411 |
Studies of equivalent fuzzy subgroups of finite abelian p-Groups of rank two and their subgroup latticesNgcibi, Sakhile Leonard January 2006 (has links)
We determine the number and nature of distinct equivalence classes of fuzzy subgroups of finite Abelian p-group G of rank two under a natural equivalence relation on fuzzy subgroups. Our discussions embrace the necessary theory from groups with special emphasis on finite p-groups as a step towards the classification of crisp subgroups as well as maximal chains of subgroups. Unique naming of subgroup generators as discussed in this work facilitates counting of subgroups and chains of subgroups from subgroup lattices of the groups. We cover aspects of fuzzy theory including fuzzy (homo-) isomorphism together with operations on fuzzy subgroups. The equivalence characterization as discussed here is finer than isomorphism. We introduce the theory of keychains with a view towards the enumeration of maximal chains as well as fuzzy subgroups under the equivalence relation mentioned above. We discuss a strategy to develop subgroup lattices of the groups used in the discussion, and give examples for specific cases of prime p and positive integers n,m. We derive formulas for both the number of maximal chains as well as the number of distinct equivalence classes of fuzzy subgroups. The results are in the form of polynomials in p (known in the literature as Hall polynomials) with combinatorial coefficients. Finally we give a brief investigation of the results from a graph-theoretic point of view. We view the subgroup lattices of these groups as simple, connected, symmetric graphs.
|
412 |
Polinômios núcleo na reta real e no círculo unitário / Kernel polynomials on the real line and the unit circleFélix, Heron Martins, 1985- 26 August 2018 (has links)
Orientador: Alagacone Sri Ranga / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T19:37:15Z (GMT). No. of bitstreams: 1
Felix_HeronMartins_D.pdf: 783541 bytes, checksum: cea4459f391a5da7e61d9cff02244ec0 (MD5)
Previous issue date: 2015 / Resumo: O objetivo do presente trabalho se divide em duas partes: na primeira, estudaremos uma regra de quadratura interpolatória sobre os zeros de polinômios núcleo obtidos a partir de uma sequência de polinômios L-ortogonais, oferecendo técnicas numéricas para a obtenção dos nós e pesos dessa regra de quadratura. Na segunda parte, forneceremos uma caracterização dos polinômios de Szegö em termos de duas sequências reais, dentre as quais uma é sequência encadeada. Tal caracterização afeta a relação entre os polinômios núcleo e os polinômios ortogonais no círculo unitário aos quais estes estão associados / Abstract: The main goal of the present work falls under two parts: firstly, we'll study a quadrature rule over the zeros of the kernel polynomials obtained from a sequence of L-orthogonal polynomials, offering numerical techniques for evaluating the nodes and weights of such quadrature rule. Secondly, we'll give a characterization for Szegö polynomials in terms of two real sequences, in which one is a chained sequence. Such characterization influences the connection between the kernel polynomials and the related orthogonal polynomials over the unit circle / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
413 |
Polynomial equations and solvability: A historical perspectiveRiggs, Laurie Jan 01 January 1996 (has links)
No description available.
|
414 |
Affine varieties, Groebner basis, and applicationsByun, Eui Won James 01 January 2000 (has links)
No description available.
|
415 |
The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examplesBeyronneau, Robert Lewis 01 January 2005 (has links)
This project centers around finding specific examples of quintic polynomials that were and were not solvable. This helped to devise a method for finding examples of solvable and unsolvable quintics.
|
416 |
On quantum Invariants : homological model for the coloured jones polynomials and applications of quantum sl(2/1). / Sur des invariants quantiques : un modèle homologique pour les polynômes de Jones coloriés et applications du sl(2|1) quantiquePalmer-Anghel, Cristina Ana-Maria 29 June 2018 (has links)
Le domaine de cette thèse est dans la topologie quantique et son sujet est axé sur l'interaction en- tre la topologie de basse dimension et la théorie des représentations. Ma recherche concerne as- pects différents des invariants quantiques pour les entrelacs et les $3$-variétés, visant a créer des ponts entre les façons algébriques et topologiques de les définir. D'une part, une description al- gébrique et combinatoire pour un concept mathématique, crée l'opportunité de développer des outils de calcul. D'un autre côté, les descriptions topologiques et géométriques ouvrent des per- spectives vers des constructions qui mènent a une compréhension plus profonde et a des théories plus subtiles.Les polynômes de Jones coloriés sont des invariants quantiques d'entrelacs contruits en partant de la théorie des représentations de $U_q(sl(2))$. Le premier invariant de cette séquence est le polynôme de Jones original, qui peut-être caractérisé aussi par la théorie de l'écheveau. Bigelow et Lawrence ont décrit un modèle homologique pour le polynôme de Jones. Ils ont utilisé la représentation de Lawrence, qui est une représentation de groupe de tresses sur l'homologie des revêtements d'espaces de configurations dans le disque pointé, et la nature de l'écheveau de l'in- variant pour la preuve. Contrairement a ce cas, les autres polynômes de Jones coloriés ne peu- vent pas être définis facilement par la théorie de l'écheveau.Dans la premiere partie de cette thèse, nous donnons un modèle topologique pour les polynômes de Jones coloriés. Nous utilisons leur définition comme invariants quantiques et construisons des correspondants topologiques pas à pas. Nous observons d'abord que l'invariant peut être codé par des espaces dits de plus haut poids, puis utiliser un résultat de Kohno, qui identifie ces espaces avec des représentations de Lawrence. Nous prouvons que les polynômes de Jones coloriés peu- vent être obtenus comme une forme d'intersection géométrique gradués entre des classes d'ho- mologie dans certaines couvertures des espaces de configuration de points dans le disque pointé.Les deuxième et troisième parties sont orientées vers les applications de la théorie de la représen- tation des super groupes quantiques aux invariants quantiques. La deuxième partie est une col- laboration avec N. Geer, ou nous construisons des invariants quantiques pour $3$-variétés a par- tir des représentations de $U_q(sl(2|1))$. Turaev-Viro ont défini une méthode de type somme d'état qui donne des invariants de $3$-variétés a partir de $ U_q(sl (2)) $. Pour les super groupes quantiques, cela entraîne l'annulation des invariants. Plus tard, Geer-Pa- tureau-Turaev ont défini une méthode modifiée qui commence par une catégorie avec de bonnes propriétés et conduit à des invariants non-nulls. Notre stratégie consiste a construire une caté- gorie qui peut-être utilisée dans cette méthode modifiée. La troisième partie concerne l'étude des algèbre centralisatrices pour les représentations de $ U_q (sl (2 | 1)) $. Wagner et Marin conjec- turaient les dimensions d'une suite d'algèbres centralisatrices correspondant à la représentation simple standard de $U_q(sl(2|1))$. Nous prouvons cette conjecture en utilisant des techniques combinatoires. / The domain of this thesis is within quantum topology and its subject is focused towards the interaction between low dimensional topology and representation theory. My research con- cerns different aspects of quantum invariants for links and $3$-manifolds, aiming to create bridges between algebraic and topological ways of defining them. On one hand, an algebraic and combinatorial description for a mathematical concept, creates the opportunity to develop computational tools. On the other hand, topological and geometrical descriptions open per- spectives towards constructions that lead to a deeper understanding and more subtle theories.The coloured Jones polynomials are quantum link invariants constructed from the representa- tion theory of $U_q(sl(2))$. The first invariant of this sequence is the original Jones polyno- mial, which can be characterised also by skein theory. Bigelow and Lawrence described a homological model for the Jones polynomial. They used the Lawrence representation, which is a braid group representation on the homology of coverings of configuration spaces in the punctured disk, and the skein nature of the invariant for the proof. In contrast to this case, the other coloured Jones polynomials cannot be defined in an easy manner by skein theory.In the first part of this thesis, we give a topological model for the coloured Jones polynomi- als. We use their definition as quantum invariants and construct step by step topological cor- respondents. We first observe that the invariant can be encoded through so-called highest weight spaces and then use a result by Kohno, which identifies these spaces with Lawrence representations. We prove that the coloured Jones polynomials can be obtained as graded geometric intersection pairings between homology classes in certain coverings of the config- uration spaces of points in the punctured disk.The second and third parts are oriented towards applications of representation theory of super quantum groups to quantum invariants.The second part is a collaboration with N. Geer, where we construct quantum invariants for$3$-manifolds from representations of $U_q(sl(2|1))$. Turaev-Viro defined a state-sum type method that gives $3$-manifold invariants from $U_q(sl(2))$. For super quantum groups, this leads to vanishing invariants. Later on, Geer-Patureau-Turaev defined a modified method which starts with a category with good properties and leads to non-vanishing invariants. Our strategy is to construct a category that fits into the input of this modified method.The third part concerns the study of centralizer algebras for representations of $U_q(sl(2|1))$. Wagner and Marin conjectured the dimensions of a sequence of centralizer algebras corre- sponding to the simple standard $U_q(sl(2|1))$-representation. We prove this conjecture us- ing combinatorial techniques.
|
417 |
Robust time spectral methods for solving fractional differential equations in financeBambe Moutsinga, Claude Rodrigue January 2021 (has links)
In this work, we construct numerical methods to solve a wide range of problems in
finance. This includes the valuation under affine jump diffusion processes, chaotic and
hyperchaotic systems, and pricing fractional cryptocurrency models. These problems
are of extreme importance in the area of finance. With today’s rapid economic growth
one has to get a reliable method to solve chaotic problems which are found in economic
systems while allowing synchronization. Moreover, the internet of things is changing
the appearance of money. In the last decade, a new form of financial assets known as
cryptocurrencies or cryptoassets have emerged. These assets rely on a decentralized
distributed ledger called the blockchain where transactions are settled in real time.
Their transparency and simplicity have attracted the main stream economy players,
i.e, banks, financial institutions and governments to name these only. Therefore it is
very important to propose new mathematical models that help to understand their
dynamics. In this thesis we propose a model based on fractional differential equations.
Modeling these problems in most cases leads to solving systems of nonlinear ordinary
or fractional differential equations. These equations are known for their stiffness,
i.e., very sensitive to initial conditions generating chaos and of multiple fractional order.
For these reason we design numerical methods involving Chebyshev polynomials.
The work is done from the frequency space rather than the physical space as most
spectral methods do.
The method is tested for valuing assets under jump diffusion processes, chaotic
and hyperchaotic finance systems, and also adapted for asset price valuation under
fraction Cryptocurrency. In all cases the methods prove to be very accurate, reliable and practically easy for the financial manager. / Thesis (PhD)--University of Pretoria, 2021. / Mathematics and Applied Mathematics / PhD / Unrestricted
|
418 |
Zeros of a Two-Parameter Family of Harmonic TrinomialsWork, David 06 December 2021 (has links)
This thesis studies complex harmonic polynomials of the form $f(z) = az^n + b\bar{z}^k+z$ where $n, k \in \mathbb{Z}$ with $n > k$ and $a, b > 0$. We show that the sum of the orders of the zeros of such functions is $n$ and investigate the locations of the zeros, including whether the zeros are in the sense-preserving or sense-reversing region and a set of conditions under which zeros have the same modulus. We also show that the number of zeros ranges from $n$ to $n+2k+2$ as long as certain criteria are met.
|
419 |
Delta conjectures and Theta refinementsVanden Wyngaerd, Anna 19 November 2020 (has links) (PDF)
Dans les années 90 Garsia et Haiman ont introduit le $mathfrak S_n$-module des emph{harmoniques diagonales}, c'est à dire les co-invariants de l'action diagonale du groupe symétrique $mathfrak S_n$ sur les polynômes à deux ensembles de $n$ variables. Ils ont proposé la conjecture selon laquelle le caractère de Frobenius bi-gradué de leur module est $abla e_n$, où $abla$ est un opérateur sur l'anneau des fonction symétriques. En 2002, Haiman prouva cette conjecture. Quelques années plus tard, Haglund, Haiman, Loehr, Remmel et Ulyanov proposèrent une formule combinatoire pour la fonction symétrique $abla e_n$, qu'ils appelèrent la emph{conjecture shuffle}. Les objets combinatoires qui y figurent sont les chemins de Dyck étiquetés. Un raffinement emph{compositionnel} de cette formule fut ensuite proposé par Haglund, Morse et Zabrocki. C'était ce raffinement que Carlsson et Mellit réussirent enfin à montrer en 2018, établissant ainsi le emph{théorème shuffle}. La emph{conjecture Delta} est une paire de formules combinatoires pour la fonction symétrique $Delta'_{e_{n-k-1}}e_n$ en termes des chemins de Dyck étiquetés et décorés, qui généralise le théorème shuffle. Elle fut proposée par Hagund, Remmel et Wilson en 2015 est reste aujourd'hui un problème ouvert. Dans la même publication les auteurs proposèrent une formule pour $Delta_{h_m}Delta'_{e_{n-k-1}}e_n$ en termes de chemins de Dyck partiellement étiquetés et décorés, appelé emph{conjecture Delta généralisée}. Nous proposons un raffinement compositionnel de la conjecture Delta en utilisant des nouveaux opérateurs de fonctions symétriques: les opérateurs Theta. Nous généralisons les arguments combinatoires que Carlsson et Mellit utilisèrent pour la preuve du théorème shuffle au contexte de la conjecture Delta. Nous prouvons également la formule pour $Delta_{h_m} abla e_n$ en termes de chemins de Dyck partiellement étiqueté, c'est à dire le cas $k=0$ de la conjecture Delta généralisée. En 2006, Can et Loehr proposèrent la emph{conjecture carré}, exprimant la fonction symétrique $(-1)^{n-1}abla p_n$ en termes de chemins carrés étiquetés. Sergel montra que le théorème shuffle implique la conjecture carré. Nous généralisons le résultat de Sergel en montrant que une des formules de la conjecture Delta généralisée implique une formule combinatoire de la fonction $(-1)^{n-k}Delta_{h_m}Theta_kp_{n-k}$ e / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
420 |
On Polynomials in Mal’cev Algebras / O polinomima u algebrama MaljcevaMudrinski Nebojša 30 September 2009 (has links)
<p>We establish several properties of higher commutators, which were<br />introduced by A. Bulatov, in congruence permutable varieties. We use these<br />commutators to prove that the clone of polynomial functions of a finite Mal’cev<br />algebra whose congruence lattice is of height at most 2, can be described by a<br />finite set of relations. For a finite nilpotent algebra of finite type that is a product<br />of algebras of prime power order and generates congruence modular variety, we<br />are able to show that the property of affine completeness is decidable. Moreover,<br />polynomial equivalence problem has polynomial complexity in the length of the<br />input polynomials.</p> / <p>Ustanovljavamo osobine viˇsih komutatora, koje je uveo A. Bulatov,<br />u kongruencijki permutabilnim varijetetima. Te komutatore koristimo da bi<br />dokazali da se klon polinomijalnih funkcija konaˇcne Maljcevljeve algebre ˇcija je<br />mreˇza kongruencija visine najviˇse dva moˇze opisati konaˇcnim skupom relacija. Za<br />konaˇcne nilpotentne algebre konaˇcnog tipa koje su proizvod algebri koje imaju red<br />stepena prostog broja i koje generiˇsu kongruencijki modularan varijetet pokazu-jemo da je osobina afine kompletnosti odluˇciva. Takod¯e, pokazujemo za istu klasu<br />da problem polinomijalne ekvivalencije ima polinomnu sloˇzenost u zavisnosti od<br />duˇzine unetih polinomijalnih terma.</p>
|
Page generated in 0.033 seconds