• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 414
  • 178
  • 47
  • 40
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • 8
  • 7
  • 7
  • Tagged with
  • 868
  • 158
  • 156
  • 125
  • 118
  • 113
  • 80
  • 65
  • 63
  • 54
  • 53
  • 48
  • 47
  • 46
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

A study of two variables Legendre polynomials

Khan, Mumtaz Ahmad, Singh, Mukesh Pal 25 September 2017 (has links)
The present paper deals with a study of a two variable polynomial Pn(x) analogues to the Legendre polynomial Pn(x). The paper contains differential recurrence relations, a partial differential equation, double generating functions, double and triple hypergeometric forms, a special property and a bilinear double generating function for the newly defined polynomials Pn,k(x, y).
402

Identidades polinomiais para a algebra das matrizes de ordem dois sobre corpos de caracteristica zero / Polynomial identities of the matrix algebra of order two over a field of characteristic zero

Freitas, Jose Antonio de Oliveira 20 February 2006 (has links)
Orientador: Plamen Emilov Kochloukov / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-05T18:52:56Z (GMT). No. of bitstreams: 1 Freitas_JoseAntoniodeOliveira_M.pdf: 927005 bytes, checksum: 043e51c76a61b7dabf36996af12d1400 (MD5) Previous issue date: 2006 / Resumo: Esta dissertação introduz as primeiras noções para o estudo da teoria de álgebras que satisfazem identidades polinomiais (chamadas PI - álgebras), bem como alguns resultados importantes. Expomos alguns fatos e resultados fundamentais sobre representações dos grupos simétricos e geral linear. Estes resultados serão posteriormente utilizados para estudar as identidades polinomiais da álgebra das matrizes de ordem dois sobre um corpo de característica 0. Apresentamos os métodos desenvolvidos por Razmyslov, que permitem descrever uma base para as identidades da álgebra associativa das matrizes 2x2, bem como para a álgebra de Lie das matrizes 2x2 de traço zero. Em seguida expomos o trabalho de Drensky, no qual é utilizado teoria de representações para obter uma base minimal para esta álgebra importante / Abstract: This work introduces the first notions for the study of the theory of algebras that satisfy polynomial identities (so called PI-algebras), as well as some important results. We discuss the fundamental facts and results about representations of the symmetric and the general linear groups. These results are used later on to study the polynomial identities of the 2x2 matrix algebra over a field of characteristic 0. We present the methods developed by Razmyslov in order to describe a basis for the identities for the associative algebra of the 2x2 matrices as well as for the Lie algebra of the 2x2 traceless matrices. Furthermore we expose the work of Drensky where he applies the representation theory for obtaining a minimal basis for this important algebra / Mestrado / Algebra / Mestre em Matemática
403

Uma introdução a teoria das partições / An introduction to the theory of partitions

Andrade, Cecília Pereira de, 1983- 14 August 2018 (has links)
Orientador: Jose Plinio de Oliveira Santos / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-14T04:49:07Z (GMT). No. of bitstreams: 1 Andrade_CeciliaPereirade_M.pdf: 439122 bytes, checksum: 1ebde938fe2e698dd7e6b405a6324c2c (MD5) Previous issue date: 2009 / Resumo: Este trabalho está dividido em duas partes. A primeira refere-se a partições, constando dos principais resultados, algumas representações das partições e uma importante ferramenta que são as funções geradoras. A segunda parte apresenta os polinômios gaussianos e alguns teoremas importantes, bem como as identidades de Rogers-Ramanujan. / Abstract: This work is divided into two parts. The rest refers to partitions, consisting of the main results, some representations of the partitions and an important tool that are the generating functions. The second part presents the Gaussian polynomials and some important theorems as well as the identities of Rogers-Ramanujan. / Mestrado / Combinatoria / Mestre em Matemática Aplicada
404

Funções holomorfas fracamente continuas em espaços de Banach / Weakly continuous holomorphic functions on Banach spaces

Berrios Yana, Sonia Sarita 03 September 2007 (has links)
Orientador: Jorge Tulio Mujica Ascui / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-08T04:55:28Z (GMT). No. of bitstreams: 1 BerriosYana_SoniaSarita_D.pdf: 951582 bytes, checksum: eb4f2207b2bb049f8b5c1e264d96ec85 (MD5) Previous issue date: 2007 / Resumo: Sejam E e F espaços de Banach complexos, e seja U um aberto em E. Neste trabalho estudamos os subespaços Hwu(U; F), Hw(U; F), Hwsc(U; F) e HwC(U; F) de H(U; F). Mais especificamente, se U é aberto equilibrado caracterizamos funções destes subespaços em termos de condições de equicontinuidade dos polinômios da série de Taylor. Estudamos sob que condições estes subespaços coincidem, estendendo assim os resultados dados em Aron, Herves e Valdivia [2] ao caso de abertos equilibrados. Se E tem uma base contrátil e incondicional, e U é uma bola aberta em E mostramos que cada função holomorfa f : U 'seta' F que é limitada nos conjuntos fracamente compactos U-limitados é limitada nos conjuntos U-limitados. Consequentemente, Hw(U; F) = Hwu(U; F) / Abstract: Let E and F be complex Banach spaces, and let U be an open set in E. In this work we study the subspaces Hwu(U; F), Hw(U; F), Hwsc(U; F) and HwC(U; F) of H(U; F). More specifically, if U is a balanced open set we characterize functions of these subespaces in terms of equicontinuity conditions of the polynomials in the Taylor series. We study under which conditions these subspaces coincide, and then we extend the results given in Aron, Herves and Valdivia [2] to the case of balanced open sets. If E has a shrinking and unconditional basis, and U is an open ball in E we show that each holomorphic function f : U 'seta' F that is bounded on weakly compact U-bounded sets is bounded on U-bounded sets. Consequently, Hw(U; F) = Hwu(U; F) / Doutorado / Doutor em Matemática
405

Operadores de extensão de aplicações multilineares ou polinomios homogeneos / Extension operators of multilinear mappings or homogeneous polynomials

Kuo, Po Ling 14 September 2007 (has links)
Orientador: Jorge Tulio Mujica Ascui / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-08T22:02:35Z (GMT). No. of bitstreams: 1 Kuo_PoLing_D.pdf: 378648 bytes, checksum: 3724407371cc36985fd2257b4bc5fe8c (MD5) Previous issue date: 2007 / Resumo: Este trabalho está dedicado ao estudo dos operadores de Nicodemi, introduzidos em [7] a partir de uma idéia em [12]. Os operadores de Nicodemi levam aplicações multilineares (resp. polinômios homogêneos) de um espaço de Banach E em aplicações multilineares (resp. polinômios homogêneos) em um espaço de Banach F. O nosso primeiro objetivo é encontrar condições para que os operadores de Nicodemi preservem certos tipos de aplicações multilineares (resp. polinômios homogêneos). Em particular estudamos a preservação de aplicações multilineares simétricas, de tipo finito, nucleares, compactas ou fracamente compactas. O segundo objetivo é encontrar condições para que, se os espaços duais E¿ e F¿ são isomorfos, os espaços de aplicações multilineares (resp. polinômios homogêneos) em E e F sejam isomorfos também. Estudamos também o problema correspondente para os espaços de aplicações multilineares (resp. polinômios homogêneos) de um determinado tipo, como por exemplo, de tipo finito, nuclear, compacto ou fracamente compacto / Abstract: This work is devoted to studying the Nicodemi operators, introduced in [7], following an idea in [12]. The Nicodemi operators map multilinear mappings (resp. homogeneous polynomials) on a Banach spaces E into multilinear mappings (resp. homogeneous polynomials) on a Banach spaces F. Our first objective is to find conditions under which the Nicodemi operators preserve certain types of multilinear mappings (resp. homogeneous polynomials). In particular we examine the preservation of the multilinear mappings that are symmetric, of finite type, nuclear, compact or weakly compact. Our second objective is tofind conditions under which, whenever the dual spaces E¿ and F¿ are isomorphic, the spaces of multilinear mappings (resp. homogeneous polynomials) on E and F are isomorphic as well. We also examine the corresponding problem for the spaces of multilinear mappings (resp. homogeneous polynomials) of a certain type, for instance of finite, nuclear, compact or weakly compact type / Doutorado / Analise Funcional / Doutor em Matemática
406

Polinômios e funções inteiras com zeros reais / Polynomials and entire functions with real zeros

Lucas, Fábio Rodrigues 16 August 2018 (has links)
Orientador: Dimitar Kolev Dimitrov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-16T01:35:19Z (GMT). No. of bitstreams: 1 Lucas_FabioRodrigues_D.pdf: 837192 bytes, checksum: 1cec40a06f620203e95cbca6134fd41a (MD5) Previous issue date: 2010 / Resumo: Nesta tese abordamos alguns problemas relacionados com zeros de polinômios e de funções inteiras. Estabelecemos fórmulas explícitas para os polinômios da sequência de Sturm, gerada por um polinômio e pela sua derivada. Como consequência, obtemos condições necessárias e suficientes para que um polinômio sem zeros múltiplos tenha somente zeros reais. Provamos também a veracidade de algumas condições necessárias para a hipótese de Riemann, estendendo desta forma um resultado anterior de Csordas, Norfolk e Varga que estabelecem uma conjectura de Pólya / Abstract: In this thesis we approach problems concerning zeros of polynomials and entire functions. We establish explicit formula for the polynomial in the Sturm sequence, generated by a polynomial and its derivative. As a consequence, we obtain necessary and sufficient conditions for a polynomial without multiple zeros to possess only real zeros. We prove also the truth of certain necessary conditions for the Riemann Hypothesis, thus extending a previous result of Csordas, Norfolk and Varga who established a conjecture of Pôlya / Doutorado / Analise Aplicada / Doutor em Matemática Aplicada
407

Divisão de distribuições temperadas por polinômios. / Division of tempered distributions by polynomials.

Mariana Smit Vega Garcia 29 August 2008 (has links)
Este trabalho apresenta uma demonstração completa do Teorema de L. Hörmander sobre a divisão de distribuições (temperadas) por polinômios. O caso n=1 é apresentado detalhadamente e serve como motivação para as técnicas utilizadas no caso geral. Todos os pré-requisitos para a demonstração de Hörmander (os Teoremas de Seidenberg-Tarski, de Puiseux e da Extensão de Whitney) são discutidos com detalhes. Como conseqüência do Teorema, segue que todo operador diferencial parcial linear com coeficientes constantes não nulo admite solução fundamental temperada. / This dissertation presents a thorough proof of L. Hörmander\'s theorem on the division of (tempered) distributions by polynomials. The case n=1 is discussed in detail and serves as a motivation for the techniques that are utilised in the general case. All the prerequisites for Hörmander\'s proof (the Theorems of Seidenberg-Tarski, of Puiseux and Whitney\'s Extension Theorem) are discussed in detail. As a consequence of this theorem, it follows that every non zero partial diffe\\-rencial operator with constant coefficients has a tempered fundamental solution.
408

Identidades polinomiais graduadas em álgebras T-primas / Polynomial identities graded in algebras T-prime

Tobias, Bruno, 1981- 23 August 2018 (has links)
Orientador: Plamen Emilov Kochloukov / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T01:05:01Z (GMT). No. of bitstreams: 1 Tobias_Bruno_M.pdf: 722163 bytes, checksum: 23ee77054144bc20dd406b959ed36f94 (MD5) Previous issue date: 2013 / Resumo: Nesta dissertação apresentamos um estudo sobre as identidadespolinomiais graduadas sobre a álgebra matricial M2(K) com generalização para Mn(K) onde K denota um corpo infinito de característica qualquer e as identidades polinomiais graduadas para as álgebras T-primas M1;1(E) e E E sobre corpos de característica positiva diferente de 2.Estudaremos uma generalização feita por Koshlukov e Azevedo do resultado obtido porDi Vincenzo que descreve as identidades graduadas da álgebra matricial M2(K). Koshlukove Azevedo observaram que as identidades graduadas y1y2= y2y1e z1z2z3= z3z2z1que Di Vincenzo provou que é uma base para álgebra M2(K) para K um corpo de característica zero também é uma base quando o corpo K é infinito de característica qualquer. Estudaremos também as identidades polinomiais Z2-graduadas satisfeitas pelas álgebras T-primas M1,1(E) e E E sobre corpos de característica positiva diferente de 2 que constituemoutra generalização dada por Koshlukov e Azevedo dos resultados obtidos por DiVincenzo quando este descreveu bases para as identidades Z2-graduadas de várias álgebrasimportantes para corpos de característica zero / Abstract: In this works we present a study on the graded polynomial identities of the matrix algebra M2(K) with generalization to Mn(K) where K denotes an infinite fields of any characteristicand polynomial identities graded algebras T-prime M1;1(E) and E E over fields of positive characteristic different from 2.Study a generalization made by Koshlukov Azevedo and the result obtained by Di Vincenzodescribing the graded identities of the matrix algebra M2(K). Azevedo and Koshlukovnoted that the graded identities y1y2 = y2y1 and z1z2z3 = z3z2z1 Di Vincenzo proved that itis a base for algebra M2(K) K to a fields characteristic is also a zero base when the fieldsK is infinite for any characteristic.We also study the polynomial identities Z2-graded algebras satisfied by T-prime M1;1(E)and E E over fields of positive characteristic different from 2 which constitute a furthergeneralization given by Koshlukov Azevedo and the results obtained by Di Vincenzo whenthe identities described bases Z2-graded algebras important for various fields of characteristiczero / Mestrado / Matematica / Mestre em Matemática
409

Análise algébrica dos rotulamentos associados ao mapeamento do código genético / Algebraic analyses of the labels associated with the mapping of the genetic code

Oliveira, Anderson José de, 1985- 19 August 2018 (has links)
Orientador: Reginaldo Palazzo Júnior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-19T17:49:58Z (GMT). No. of bitstreams: 1 Oliveira_AndersonJosede_M.pdf: 1619063 bytes, checksum: 79a49301084eecde745f0e73cddfc1fa (MD5) Previous issue date: 2012 / Resumo: Uma área de pesquisa em franca expansão é a modelagem matemática do código genético, por meio da qual pode-se identificar as características e propriedades do mesmo. Neste trabalho apresentamos alguns modelos matemáticos aplicados à biologia, especificamente relacionado ao código genético. Os objetivos deste trabalho são: a) caracterização da hidropaticidade dos aminoácidos através da construção de reticulados booleanos e diagramas de Hasse associados a cada rotulamento do código genético, b) proposta de um algoritmo soma com transporte para efetuar a soma entre códons, ferramenta importante em análises mutacionais, c) representação polinomial dos códons do código genético, d) comparação dos resultados dos rotulamentos A, B e C em cada uma das modelagens construídas, e) análise do comportamento dos aminoácidos em cada um dos rotulamentos do código genético. Os resultados encontrados permitem a utilização de tais ferramentas em diversas áreas do conhecimento como bioinformática, biomatemática, engenharia genética, etc, devido a interdisciplinaridade do trabalho, onde elementos de biologia, matemática e engenharia foram utilizados / Abstract: A research area in frank expansion is the mathematical modeling of the genetic code, through can identify the characteristics and properties of them. In this paper we present some mathematical models applied to biology, specifically related to the genetic code. The aims of this work are: a) a characterization of the hydropathy of the amino acids through the construction of boolean lattices and Hasse diagrams associated with each labeling of the genetic code, b) the proposal of a sum algorithm of transportation to make the sum of codons, important tool in mutational analysis, c) a polynomial representation of the codons of the genetic code, d) a comparing of the results of the A, B and C labels in each of the built modeling, e) an analysis of the behavior of the amino acids in each of the labels of the genetic code. The results allow the use of such tools in a lot of areas like bio informatics, biomathematics, genetic engineering, etc., due to the interdisciplinary of the paper, where elements of biology, mathematics and engineering were used / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica
410

Zeros de polinômios ortogonais de variável discreta / Zeros of orthogonal polynomials of discrete variable

Paschoa, Vanessa Gonçalves, 1986- 20 August 2018 (has links)
Orientadores: Dimitar Kolev Dimitrov, Roberto Andreani / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T03:16:09Z (GMT). No. of bitstreams: 1 Paschoa_VanessaGoncalves_D.pdf: 5593991 bytes, checksum: 19d08bd15df6ca11bb499a3d2de6db5d (MD5) Previous issue date: 2012 / Resumo: Neste trabalho estudamos o comportamento de zeros de polinômios ortogonais clássicos de variável discreta. Provamos que certas funções que envolvem os zeros dos polinômios de Charlier, Meixner, Kravchuck e Hahn são funções monótonas dos parâmetros dos quais os correspondentes polinômios dependem. Com esse resultado obtemos novos limitantes extremamente precisos para os zeros dessas famílias de polinômios em função dos zeros dos polinômios ortogonais clássicos, que são mais estudados. Analisamos quais são os melhores limitantes explícitos para os zeros desses polinômios e aplicamos aos nossos resultados, obtendo assim limitantes explícitos para os zeros dos polinômios de Charlier, Meixner, Kravchuck e Hahn. São feitas comparações entre os nossos resultados e os melhores resultados encontrados na literatura para os zeros desses polinômios e verifica-se que nossos limitantes são, em uma grande parte, melhores. Devido à sua grande aplicabilidade, um estudo ainda mais minucioso foi feito para os zeros dos polinômios de Gram, um caso particular de Hahn, que resultou em limitantes para os zeros dos polinômios de Gram. Experimentos numéricos comprovam a qualidade dos resultados / Abstract: In this thesis we study the behavior of zeros of classical orthogonal polynomials of discrete variable. We prove that certain functions which involve the zeros of polynomials of Charlier, Meixner, Kravchuck and Hahn are monotonic with respect to the parameters on which the polynomials depend. As a consequence of these results we obtain new extremely precise limits for the zeros of the above polynomials in terms of zeros of classical orthogonal polynomials of continuous variable which have been studied thoroughly. We analyze the best bounds for the latter zeros and apply them to obtain explicit limits for the zeros of the polynomials of Charlier, Meixner, Kravchuck and Hahn. Comparisons with the best results known in the literature show that our results are better in most of the cases. Due to its applications, we perform a very detailed study of the zeros of Gram polynomials / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada

Page generated in 0.0249 seconds