• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 10
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 95
  • 95
  • 25
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Miniature Fiber-Optic Sensors for High-Temperature Harsh Environments

Zhu, Yizheng 05 June 2007 (has links)
Measurement of physical parameters in harsh environments (high pressure, high temperature, highly corrosive, high electromagnetic interference) is often desired in a variety of areas, such as aerospace, automobile, energy, military systems, and industrial processes. Pressure and temperature are among the most important of these parameters. A typical example is pressure monitoring in jet engine compressors to help detect and control undesirable air flow instabilities, namely rotating stall and surge. However, the temperatures inside a compressor could reach beyond 600°C for today's large engines. Current fiber-optic sensor can operate up to about 300°C and even the most widely employed semiconductor sensors are limited below 500°C. The objective of this research is to push the limit of fiber-optic sensing technology in harsh environment applications for both pressure and temperature measurements by developing novel sensing structures, fabrication techniques, and signal processing algorithms. An all-fused-silica pressure sensor has been demonstrated which is fabricated on the tip of a fiber with a diameter no larger than 125μm. The sensor was able to function beyond the current limit and operate into the 600~700°C range. Also a temperature sensor has been developed using sapphire fibers and wafers for ultra-high temperature measurement as high as 1600°C. This effort will generate more understanding regarding sapphire fiber's high temperature properties and could possibly lead to novel designs of pressure sensor for beyond 1000°C. Both sensors have been field tested in real-world harsh environments and demonstrated to be reliably and robust. In this dissertation, the design, fabrication, and testing of the sensors are discussed in detail. The system and signal processing techniques are presented. The plan and direction for future work are also suggested with an aim of further pushing the operating limit of fiber-optic sensors. / Ph. D.
52

Fiber Optic Pressure Sensor Fabrication Using MEMS Technology

Chen, Xiaopei 27 May 2003 (has links)
A technology for fabricating fiber optic pressure sensors is described. This technology is based on intermediate-layer bonding of a fused silica ferrule to a patterned, micro-machined fused silica diaphragm, providing low temperature fabrication of optical pressure sensor heads that can operate at high temperature. Fused silica ferrules and fused silica diaphragms are chosen to reduce the temperature dependence. The fused silica diaphragms have been micro-machined using wet chemical etching in order to form extrinsic Fabry-Perot (FP) interferometric cavities. Sol-gel is used as an intermediate-layer for both fiber-ferrule bonding and ferrule-diaphragm bonding at relatively low temperature (250 °C). The pressure sensors fabricated in the manner can operate at temperatures as high as 600 °C. The self-calibrated interferometric-intensity-based (SCIIB) technology, which combines fiber interferometry and intensity-based sensing method into a single sensor system, is used to test and monitor the pressure sensor signal. The light returned from the FP cavity is split into two channels. One channel with longer coherence length can test the effective interference generated by the FP cavity, while the other channel with shorter coherence length can get signal proportional only to the source power, fiber attenuation, and other optical losses. The ratio of the signals from the two channels can compensate for all unwanted factors, including source power variations and fiber bending losses. [11] / Master of Science
53

Micromachined flow sensors for velocity and pressure measurement

Song, Chao 27 August 2014 (has links)
This research focuses on developing sensors for properties of aerodynamic interest (i.e., flow and pressure) based on low-cost polymeric materials and simple fabrication processes. Such sensors can be fabricated in large arrays, covering the surface of airfoils typically used in unmanned vehicles, allowing for the detection of flow separation. This in turn potentially enables, through the use of closed-loop control, an expansion of the flight envelope of these vehicles. A key advance is compensation for the typically inferior performance of these low cost materials through both careful design as well as new readout methods that reduce drift, namely a readout methodology based on aeroelastic flutter. An all-polymer micromachined piezoresistive flow sensor is fabricated, based on a flexible polyimide substrate and an elastomeric piezoresistive composite material. The flow sensor comprises a cantilever that is extended into the embedding flow; flow-induced stress on the cantilever is sensed through the piezoresistive composite material. Increasing the sensitivity of the sensor is achieved by either utilizing a long single-cantilever beam or using a dual-cantilever beam supporting a flap extending into the flow. In the latter case, the sensor demonstrates increased sensitivity with a reduced cantilever length. The increase in sensitivity helps to reduce sensor drift, which in turn is further reduced by a new measurement method, the vibration amplitude measurement method. In this drift reduction measurement method, the flow-induced vibration amplitude of the sensor structure (i.e., the amplitude of the aeroelastic flutter induced by the flow), instead of the absolute value of cantilever deflection, is measured in order to find the flow rate. Measurement of this relative resistance change instead of the absolute resistance in the piezoresistor rejects common-mode drift and greatly reduces overall drift. Experimental results verify the expected drift reduction. Sensor drift is also reduced when the elastomeric piezoresistive material is replaced by a Pt thin film piezoresistor. Development of pressure sensors based on polymers proceeds by encapsulating a reference cavity within a multilayer polymer structure and forming capacitor plates on the polymeric membranes encapsulating the cavity. Measuring the capacitance change induced by changes in the embedding pressure (which cause changes in the positions of the bounding polymeric membranes) enables calculation of the pressure. The use of polymeric membranes requires understanding the leakage rate of gas into the reference cavity, which is a source of pressure drift. Developing a polymer-based pressure sensor that solves the problem of sensor drift as a result of gas permeation entails the fabrication of a silicon pressure reference cavity embedded in the polymer substrate, which results in a more hermetic and lower drift sensor while preserving the flexibility of the embedding polymer. Both wired and wireless versions of pressure and flow sensors of these types were developed and characterized. Further, the sensors were characterized on airfoils and their performance in a wind tunnel was determined.
54

Analysis And Design Of Micro-Opto-Electro-Mechanical Systems (MOEMS) Based Pressure And Vibration Sensors

Pattnaik, Prasant Kumar 07 1900 (has links) (PDF)
No description available.
55

Extending Microsystems to Very High Temperatures and Chemically Harsh Environments

Khaji, Zahra January 2016 (has links)
Aiming at applications in space exploration as well as for monitoring natural hazards, this thesis focuses on understanding and overcoming the challenges of extending the applicability of microsystems to temperatures above 600°C as well as chemically harsh environments. Alumina and zirconia high-temperature co-fired ceramics (HTCC) with platinum as the conductor material, have in this thesis, been used to manufacture a wide range of high-temperature tolerant miniaturized sensors and actuators, including pressure and flow sensors, valves, a combustor, and liquid monopropellant microthrusters. Interfacing for high temperatures is challenging. One solution is to transfer the signal wirelessly. Here, therefor, wireless pressure sensors have been developed and characterized up to 1000°C. It is usually unwanted that material properties change with temperature, but by using smart designs, such changes can be exploited to sense physical properties as in the gas flow sensor presented, where the temperature-dependent electrical conductivity of zirconia has been utilized. In the same manner, various properties of platinum have been exploited to make temperature sensors, heaters and catalytic beds. By in-situ electroplating metals after sintering, even more capabilities were added, since many metals that do not tolerate HTCC processing can be added for additional functionality. An electroplated copper layer that was oxidized and used as an oxygen source in an alumina combustor intended for burning organic samples prior to sample analysis in a lab on a chip system, and a silver layer used as a catalyst in order to decompose hydrogen peroxide in a microthuster for spacecraft attitude control, are both examples that have been explored here. Ceramics are both high-temperature tolerant and chemically resistant, making them suitable for both thrusters and combustors. The corresponding applications benefit from miniaturization of them in terms of decreased mass, power consumption, integration potential, and reduced sample waste. Integrating many functions using as few materials as possible, is important when it comes to microsystems for harsh environments. This thesis has shown the high potential of co-fired ceramics in manufacturing microsystems for aggressive environments. However, interfacing is yet a major challenge to overcome.
56

Mean and Fluctuating Pressures on an Automotive External Rear View Mirror.

Jaitlee, Rajneesh, jaitlee@gmail.com January 2006 (has links)
The primary function of an automobile rear View Mirror is to provide the driver with a clear vision interpretation of all objects to the rear and side of the vehicle. The rear View Mirror is a bluff body and there are several problems associated with the rear View Mirror. These include buffeting, image distortion (due to aerodynamically induced and structural vibration), aerodynamically induced noise (due to cavities and gaps) and water and dirt accumulation on Mirror glass Surface. Due to excessive glass vibration, the rear View Mirror may not provide a clear image. Thus, vibrations of Mirror can severely impair the driver's vision and safety of the vehicle and its occupants. The rear View Mirrors are generally located close to the A-pillar region on the side window. A conical vortex forms on the side window close to A-pillar due to A-pillar geometry and the presence of side rear View Mirror and flow separation from it makes the airflow even more complex. The primary objective of this work is to study the aerodynamic pressures on Mirror Surface at Various speeds to determine the effects of aerodynamics on to Mirror vibration. Additionally, the Mirror was modified by Shrouding around the external periphery to determine the possibility of minimisation of aerodynamic pressure fluctuations and thereby vibration. The Shrouding length used for the analysis was of 24mm, 34mm and 44mm length. The mean and fluctuating pressures were measured using a production rear side View Mirror fitted to a ¼ quarter production passenger car in RMIT Industrial Wind Tunnel. The tests were also conducted in semi-isolation condition to understand influence of the A-pillar geometry. The mean and fluctuating pressures were converted into non-dimensional pressure coefficients (Cp and Cprms) and the frequency content of the fluctuating pressure was analysed. The results show that the fluctuating aerodynamic pressures are not uniformly distributed over an automobile Mirror Surface. The highest magnitude of fluctuating pressure for the standard Mirror was found at the central bottom part of the Mirror Surface. The highest magnitude of fluctuating pressure for the modified Mirror was found at the central top part of the Mirror Surface. As expected, the modification has significant effect on the magnitude of fluctuating pressure. The results show that an increase of Shrouding length reduces the magnitude of the fluctuating pressure. The frequency-based analysis was done to understand the energy characteristics of the flow, particularly to its phase, since it is the out of phase components that usually cause Mirror rotational vibration. The spectral analysis showed that the magnitude of the energy distribution reduces with increase of shrouding length throughout the frequency range. Flow visualisation was also used to supplement the pressure data. The effects of yaw angles were not included in this study, however, are thought to be worthy of further investigation. On road testing and the variation of mirror locations might have some effects on the fluctuating pressures. These need to be investigated in the future work. The quarter model used in this study was a car specific. However, for more generic results, a simplified model with variable geometry can be used in future study.
57

Projekt Pretrigger / Project Pretrigger

Veverka, David January 2015 (has links)
Práce se zabývá návrhem stabilního a rychlého bezdrátového spojení mezi dvěma body. K vytvoření tohoto spojení bude použita technologie Bluetooth a nebo její moderní alternativy vzhledem k tomu, že tato technologie již byla v daném pracovním prostředí testována a byla prokázána její stabilita. V této práci a v navazující diplomové práci budou diskutovány výsledky časových analýz zvolených senzorů, komunikace mezi senzorem a zvoleným mikrokontrolerem a nakonec návrh kompletního řešení, na jehož základě bude vytvořen funkční prototyp požadovaného zařízení.
58

Sensor de pressão microeletronico baseado no efeito piezoMOS / Microelectronic pressure sensor based on the piezoMOS effect

Garcia, Vitor 21 February 2006 (has links)
Orientador: Fabiano Fruett / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-06T06:47:54Z (GMT). No. of bitstreams: 1 Garcia_Vitor_M.pdf: 2431852 bytes, checksum: 99df32075176f9b0322278b0ce286ba5 (MD5) Previous issue date: 2006 / Resumo: Apresentamos neste trabalho um sensor de pressão de baixo consumo de potência. totalmente compatível com o processo de fabricação CMOS. constituído por um amplificador operacional sensível ao estresse mecânico fabricado sobre uma membrana. O desenho do layout do amplificador é feito de forma a maximizar o efeito do estresse sobre os transistores do par de entrada e minimizar sobre o restante do circuito. O projeto da membrana. bem como a localização dos elementos sensores sobre a mesma. Foram determinados através de simulação por elementos finitos. O sensor foi fabricado utilizando o processo CMOS 0.35 IJ.m AMS disponibilizado pelo Projeto Multi-Usuário (PMU) Fapesp. A membrana do sensor foi obtida através de um processo de desbaste mecânico da pastilha de silício onde o circuito foi fabricado. Analisamos também a dependência da tensão de limiar e da mobilidade de um transistor PMOS com relação ao estresse mecânico. O sensor fabricado apresentou um consumo de potência da ordem de 3 IJ. W e uma sensibilidade de 8.9 mV/psi / Abstract: A nove I Iow power totally CMOS compatible mechanical-stress sensitive differential amplifier. which can be used as a pressure sensor. is presented. This amplifier is based on a special designed layout where the stress sensitivity of the input differential pair. is maximized and the stress effects on the second stage are minimized. Finite element simulation was used to design the membrane and to locate the element sensor on it. The sensor was fabricated in a CMOS 0.35 IJ.m AMS process supported by the Fapesp Multi -User Project. In order to make a pressure sensor without a backside bulk micro-machining process. the thickness of the die was reduced by a mechanical polishing process. This work also analised the limiar-voltage and the mobility dependence with regard to mechanical stress. The sensor power consumption amounts to 3 IJ. W and the sensitivity amounts to 8.9 m V/psi / Mestrado / Eletrônica, Microeletrônica e Optoeletrônica / Mestre em Engenharia Elétrica
59

Heterogeno integrisani pasivni induktivni senzori / Heterogenous integrated passive inductive sensors

Kisić Milica 29 December 2016 (has links)
<p>U disertaciji je prikazano teorijsko i praktično istraživanje koje se odnosi na projektovanje, fabrikaciju i karakterizaciju heterogeno integrisanih induktivnih senzora za mjerenje sile, pritiska i pomjeraja. Cilj istraživanja doktorske disertacije je kombinovanje različitih tehnologija izrade i materijala, kako bi se projektovali senzori koji će biti konkurentni aktuelnim rešenjima, i koji bi se mogli koristiti za konkretne primjene. U okviru istraživanja, heterogenom integracijom su kombinovane prednosti tehnologije štampanih ploča (Printed Circuit Board - PCB), fleksibilne tehnologije i tehnologije niskotemperaturne zajedno-pečene keramike (Low Temperature Co-fired Ceramics &ndash; LTCC). Razvijena su tri prototipa senzora za mjerenje sile, pritiska i pomjeraja korišćenjem struktura sa induktorom i feritom u njegovoj blizini. Mjerenje realizovanih prototipova senzora vrši se bežično pomoću spregnutog antenskog namotaja. Na osnovu početnih rezultata ispitivanja, senzori su modifikovani u cilju poboljšanja i optimizovanja performansi. Projektovani senzori omogućavaju bežično mjerenje, jeftini su, kompaktni i jednostavni. Na osnovu teorijske analize, simulacija, eksperimetnalnih mjerenja, ustanovljena je ispravnost rada i primjenljivost realizovanih senzora.</p> / <p>In doctoral thesis theoretical and practical investigation on design, fabrication and characterisation of heterogenous integrated inductive sensors for measuring force, pressure and displacement are shown. The aim of the thesis is to investige the usage of different technologies and materials in order to design sensors which will be competitive to actual solutions and usable for specific aplications. Using heterogenous integraton, advantages of Printed Circuit Board technology (PCB), flexible and Low Temperature Co-fired Ceramics (LTCC) technologies are used. Three sensor prototypes for measuring force, pressure and displacement are developed using inductor and ferrite in its near proximity. Measurements of the realised sensor prototypes are wirelessly done using an external surrounding coil as an antenna. Based on the initial measuring results, sensors are redesigned in order to improve and optimize their performance. Projected sensors are low-cost, compact, simple, and enable wireless measurement. The proper operation and applicability of realized sensors are confirmed using theoretical analysis, simulation and experimental testing with presented results.</p>
60

New dopable semiconducting polymer materials enabling novel device architecture

Tsuda, Takuya 15 October 2021 (has links)
Semiconducting polymers are promising materials for next-generation, flexible electronics devices. Over the last decades, various types of polymers have been developed and applied to devices such as light-emitting diodes (OLEDs), photovoltaics (OPVs), and field-effect transistors (OFETs). Conductivity is one of the most important parameters for the device performance since it directly affects charge carrier collection, injection, and transport. Besides, not only bulk conductivity but also interfacial energy barrier is critical for multilayer devices, especially an energy alignment of layers is essential to collect/inject charge carriers smoothly. Therefore reliable systems for both p- and n-type doping are sought after. Chemical doping (molecular doping) is a promising technique to achieve both, to enhance the conductivity in polymers and to shift energy levels by generating charge carriers (holes or electrons) in polymer films. The method enables to transport charge carriers in thin films or between neighboring layers effectively. This thesis investigates the chemical doping from the nanostructure level, particularly two types of devices where doping plays a crucial role: 1) pressure sensor based on p-doped semiconducting polymer nanopillars, 2) novel n-type doping system for a technologically advantageous thick interlayer in organic solar cells. In the first part, an application of nanostructured p-doped polymer was explored in a new type of device. While p-type doping is relatively common, especially for P3HT or PEDOT:PSS, in OPVs or OFETs, the potential of semiconducting polymer material, especially its mechanical flexibility and high electrical conductivity, is not fully utilized in these types of devices. Therefore new electronic device, a pressure sensor, is fabricated based on nanopillar structures made of p-doped P3HT by a templating method. The highly flexible and conductive nanostructure was obtained by combining templating and chemical doping. Through utilizing the buckling behavior of nanopillars, the pressure sensor was constructed and used for the detection of finger movement and touch sensing with a robotic gripper. Besides, the templating process can be tuned by annealing conditions, that enable adjusting the length of nanopillars and thus sensing properties. Finally, the sensing mechanism was investigated by finite element modeling and Euler buckling theory. In the second part, n-type doping in novel polymers was investigated. Generally, n-type doping has relatively limited reports since the n-doped state of commonly used polymers is readily oxidized by oxygen or water in air. A newly synthesized series of naphthalene diimide (NDI)-based conjugated polyelectrolytes (CPEs) contains cations in side chains, which stabilize the generated charge carriers. The stability of conductivity, spectroscopic characteristics, morphology, and the application of CPEs to interlayers in polymer solar cells (PSCs) were investigated. The polymer film showed air-stable high conductivity by introducing self-compensation doping and anion doping methods. The LUMO level of CPEs has a strong correlation with the conductivity in air and long-term stability. Moreover, the work function of the ITO cathode can be shifted by CPEs and the chemical doping, enabling a highly conductive, thick cathode interlayer, applicable to scalable film deposition methods, e.g., the blade-coating method. For the outlook, various new applications can be realized by combining these techniques and materials for p-/n-doping systems. This research expands the utilization of semiconducting polymer as a nano-structurable, flexible, highly conductive, and air-stable component for future flexible electronics devices.

Page generated in 0.0357 seconds