• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 15
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 85
  • 85
  • 24
  • 18
  • 16
  • 15
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Cost-effective benchtop fabrication of sensitive electrochemical biosensing platforms

Gonzalez Martinez, Eduardo January 2023 (has links)
The accurate and rapid detection of clinically relevant analytes at the point-of-care (POC) is a crucial element for the increase in our quality of life. There are multiple detection techniques for sensing a target analyte in biological samples. However, electrochemical sensors excel because of their versatility, accuracy and sensitivity. Among the many challenges in the fabrication of electrochemistry-based POC sensors, the miniaturization of the working electrodes is one of the most difficult to overcome. Decreasing the size of the sensors will result in less electroactive surface area (ESA) and, therefore, lower sensitivity. Thus, the design of miniaturized electrodes with high ESA is desired in this research field. The methodology developed in our laboratory to accomplish this goal is based on the fabrication of microstructured gold electrodes (MSEs) by depositing, via sputtering, a gold thin-film onto a pre-stressed polystyrene substrate masked with adhesive vinyl stencils and thermally shrinking the substrate at high temperatures (135-160 °C). In my thesis work, I developed cost-effective sensitive electrochemical platforms using only bench-top approaches. First, the ESA and, thus, the sensitivity of the MSEs were enhanced by using a simple and rapid nano-roughening approach. The ESA of MSEs was increased 4x by applying high voltage pulsing in sulfuric acid. The resulting electrodes possessed high anti-fouling capabilities and excellent response toward the enzyme-free detection of glucose with a limit of detection (LOD) of 0.62 mM in the presence of bovine serum albumin (BSA) and ascorbic acid. Furthermore, the fabrication cost of the MSEs electrodes was decreased by 5x by replacing the sputtering deposition step with a cost-effective solution-based electroless deposition technique. In this case, the PS substrates were coated with a polydopamine adhesion layer and noble metal films (copper, silver and gold) were subsequently plated. Not only the cost of the gold electrode was substantially reduced but, due to the intrinsic roughness of the surface, the MSEs electrodes obtained via electroless deposition showed a higher ESA than those made via sputtering. Furthermore, the developed electroless method was extended for the fabrication of paper-based sensing devices. The sensing versatility of these surfaces was demonstrated by electrochemically detecting mercury with a 0.27 ppb LOD and by sensing thiophenol via surface-enhanced Raman scattering (SERS). The MSEs electrodes fabricated via electroless deposition were subjected to the nano-roughening technique to generate affordable and high ESA electrodes. These platforms were used to design enzyme-based biosensors to accurately detect glucose and urea in complex samples. Glucose was detected in four different types of wine, with matrix interference measured below 10%, and in human serum, with a measured concentration that was not statistically different from that obtained from commercially available biosensors. Urea was detected in human urine and plasma with matrix interferences measured to be below 8% in both cases. We envision that the fabrication techniques developed in this thesis will rapidly grow in the scientific community for the prompt and accurate design of POC electrochemical devices. / Thesis / Doctor of Philosophy (PhD)
72

Advanced Applications of Raman Spectroscopy for Environmental Analyses

Lahr, Rebecca Halvorson 09 January 2014 (has links)
Due to an ever-increasing global population and limited resource availability, there is a constant need for detection of both natural and anthropogenic hazards in water, air, food, and material goods. Traditionally a different instrument would be used to detect each class of contaminant, often after a concentration or separation protocol to extract the analyte from its matrix. Raman spectroscopy is unique in its ability to detect organic or inorganic, airborne or waterborne, and embedded or adsorbed analytes within environmental systems. This ability comes from the inherent abilities of the Raman spectrometer combined with concentration, separation, and signal enhancement provided by drop coating deposition Raman (DCDR) and surface-enhanced Raman spectroscopy (SERS). Herein the capacity of DCDR to differentiate between cyanotoxin variants in aqueous solutions was demonstrated using principal component analysis (PCA) to statistically demonstrate spectral differentiation. A set of rules was outlined based on Raman peak ratios to allow an inexperienced user to determine the toxin variant identity from its Raman spectrum. DCDR was also employed for microcystin-LR (MC-LR) detection in environmental waters at environmentally relevant concentrations, after pre-concentration with solid-phase extraction (SPE). In a cellulose matrix, SERS and normal Raman spectral imaging revealed nanoparticle transport and deposition patterns, illustrating that nanoparticle surface coating dictated the observed transport properties. Both SERS spectral imaging and insight into analyte transport in wax-printed paper microfluidic channels will ultimately be useful for microfluidic paper-based analytical device (𝜇PAD) development. Within algal cells, SERS produced 3D cellular images in the presence of intracellularly biosynthesized gold nanoparticles (AuNP), documenting in detail the molecular vibrations of biomolecules at the AuNP surfaces. Molecules involved in nanoparticle biosynthesis were identified at AuNP surfaces within algal cells, thus aiding in mechanism elucidation. The capabilities of Raman spectroscopy are endless, especially in light of SERS tag design, coordinating detection of analytes that do not inherently produce strong Raman vibrations. The increase in portable Raman spectrometer availability will only facilitate cheaper, more frequent application of Raman spectrometry both in the field and the lab. The tremendous detection power of the Raman spectrometer cannot be ignored. / Ph. D.
73

The student experience of piloting multi-modal performance feedback tools in health and social care practice (work)-based settings

Dearnley, Christine A., Taylor, J.D., Laxton, J.C., Rinomhota, S., Nkosana-Nyawata , Idah D. 18 January 2012 (has links)
No / The aim of this study was to evaluate newly developed performance feedback tools from the student perspective. The tools were innovative in both their mode of delivery and the range of stakeholders they involved in the feedback process. By using the tools in health and social care settings, students were able to engage in interprofessional assessment of common competences and obtain performance feedback from a range of stakeholders not commonly involved in work-based learning; these included peers and service users. This paper discusses the ways in which the performance feedback tools were developed by a collaborative programme and compares their delivery, across a wide range of professions and work-based settings, in paper-based, web-based and mobile formats. The tools were evaluated through a series of profession-specific focus groups involving 85 students and 7 professions. The data were analysed thematically and reduced to three key categories: mode of delivery, assessment tool dynamics and work-based issues. These will be discussed in detail. The students agreed that the structured way of capturing and documenting feedback from several sources would support their practice placement learning. The reflective nature of the tools and the capacity for guiding reflection was also welcomed. The concepts of gaining service user, peer and/or interprofessional feedback on performance were new to some professions and evoked questions of reliability and validity, alongside appreciation of the value they added to the assessment process.
74

"Det ska vara rätt och riktigt!" : - En intervjustudie om textbearbetning i skolans yngre år / "It must be right and correct!" : - An interview study of text processing in the younger years of school

Schmidt, Natassja January 2016 (has links)
Progress in technology has resulted in new aids in the form of writing tools which make it easier for pupils to revise their texts. This interview study investigates how four teachers view paper-based and screen-based text processing in the younger years of school. It is still paper-based text revision that dominates in schools, and the teachers point out the shortage of digital tools and competence. The choice of processing method is affected by the aim, whether it concerns content or form. The result shows that digital tools can be of help for pupils with difficulties, but the interviewed teachers also emphasize the value of mastering handwriting, and they would like to see screen-based text processing as a complement to traditional paper-based text processing.
75

Desenvolvimento de sensores eletroquímicos de carbono visando à detecção de furosemida em amostras farmacêuticas e clínicas / Development of carbon electrochemical sensors for the detection of furosemide in pharmaceutical and clinical samples

Vanessa Neiva de Ataide 03 April 2018 (has links)
Nos últimos anos, materiais baseados em grafeno têm atraído grande interesse na área eletroquímica devido às suas excelentes propriedades eletrônicas. Neste trabalho, apresentamos a obtenção de óxido de grafeno reduzido utilizando métodos eletroquímicos. A redução eletroquímica do óxido de grafeno (OG) foi realizada na superfície de um eletrodo de carbono vítreo (ECV) utilizando voltametria cíclica. O óxido de grafeno reduzido eletroquimicamente (OG-RE) foi caracterizado utilizando espectroscopia Raman, microscopia eletrônica de varredura (MEV), microscopia de força atômica (MFA), espectroscopia de fotoelétrons excitados por raios-X (XPS) e espectroscopia de impedância eletroquímica. A relação ID/IG obtida através dos espectros Raman do OG e do OG-RE foram de 0,98 e 1,15, respectivamente, indicando que o processo de redução resultou em uma maior desorganização estrutural. A espectroscopia de fotoelétrons de raios-X mostrou que a proporção entre C e O no OG foi de 45,7% e, que após a redução eletroquímica essa relação diminuiu para 38,5%. O eletrodo modificado com OG-RE foi empregado para quantificação de furosemida (FUR) em amostras farmacêuticas utilizando voltametria de pulso diferencial e análise por injeção em fluxo com detecção amperométrica. Os limites de detecção e quantificação calculados para o método proposto foram de 0,35 e 1,18 µmol L-1, respectivamente. Visando à aplicação em amostras de interesse clínico, fabricou-se um sensor descartável e de baixo custo para a detecção de FUR utilizando papel sulfite pintado com lápis de desenho e ativado por laser de CO2. Os estudos voltamétricos utilizando o [Ru(NH3)6]Cl3 mostraram que o transporte de massa neste dispositivo foi governado por difusão e que o tratamento com laser diminui a resistência a transferência de carga, assim como resultou em um menor problema relacionado ao envenenamento da superfície do eletrodo / In recent years, graphene-based materials have attracted great interest in the area of electrochemistry due to its excellent electronic properties. In this work, we present the production of reduced graphene oxide using electrochemical methods. The electrochemical reduction of graphene oxide (GO) was carried out on the surface of a glassy carbon electrode (GCE) using the cyclic voltammetry technique. Electrochemically reduced graphene oxide (ER-GO) was characterized using Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), Xray excited photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). ID / IG ratio obtained through Raman spectra of GO and ER-GO were 0.98 and 1.15, respectively, indicating that the reduction process resulted in greater structural disorganization. XPS showed that the ratio between C and O in the GO was 45.7% and that after electrochemical reduction this ratio decreased to 38.5%. The ER-GO modified electrode was used as a sensor for furosemide (FUR) in pharmaceutical samples using the techniques of differential pulse voltammetry and flow injection analysis with amperometric detection. The limits of detection and quantification for the proposed method were 0.35 and 1.18 µmol L-1, respectively. Aiming to the application in clinical samples a disposable, low-cost paper-based sensor for the detection of FUR was fabricated using office paper painted with drawing pencil and activated by CO2 laser. Voltammetric studies using [Ru(NH3)6]Cl3 have shown that mass transport in this device was controlled by diffusion and the laser decreases resistance to charge transfer, as well as, avoided the problem with electrode surface poisoning
76

Desenvolvimento de sensores eletroquímicos de carbono visando à detecção de furosemida em amostras farmacêuticas e clínicas / Development of carbon electrochemical sensors for the detection of furosemide in pharmaceutical and clinical samples

Ataide, Vanessa Neiva de 03 April 2018 (has links)
Nos últimos anos, materiais baseados em grafeno têm atraído grande interesse na área eletroquímica devido às suas excelentes propriedades eletrônicas. Neste trabalho, apresentamos a obtenção de óxido de grafeno reduzido utilizando métodos eletroquímicos. A redução eletroquímica do óxido de grafeno (OG) foi realizada na superfície de um eletrodo de carbono vítreo (ECV) utilizando voltametria cíclica. O óxido de grafeno reduzido eletroquimicamente (OG-RE) foi caracterizado utilizando espectroscopia Raman, microscopia eletrônica de varredura (MEV), microscopia de força atômica (MFA), espectroscopia de fotoelétrons excitados por raios-X (XPS) e espectroscopia de impedância eletroquímica. A relação ID/IG obtida através dos espectros Raman do OG e do OG-RE foram de 0,98 e 1,15, respectivamente, indicando que o processo de redução resultou em uma maior desorganização estrutural. A espectroscopia de fotoelétrons de raios-X mostrou que a proporção entre C e O no OG foi de 45,7% e, que após a redução eletroquímica essa relação diminuiu para 38,5%. O eletrodo modificado com OG-RE foi empregado para quantificação de furosemida (FUR) em amostras farmacêuticas utilizando voltametria de pulso diferencial e análise por injeção em fluxo com detecção amperométrica. Os limites de detecção e quantificação calculados para o método proposto foram de 0,35 e 1,18 µmol L-1, respectivamente. Visando à aplicação em amostras de interesse clínico, fabricou-se um sensor descartável e de baixo custo para a detecção de FUR utilizando papel sulfite pintado com lápis de desenho e ativado por laser de CO2. Os estudos voltamétricos utilizando o [Ru(NH3)6]Cl3 mostraram que o transporte de massa neste dispositivo foi governado por difusão e que o tratamento com laser diminui a resistência a transferência de carga, assim como resultou em um menor problema relacionado ao envenenamento da superfície do eletrodo / In recent years, graphene-based materials have attracted great interest in the area of electrochemistry due to its excellent electronic properties. In this work, we present the production of reduced graphene oxide using electrochemical methods. The electrochemical reduction of graphene oxide (GO) was carried out on the surface of a glassy carbon electrode (GCE) using the cyclic voltammetry technique. Electrochemically reduced graphene oxide (ER-GO) was characterized using Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), Xray excited photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). ID / IG ratio obtained through Raman spectra of GO and ER-GO were 0.98 and 1.15, respectively, indicating that the reduction process resulted in greater structural disorganization. XPS showed that the ratio between C and O in the GO was 45.7% and that after electrochemical reduction this ratio decreased to 38.5%. The ER-GO modified electrode was used as a sensor for furosemide (FUR) in pharmaceutical samples using the techniques of differential pulse voltammetry and flow injection analysis with amperometric detection. The limits of detection and quantification for the proposed method were 0.35 and 1.18 µmol L-1, respectively. Aiming to the application in clinical samples a disposable, low-cost paper-based sensor for the detection of FUR was fabricated using office paper painted with drawing pencil and activated by CO2 laser. Voltammetric studies using [Ru(NH3)6]Cl3 have shown that mass transport in this device was controlled by diffusion and the laser decreases resistance to charge transfer, as well as, avoided the problem with electrode surface poisoning
77

Effect of computer based training and testing on structured on–the–job training programs / M.A. Agbogo

Agbogo, Adakole Michael January 2010 (has links)
Human capital is the only resource within an organisation that can learn. Developing high levels of competence in employees is one of the most challenging issues in organisations. Off–the–Job training programs either miss the mark or are too far away from the performance setting to have the desired impact on employee competence. Studies have shown that unstructured On–the–Job Training (OJT) leads to increased error rate, lower productivity and decreased training efficiency, compared to structured On–the–Job Training(S–OJT). The proven efficiency and effectiveness of S–OJT make it especially suitable to meet this challenge. Though S–OJT has been around for a while there has not been a proper integration of technology into the process. Every training approach, including S–OJT, is merely a means to an end, not an end in itself. The use of S–OJT helps to develop consistent appropriate levels of employee competence. When employees have these competencies e.g. better knowledge of the production processes, they can increase productivity, complete projects on time, lower defect rates, or achieve other outcomes of importance. These are the outcomes that matter to the organisation and the effectiveness of S–OJT should be judged from this perspective. Researchers have consistently found that one way to improve learners' success is to increase the frequency of exams. Classes meet for a set number of times. An instructor's decision to give more exams typically means that students have less time for learning activities during class meetings. How then can one have the best of both worlds, increasing the number of assessments and at the same time having enough time for learning activities? This can only be accomplished by integrating computer–based assessment into S–OJT programs. Computer–based testing and training can provide flexibility, instant feedback, an individualised assessment and eventually lower costs than traditional written examinations. Computerised results create opportunities for teaching and assessment to be integrated more than ever before and allow for retesting students, measuring growth and linking assessment to instruction. This research aims to evaluate the effectiveness of integrating computer–based testing and training into S–OJT programs using the Air Separation unit of Sasol Synfuels as a case study. The null hypothesis is used to investigate the draw backs of OJT and S–OJT programs. A framework is also developed for the effective integration of CBT into S–OJT programs. / Thesis (M.Ing. (Development and Management))--North-West University, Potchefstroom Campus, 2011.
78

Effect of computer based training and testing on structured on–the–job training programs / M.A. Agbogo

Agbogo, Adakole Michael January 2010 (has links)
Human capital is the only resource within an organisation that can learn. Developing high levels of competence in employees is one of the most challenging issues in organisations. Off–the–Job training programs either miss the mark or are too far away from the performance setting to have the desired impact on employee competence. Studies have shown that unstructured On–the–Job Training (OJT) leads to increased error rate, lower productivity and decreased training efficiency, compared to structured On–the–Job Training(S–OJT). The proven efficiency and effectiveness of S–OJT make it especially suitable to meet this challenge. Though S–OJT has been around for a while there has not been a proper integration of technology into the process. Every training approach, including S–OJT, is merely a means to an end, not an end in itself. The use of S–OJT helps to develop consistent appropriate levels of employee competence. When employees have these competencies e.g. better knowledge of the production processes, they can increase productivity, complete projects on time, lower defect rates, or achieve other outcomes of importance. These are the outcomes that matter to the organisation and the effectiveness of S–OJT should be judged from this perspective. Researchers have consistently found that one way to improve learners' success is to increase the frequency of exams. Classes meet for a set number of times. An instructor's decision to give more exams typically means that students have less time for learning activities during class meetings. How then can one have the best of both worlds, increasing the number of assessments and at the same time having enough time for learning activities? This can only be accomplished by integrating computer–based assessment into S–OJT programs. Computer–based testing and training can provide flexibility, instant feedback, an individualised assessment and eventually lower costs than traditional written examinations. Computerised results create opportunities for teaching and assessment to be integrated more than ever before and allow for retesting students, measuring growth and linking assessment to instruction. This research aims to evaluate the effectiveness of integrating computer–based testing and training into S–OJT programs using the Air Separation unit of Sasol Synfuels as a case study. The null hypothesis is used to investigate the draw backs of OJT and S–OJT programs. A framework is also developed for the effective integration of CBT into S–OJT programs. / Thesis (M.Ing. (Development and Management))--North-West University, Potchefstroom Campus, 2011.
79

Modellierung und Simulation des Systemverhaltens nasslaufender Lamellenkupplungen

Rao, Guang 04 October 2011 (has links) (PDF)
Nasslaufende Lamellenkupplungen finden im Automobil immer mehr Anwendungen. Im Bezug auf die steigenden Motorleistungen, die Gewichtsoptimierungsmaßnamen und die hohen Ansprüche an Fahrdynamik nimmt die geforderte Leistungsdichte einer nasslaufenden Lamellenkupplung ständig zu. Die Lamellenkupplung wird oft nahe an ihrer Belastungsgrenze ausgelegt. Außerdem wachsen gleichzeitig die Anforderungen an ihre Schaltdynamik, das Komfortverhalten und die Lebensdauer. Schwerpunkt dieser Arbeit ist die Modellierung und Simulation von Reibung und Verschleiß nasslaufender Lamellenkupplungen, insbesondere der mit dem Papierreibbelag. Ein umfassendes Verständnis für die Reibungsvorgänge und Verschleißmechanismen stellt die Grundvoraussetzung für eine optimale Entwicklung der nasslaufenden Lamellenkupplung dar. Zur Lösung der gestellten Aufgabe werden die wichtigsten Einflussgrößen auf das tribolgische System der Lamellenkupplung charakterisiert und die Wirkungen der tribologischen Beanspruchungsgrößen identifiziert. Zudem werden verschiedene Simulationsmodelle mit unterschiedlicher Modellierungstiefe erstellt. Dazu gehören Reibmodelle, Wärmeflussmodelle sowie Lebensdauermodelle, wobei die Reib- und Wärmeflussmodelle für die Lebensdauermodelle benötigt werden. Die hergeleiteten Modelle werden in die Simulationsumgebung implementiert und mit Hilfe eines Prüfstandsversuches verifiziert. Die validierten Modelle können für die Systemoptimierung und die Lebensdauerabsicherung der nasslaufenden Lamellenkupplungen effizient eingesetzt werden. Dies kann eine deutliche Reduktion der Entwicklungszeit sowie der Versuchskosten ermöglichen.
80

Development of Point-of-Care Testing Sensors for Biomarker Detection

Zhu, Xuena 22 April 2015 (has links)
Point-of-care testing (POCT) is defined as medical testing at or near the site of patient care and has become a critical component of the diagnostic industry. POCT has many advantages over tests in centralized laboratories including small reagent volumes, small size, rapid turnaround time, cost-effectiveness, low power consumption and functional integration of multiple devices. Paper-based POCT sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for clinical diagnosis. The focus of this dissertation was to develop simple, rapid and low cost paper-based POCT sensors with high sensitivity and portability for disease biomarker detection. Lateral flow strips (LFS) were used as the basic platform as it provides several key advantages such as simplicity, fast response time, on site and cost-effectiveness, and it can be used to detect specific substances including small molecules, large proteins and even whole pathogens, in a sample by immunological reactions. Earlier designs of paper strips lacked the quantitative information of the analyte concentration and could only provide single analyte detection at a time. In this study, a series of modifications were made to upgrade the platform to compensate for these limitations. First, we developed a gold nanoparticle based LFS for qualitative colorimetrical detection of bladder cancer related biomarkers in standard solutions and in urine samples. Second, by incorporating an image processing program “ImageJ”, a semi-quantitative LFS platform was established. The capability of the strip was evaluated by testing a small DNA oxidative damage biomarker in urine and cell culture models. Third, we combined the electrochemical method and colorimetrical method for quantitative biomarker detection. Finally, we integrated a commercialized blood glucose meter to quantitatively detection of two non-glucose biomarkers by converting their signals to that of glucose. The upgraded sensor could provide a noninvasive, rapid, visual, quantitative and convenient detection platform for various disease biomarkers. In addition, this platform does not require expensive equipments or trained personnel, deeming it suitable for use as a simple, economical and portable field kit for on-site biomarker monitoring in a variety of clinical settings.

Page generated in 0.0268 seconds