains accurate over the whole size scale even in the quasi-static regime for which retardation effects are not expected. This important and counterintuitive result indicates that both localized plasmon resonances in nanoparticles and delocalized resonance in elongated plasmonic nanowires can be possibly understood as a wave-retardation based antenna problem.
158

Nanocompósitos metálicos para aplicações em processos fotoquímicos intensificados: efeitos de plasmon em fotocatálise / Applications of metallic nanocomposites in enhanced photochemical processes: plasmon effects in photocatalysis

Michele Lemos de Souza 16 October 2013 (has links)
Na presente tese de doutorado, foram exploradas possibilidades para a aplicação de nanopartículas (NPs) metálicas plasmônicas (fenômenos ópticos intensificados) em processos de fotocatálise e em células solares de Si. Estratégias foram exploradas para a imobilização das NPs plasmônicas em TiO2 Degussa P25 (mistura anatase:rutila 4:1) para captação da radiação eletromagnética UV/visível e somente visível em processos fotocatalíticos; e de NPs de Cu em células solares de Si para processos de fotoconversão, contribuindo com a compreensão dos fenômenos de intensificação local de energia mediados pelas NPs, o qual ainda está em debate no cenário científico. Compósitos de P25+NPs Ag de diferentes arquiteturas (fios, esferas e fotorreduzidas), de P25+NPs Ag recoberta com uma camada de SiO2 e de P25+NPs Au foram desenvolvidos. A caracterização dos materiais foi realizada por meio de técnicas de espectroscopia UV-VIS, IR e Raman, área superficial, DRX e de microscopia eletrônica de varredura e de transmissão. Os efeitos das propriedades plasmônicas dessas nanopartículas foram avaliados na eficiência de fotodegradação de três corantes (alizarina vermelha S, vermelho do Congo e fenossafranina) e de fenol. Todos os materiais plasmônicos apresentaram bom desempenho catalítico, aumentando consideravelmente a velocidade e a porcentagem de fotodegradação sob radiação UV/visível, mas principalmente sob radiação visível (onde a fotodegradação catalisada por P25 é limitada). A comparação entre a fotodegradação de fenol pelo compósito P25+NPs Ag esferas e P25+NPs Ag@SiO2 permitiu concluir que a transferência de carga não é o fenômeno que governa o aumento da eficiência catalítica em comparação à fotodegradação catalisada por P25. O fenômeno de intensificação de radiação eletromagnética localizada por meio de LSPR foi observado também em células solares de silício de primeira geração (wafer) contendo NPs de Cu imobilizadas em sua superfície. Aumentos na densidade de corrente de curto-circuito de cerca de 8 % na região acima de 750 nm e de até 16% na potência destas células solares foram observados. / In this thesis, we explored possibilities for the application of metallic plasmonic nanoparticles (NPs) resulting in intensified optical phenomena processes in photocatalysis and Si solar cell. Different strategies were explored for the immobilization of plasmonic NPs on TiO2 Degussa P25 (mixture anatase: rutile 4:1) to capture electromagnetic radiation UV / visible and visible only in photocatalytic processes; and Cu NPs in Si solar cell for photoconversion processes, contributing with the understanding of the phenomena related to the localized ressonance energy mediated by NPs, which is still under debate in the scientific field. Composites of P25+Ag NPs of various architectures (wires, spheres and photoreduced) P25+Ag NPs coated with a layer of SiO2 and P25+Au NPs were developed. The material characterization was performed by means of UV-VIS, IR and Raman spectroscopies, BET surface area, XRD and scanning and transmission electron microscopy. The effects of plasmonic nanoparticles properties were evaluated in the photodegradation efficiency of three textile dyes (Alizarin Red S, Congo red and phenosafranine) and phenol. All plasmonic materials showed good catalytic performance, greatly increasing the kinetic and percentage of photodegradation under UV/visible, but mostly under visible light (where the photodegradation catalyzed by P25 is limited). The comparison between the photodegradation of phenol by P25+Ag sphere NPs and P25+Ag@SiO2 composite showed that the charge transfer is not the phenomenon that governs the increase in catalytic efficiency when compared to the photodegradation catalyzed by P25. The phenomenon of near field intensification through LSPR was also observed in first generation Si solar cells (wafer) containing Cu NPs immobilized on its surface. Increases in the short-circuit current density of about 8% in the region above 750 nm and up to 16% in the power of these solar cells were observed.
159

Plasmonic enhancement of chiral light-matter interactions

Alizadeh, Mohammadhossein 13 February 2016 (has links)
Plasmonic nanostructures provide unique opportunities to improve the detection limits of chiroptical spectroscopies by enhancing chiral light-matter interactions. The most significant of such interaction occur in ultraviolet (UV) range of the electromagnetic spectrum that remains challenging to access by conventional localized plasmon resonance based sensors. Although Surface Plasmon Polaritons (SPPs) on noble metal films can sustain resonances in the desired spectral range, their transverse magnetic nature has been an obstacle for enhancing chiroptical effects. We demonstrate, both analytically and numerically, that SPPs excited by near-field sources can exhibit rich and non-trivial chiral characteristics. In particular, we show that the excitation of SPPs by a chiral source not only results in a locally enhanced optical chirality but also achieves manifold enhancement of net optical chirality. Our finding that SPPs facilitate a plasmonic enhancement of optical chirality in the UV part of the spectrum is of great interest in chiral bio-sensing. Next we focus on the new concepts of transverse spin angular momentum and Belinfante spin momentum of evanescent waves, which have recently drawn considerable attention. We investigate these novel physical properties of electromagnetic fields in the context of chiral surface plasmon polaritons. We demonstrate, both analytically and numerically, that locally excited surface plasmon polaritons possess transverse Spin angular momentum and Belinfante momentum with rich and non-trivial characteristics. We also show that the transverse spin angular momentum of locally excited surface plasmon polaritons leads to the emergence of transverse chiral forces in opposite directions for chiral objects of different handedness. The magnitude of such a transverse force is comparable to the optical gradient force and scattering forces. This finding may pave the way for realization of optical separation of chiral biomolecules
160

Contribution à l'étude du transport d'énergie dans la matière condensée : phonons, électrons et photons / Contribution to the study of energy transport in condensed matter : phonons, electrons and photons

Latour, Benoit 04 December 2015 (has links)
Nous avons étudié durant cette thèse les transferts de chaleur mettant en jeu différents types de porteur d'énergie - phonons, électrons et photons - dans des matériaux nanostructurés. A ces échelles, les lois régissant les phénomènes physiques sont différentes des lois macroscopiques. Il est donc nécessaire de développer de nouveaux outils pour étudier ces nouveaux mécanismes. Dans une première partie, nous nous sommes intéressés aux propriétés ondulatoires des phonons thermiques. Nous avons ainsi développé une théorie pour quantifier leur cohérence temporelle et spatiale. Dans une seconde partie, nous nous sommes tournés vers la thermo-plasmonique, c'est-à-dire vers le chauffage par absorption de lumière d'un métal et la redistribution de l'énergie au réseau cristallin par interactions électron/phonon. Dans une dernière partie, nous avons porté notre étude sur la possibilité d'incluer les effets quantiques dans la Dynamique Moléculaire, ouvrant ainsi l'accès aux propriétés thermiques de nanomatériaux aux basses températures. / Energy transport at the nanoscale involves different types of carriers - phonon, electron and photon. Their spatial confinement in nanostructured materials implies the invalidation of the macroscopic laws of heat transfer. Therefore, new mechanisms arise and lead to novel thermal properties. This manuscript is devoted to the study of phonon transport in nanomaterials as well as the dissipation processes involving photon/electron and electron/phonon interactions. It is divided in three independent parts. We have first investigated the wave properties of thermal phonons. We have developed a theory to quantitatively assess the coherence of these carriers. Then, we have adressed the coupling between plasmonics and phonon transport in metallic materials. The objective is to quantify how the heat generated by the absorption of an electromagnetic energy will impact the surrounding medium. In the last part, we have included the Bose-Einstein quantum statistics in Molecular Dynamics simulations in order to compute thermal properties of nanomaterials at low temperatures.

Page generated in 0.0433 seconds