441 |
−1 polynômes orthogonauxPelletier, Jonathan 09 1900 (has links)
Ce mémoire est composé de deux articles qui ont pour but commun de lever le voile et de
compléter le schéma d’Askey des q–polynômes orthogonaux dans la limite q = −1. L’objectif
est donc de trouver toutes les familles de polynômes orthogonaux dans la limite −1, de
caractériser ces familles et de les connecter aux autres familles de polynômes orthogonaux
−1 déjà introduites. Dans le premier article, une méthode basée sur la prise de limites dans
les relations de récurrence est présentée. En utilisant cette méthode, plusieurs nouvelles
familles de polynômes orthogonaux sur des intervals continus sont introduites et un schéma
est construit reliant toutes ces familles de polynômes −1. Dans le second article, un ensemble
de polynômes, orthogonaux sur l’agencement de quatre grilles linéaires, nommé les polynômes
de para-Bannai-Ito est introduit. Cette famille de polynômes complète ainsi la liste des parapolynômes. / This master thesis contains two articles with the common goal of unveiling and completing
the Askey scheme of q–orthogonal polynomials in the q = −1 limit. The main objective
is to find and characterize new families of -1 orthogonal polynomials and connect them
to other already known families. In the first article, a method based on applying limits
in recurrence relations is presented. This method is used to find many new families of
polynomials orthogonal with respect to continuous measure. A −1 scheme containing them
is constructed and a compendium containing the properties of all such families is included.
In the second article, a new set of polynomials named the para–Bannai–Ito polynomials is
introduced. This new set, orthogonal on a linear quadri–lattice, completes the list of parapolynomials, but it is also a step toward the finalization of the -1 scheme of polynomials
orthogonal on finite grids.
|
442 |
Sur l'inégalité de VisserZitouni, Foued 12 1900 (has links)
Soit p un polynôme d'une variable complexe z. On peut trouver plusieurs inégalités reliant le module maximum de p et une combinaison de ses coefficients. Dans ce mémoire, nous étudierons principalement les preuves connues de l'inégalité de Visser. Nous montrerons aussi quelques généralisations de cette inégalité. Finalement, nous obtiendrons quelques applications de l'inégalité de Visser à l'inégalité de Chebyshev. / Let p be a polynomial in the variable z. There exist several inequalities between the coefficents of p and its maximum modulus. In this work, we shall mainly study known proofs of the Visser inquality together with some extensions. We shall finally apply the inequality of Visser to obtain extensions of the Chebyshev inequality.
|
443 |
Um estudo dos zeros de polinômios ortogonais na reta real e no círculo unitário e outros polinômios relacionados / Not availableSilva, Andrea Piranhe da 20 June 2005 (has links)
O principal objetivo deste trabalho 6 estudar o comportamento dos zeros de polinômios ortogonais e similares. Inicialmente, consideramos uma relação entre duas sequências ele polinômios ortogonais, onde as medidas associadas estão relacionadas entre si. Usamos esta relação para estudar as propriedades de monotonicidade dos zeros dos polinômios ortogonais relacionados a uma medida obtida através da generalização da medida associada a uma outra sequência de polinômios ortogonais. Apresentamos, como exemplos, os polinômios ortogonais obtidos a partir da generalização das medidas associadas aos polinômios de Jacobi, Laguerre e Charlier. Em urna segunda etapa, consideramos polinômios gerados por uma certa relação de recorrência de três termos com o objetivo de encontrar limitantes, em termos dos coeficientes da relação de recorrência, para as regiões onde os zeros estão localizados. Os zeros são estudados através do problema de autovalor associado a uma matriz de Hessenberg. Aplicações aos polinômios de Szegó, polinômios para-ortogonais e polinômios com coeficientes complexos não-nulos são consideradas. / The main purpose of this work is to study the behavior of the zeros of orthogonal and similar polynomials. Initially, we consider a relation between two sequences of orthogonal polynomials, where the associated measures are related to each other. We use this relation to study the monotonicity propertios of the zeros of orthogonal polynomials related with a measure obtained through a generalization of the measure associated with other sequence of orthogonal polynomials. As examples, we consider the orthogonal polynomials obtained in this way from the measures associated with the Jacobi, Laguerre and Charlier polynomials. We also consider the zeros of polynomials generated by a certain three term recurrence relation. Here, the main objective is to find bounds, in terms of the coefficients of the recurrence relation, for the regions where the zeros are located. The zeros are explored through an eigenvalue representation associated with a Hessenberg matrix. Applications to Szegõ polynomials, para-orthogonal polynomials anti polynomials with non-zero complex coefficients are considered.
|
444 |
Funções positivas definidas para interpolação em esferas complexas. / Positive definite functions for interpolation on complex spheres.Peron, Ana Paula 07 February 2001 (has links)
Apresentamos uma caracterização das funções positivas definidas em esferas complexas, generalizando assim, um resultado de Schoenberg ([41]). Como no caso real, uma classe importante dessas funções é aquela composta pelas funções estritamente positivas definidas de uma certa ordem; estas podem ser utilizadas para resolver certos problemas de interpolação de dados arbitrários associados a pontos distintos distribuídos nas esferas. Com esse objetivo, obtivemos algumas condições necessárias e suficientes (separadamente) para que funções positivas definidas sejam estritamente positivas definidas. Os resultados apresentados fornecem uma caracterização final elementar para funções estritamente positivas definidas de todas as ordens em quase todas as esferas complexas. Funções estritamente positivas definidas de ordem 2 são caracterizadas em todas as esferas complexas. Analisamos também a relação entre funções estritamente positivas definidas em esferas complexas e funções estritamente positivas definidas em esferas reais. / We characterize positive definite functions on complex spheres, generalizing a famous result due to I. J. Schoenberg ([41]). As in the real case, we study the so-called strictly positive definite functions. They can be used to perform interpolation of scattered data on those spheres. We present (separated) necessary and sufficient conditions for a positive definite function to be strictly positive definite of a certain order. These conditions produce a final characterization for those positive definite functions which are strictly positive definite of all orders, on almost all spheres. Strictly positive definite functions of order 2 are identified. Finally, we study a connection between strictly positive definite functions on real spheres and strictly positive definite functions on complex spheres.
|
445 |
Propagation des ondes magnéto-électro-élastiques dans les systémes multicouches et les cristaux phononiques / Propagation of magneto-electro-elastic waves in multilayer systems and in phononic crystalsGasmi, Noura 03 October 2014 (has links)
Cette thèse porte sur la propagation des ondes magnéto-électro-élastiques dans les structures inhomogènes, et tout particulièrement de l’effet d’un champ magnétique externe sur des structures multicouches et des cristaux phononiques combinant des matériaux à la fois piézoélectriques et magnéto-élastiques. Pour déterminer les caractéristiques des ondes se propageant dans ces structures magnéto-électro-élastiques, un modèle de matériau piézomagnétique équivalent à un matériau magnéto-élastique en couche mince, polarisé à saturation autour d’une position d’équilibre définie par l’orientation et l’amplitude d’un champ magnétique externe appliqué à celui-ci, est développé. Il est combiné à une méthode originale de calcul des courbes de dispersion dans les multicouches, basée sur une décomposition en polynômes de Legendre pour les couches d’épaisseur finie, et en polynômes de Laguerre pour le substrat semi-infini. Ce modèle est utilisé pour le cas d’un film mince de TbCo2/FeCo, présentant une anisotropie magnétique uni-axiale dans le plan et une magnétostriction géante, déposé sur un substrat de LiNbO3 sous forme de film ou en réseau de plots cylindriques. On montre que dans ce dernier cas, correspondant à un cristal phononique magnéto-élastiques à résonance locale, il est possible de contrôler sans aucun contact la structure de bande par l’application d’un champ magnétique externe. Ainsi, une sensibilité de 50 kHz par Oersted a été calculée pour une bande plate située dans le gap de Bragg d’un tel cristal phononique. Cette sensibilité est suffisante pour envisager une application du dispositif comme un détecteur très sensible de champs magnétiques localisés / This thesis focuses on the propagation of magneto-electro-elastic waves in inhomogeneous structures, and in particular the effect of an external magnetic field on multilayer structures and on phononic crystals that combine both piezoelectric and magneto-elastic materials. To determine the characteristics of waves propagating in magneto-electro-elastic structures, an effective piezomagnetic material model, equivalents to a thin layer of magneto-elastic material, is developed. The thin layer is polarized to saturation around the equilibrium position defined by the direction and amplitude of an external magnetic field. This model is combined with a method of dispersion curves calculation in multilayer structures, based on a decomposition in Legendre polynomials for layers of finite thickness and Laguerre polynomials for a semi-infinite substrate. The model is used for the case of a TbCo2/FeCo thin film, presenting an in plane uniaxial magnetic anisotropy and a giant magnetostriction, deposited as a film, or as a lattice of cylinders, on a substrate of LiNbO3. It is shown that in the latter case, corresponding to a local resonance magneto-elastic phononic crystal, it is possible to control, without any contact, the band structure by applying an external magnetic field. Thus, a sensitivity of 50kHz by Oersted was calculated for a flat band located in Bragg band gap for such phononic crystal. This sensitivity is sufficient to enable the use of this device as a sensitive detector of localized magnetic fields
|
446 |
Determining Coefficients of Checking Polynomials for an Algebraic Method of Fault Tolerant Computations of Numerical FunctionsJones, Clinton Christopher 12 April 2004 (has links)
This thesis presents a practical means for determining checking polynomials for the fault tolerant computation of numerical functions. This method is based on certain algebraic features of the numerical functions such as the transcendence degree of a field extension. Checking polynomials are given for representative simple and compound numerical functions. Some of these checking models are implemented in a simulation environment. The program developed provides the means for generating checking polynomials for a broad class of numerical functions. Considerations for designing and deploying checking models are given. This numerical technique can lower costs and conserve system resources when engineering for remote or nanoscale supercomputing environments.
|
447 |
On The Q-analysis Of Q-hypergeometric Difference EquationSevinik Adiguzel, Rezan 01 December 2010 (has links) (PDF)
In this thesis, a fairly detailed survey on the q-classical orthogonal polynomials of the Hahn
class is presented. Such polynomials appear to be the bounded solutions of the so called qhypergeometric
difference equation having polynomial coefficients of degree at most two. The
central idea behind our study is to discuss in a unified sense the orthogonality of all possible
polynomial solutions of the q-hypergeometric difference equation by means of a qualitative
analysis of the relevant q-Pearson equation. To be more specific, a geometrical approach has
been used by taking into account every posssible rational form of the polynomial coefficients,
together with various relative positions of their zeros, in the q-Pearson equation to describe a
desired q-weight function on a suitable orthogonality interval. Therefore, our method differs
from the standard ones which are based on the Favard theorem and the three-term recurrence
relation.
|
448 |
Sur l'inégalité de VisserZitouni, Foued 12 1900 (has links)
Soit p un polynôme d'une variable complexe z. On peut trouver plusieurs inégalités reliant le module maximum de p et une combinaison de ses coefficients. Dans ce mémoire, nous étudierons principalement les preuves connues de l'inégalité de Visser. Nous montrerons aussi quelques généralisations de cette inégalité. Finalement, nous obtiendrons quelques applications de l'inégalité de Visser à l'inégalité de Chebyshev. / Let p be a polynomial in the variable z. There exist several inequalities between the coefficents of p and its maximum modulus. In this work, we shall mainly study known proofs of the Visser inquality together with some extensions. We shall finally apply the inequality of Visser to obtain extensions of the Chebyshev inequality.
|
449 |
Medidas não triviais no círculo unitário e polinômios para-ortogonais associados / Nontrivial measures on the unit circle and associated para-orthogonal polynomialsVeronese, Daniel Oliveira [UNESP] 19 July 2016 (has links)
Submitted by DANIEL OLIVEIRA VERONESE null (veronese@icte.uftm.edu.br) on 2016-07-27T16:57:24Z
No. of bitstreams: 1
Tese_Daniel.pdf: 842310 bytes, checksum: 2518e6833497ee87b3cf404db2fca49a (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-07-29T13:17:56Z (GMT) No. of bitstreams: 1
veronese_do_dr_sjrp.pdf: 842310 bytes, checksum: 2518e6833497ee87b3cf404db2fca49a (MD5) / Made available in DSpace on 2016-07-29T13:17:56Z (GMT). No. of bitstreams: 1
veronese_do_dr_sjrp.pdf: 842310 bytes, checksum: 2518e6833497ee87b3cf404db2fca49a (MD5)
Previous issue date: 2016-07-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Dado um par de sequências reais, sendo uma delas sequência encadeada positiva, podemos considerar uma sequência de polinômios que satisfazem uma relação de recorrência de três termos, de tal modo que os zeros destes polinômios sejam simples e estejam sobre o círculo unitário. Neste trabalho mostramos que é possível obter, a partir dessa fórmula de recorrência, uma única medida não trivial no círculo unitário. Provamos também que a sequência de polinômios gerados por essa relação de recorrência é uma sequência de polinômios para-ortogonais associados à medida obtida. Além disso, obtemos limitantes para os zeros extremos de tais polinômios e fornecemos estimativas para o suporte da medida associada. / Given a pair of real sequences, where one of them is a positive chain sequence, we can associate a sequence of polynomials which satisfy a three term recurrence formula and such that the zeros of these polynomials are simple and lie on the unit circle. In this manuscript, we show that, starting from this three term recurrence formula, it is always possible to obtain a unique nontrivial measure on the unit circle. We also prove that the generated sequence of polynomials is a sequence of para-orthogonal polynomials associated with this measure. Furthermore, we obtain bounds for the extreme zeros of these polynomials and also provide estimates for the support of the associated measure.
|
450 |
Funções positivas definidas para interpolação em esferas complexas. / Positive definite functions for interpolation on complex spheres.Ana Paula Peron 07 February 2001 (has links)
Apresentamos uma caracterização das funções positivas definidas em esferas complexas, generalizando assim, um resultado de Schoenberg ([41]). Como no caso real, uma classe importante dessas funções é aquela composta pelas funções estritamente positivas definidas de uma certa ordem; estas podem ser utilizadas para resolver certos problemas de interpolação de dados arbitrários associados a pontos distintos distribuídos nas esferas. Com esse objetivo, obtivemos algumas condições necessárias e suficientes (separadamente) para que funções positivas definidas sejam estritamente positivas definidas. Os resultados apresentados fornecem uma caracterização final elementar para funções estritamente positivas definidas de todas as ordens em quase todas as esferas complexas. Funções estritamente positivas definidas de ordem 2 são caracterizadas em todas as esferas complexas. Analisamos também a relação entre funções estritamente positivas definidas em esferas complexas e funções estritamente positivas definidas em esferas reais. / We characterize positive definite functions on complex spheres, generalizing a famous result due to I. J. Schoenberg ([41]). As in the real case, we study the so-called strictly positive definite functions. They can be used to perform interpolation of scattered data on those spheres. We present (separated) necessary and sufficient conditions for a positive definite function to be strictly positive definite of a certain order. These conditions produce a final characterization for those positive definite functions which are strictly positive definite of all orders, on almost all spheres. Strictly positive definite functions of order 2 are identified. Finally, we study a connection between strictly positive definite functions on real spheres and strictly positive definite functions on complex spheres.
|
Page generated in 0.0335 seconds