• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 284
  • 282
  • 68
  • 45
  • 27
  • 26
  • 14
  • 6
  • 6
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 902
  • 606
  • 252
  • 226
  • 222
  • 209
  • 111
  • 106
  • 102
  • 85
  • 82
  • 80
  • 80
  • 72
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Molecular and isotopic characterization of terrestrial organic carbon released to (sub-)Arctic coastal waters

Vonk, Jorien Elisabeth January 2010 (has links)
Arctic soils store half of the global soil organic carbon (OC) pool and twice as much C as is currently present in the atmosphere. A considerable part of these carbon pools are stored in permafrost. Amplified climate warming in the Arctic will thaw permafrost and remobilize some of these substantial carbon stocks into the active carbon cycle, potentially causing positive feedback to global warming. Despite the global importance of this mechanism, our understanding of the fate of these thawing organic carbon (OC) pools is still poor, particularly regarding its degradation potential. This makes good estimates on greenhouse gas emissions versus coastal reburial impossible. This doctoral thesis aims to improve our understanding on the fate of high-latitude terrestrial OC during fluvial and coastal transport. In two study regions, the Bothnian Bay and the East Siberian Sea, we apply a wide range of bulk, molecular and isotopic geochemical analyses to reveal information on sources, age, degradation and transport routes. Our results show that both study regions receive and store large amounts of terrestrial OC, largely derived from peatlands (paper I, II and IV). This terrestrial matter undergoes extensive degradation in both the water column and surface sediments (paper I, III and IV). Surface sediments in the East Siberian Sea show a offshore-decreasing input of riverine OC and a considerable and constant input of OC from coastal erosion. The strong imprint of rapidly settling coastal OC far out on the shelf may be explained by a strong benthic boundary layer transport in combination with offshore ice-transport and selective preservation of erosion OC compared to riverine OC (paper IV). Molecular radiocarbon data allowed us to distinguish between two (sub-)Arctic soil OC pools that show a remarkably different susceptibility to degradation upon arrival in the coastal system; a young and easily degradable pool originating in surface peatlands, and an old and recalcitrant pool originating in deep mineral soils and coastal mineral Pleistocene deposits (paper III and IV). Our first estimates suggest that, in the Bothnian Bay coastal system, mineral soil OC is at least 20 times less susceptible to degradation than peatland OC (paper III). Hence, a considerable part of the thaw-released mineral OC pool may simply be relocated to coastal sediments instead of being emitted to the atmosphere. / At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Accepted. Paper 4: Manuscript.
472

On the integration of Computational Fluid Dynamics (CFD) simulations with Monte Carlo (MC) radiation transport analysis

Ali, Fawaz 01 December 2009 (has links)
Numerous scenarios exist whereby radioactive particulates are transported between spatially separated points of interest. An example of this phenomenon is, in the aftermath of a Radiological Dispersal Device (RDD) detonation, the resuspension of radioactive particulates from the resultant fallout field. Quantifying the spatial distribution of radioactive particulates allow for the calculation of potential radiation doses that can be incurred from exposure to such particulates. Presently, there are no simulation techniques that link radioactive particulate transport with subsequent radiation field determination and so this thesis develops a coupled Computational Fluid Dynamics (CFD) and Monte Carlo (MC) Radiation Transport approach to this problem. Via particulate injections, the CFD simulation defines the spatial distribution of radioactive particulates and this distribution is then employed by the MC Radiation Transport simulation to characterize the resultant radiation field. GAMBIT/FLUENT are employed for the CFD simulations while MCNPX is used for the MC Radiation Transport simulations. / UOIT
473

Spray Combustion Characteristics and Emissions of a Wood derived Fast Pyrolysis Liquid-ethanol Blend in a Pilot Stabilized Swirl Burner

Tzanetakis, Tommy 11 January 2012 (has links)
Biomass fast pyrolysis liquid (bio-oil) is a cellulose based alternative fuel with the potential to displace fossil fuels in stationary heat and power applications. To better understand the combustion behavior and emissions of bio-oil, a 10 kW spray burner was designed and constructed. The effect of swirl, atomization quality, ignition source (pilot) energy, air/fuel preheat and equivalence ratio on the stability and emissions of bio-oil spray flames was investigated. A blend of 80% pyrolysis liquid and 20% ethanol by volume was used during the tests and the results were compared to burner operation with diesel. It is important to have good atomization, thorough mixing and high swirl in order to stabilize ignition, promote the burnout of bio-oil and decrease CO, hydrocarbon and particulate matter emissions. The total amount of primary air and atomizing air that can be used to improve turbulence, mixing, droplet burnout and overall combustion quality is limited by the distillable fraction and narrow lean blow-out limit associated with pyrolysis liquid. Air and fuel preheat are important for reducing hydrocarbon and CO emissions, although subsequent fuel boiling should be avoided in order to maintain flame stability. The NOx produced in bio-oil flames is dominated by the conversion of fuel bound nitrogen. The particulate matter collected during bio-oil combustion is composed of both carbonaceous cenosphere residues and ash. Under good burning conditions, the majority consists of ash. Pilot flame energy and air/fuel preheat have a weak effect on the total particulate matter in the exhaust. Generally, these results suggest that available burner parameters can be adjusted in order to achieve low hydrocarbon, CO and carbonaceous particulate matter emissions when using pyrolysis liquid. Total particulates can be further mitigated by reducing the inherent ash content in bio-oil. Comparative burner tests with diesel reveal much lower emissions for this fuel at most of the operating points considered. This is due to the fully distillable nature, better atomization and improved spray ignition characteristics associated with diesel. Because of its superior volatility, diesel can also operate over a much wider range of primary air and atomizing air flow rates compared to bio-oil.
474

Spray Combustion Characteristics and Emissions of a Wood derived Fast Pyrolysis Liquid-ethanol Blend in a Pilot Stabilized Swirl Burner

Tzanetakis, Tommy 11 January 2012 (has links)
Biomass fast pyrolysis liquid (bio-oil) is a cellulose based alternative fuel with the potential to displace fossil fuels in stationary heat and power applications. To better understand the combustion behavior and emissions of bio-oil, a 10 kW spray burner was designed and constructed. The effect of swirl, atomization quality, ignition source (pilot) energy, air/fuel preheat and equivalence ratio on the stability and emissions of bio-oil spray flames was investigated. A blend of 80% pyrolysis liquid and 20% ethanol by volume was used during the tests and the results were compared to burner operation with diesel. It is important to have good atomization, thorough mixing and high swirl in order to stabilize ignition, promote the burnout of bio-oil and decrease CO, hydrocarbon and particulate matter emissions. The total amount of primary air and atomizing air that can be used to improve turbulence, mixing, droplet burnout and overall combustion quality is limited by the distillable fraction and narrow lean blow-out limit associated with pyrolysis liquid. Air and fuel preheat are important for reducing hydrocarbon and CO emissions, although subsequent fuel boiling should be avoided in order to maintain flame stability. The NOx produced in bio-oil flames is dominated by the conversion of fuel bound nitrogen. The particulate matter collected during bio-oil combustion is composed of both carbonaceous cenosphere residues and ash. Under good burning conditions, the majority consists of ash. Pilot flame energy and air/fuel preheat have a weak effect on the total particulate matter in the exhaust. Generally, these results suggest that available burner parameters can be adjusted in order to achieve low hydrocarbon, CO and carbonaceous particulate matter emissions when using pyrolysis liquid. Total particulates can be further mitigated by reducing the inherent ash content in bio-oil. Comparative burner tests with diesel reveal much lower emissions for this fuel at most of the operating points considered. This is due to the fully distillable nature, better atomization and improved spray ignition characteristics associated with diesel. Because of its superior volatility, diesel can also operate over a much wider range of primary air and atomizing air flow rates compared to bio-oil.
475

Sensitivity Analysis in Air Quality Models for Particulate Matter

Napelenok, Sergey L. 31 October 2006 (has links)
Fine particulate matter (PM2.5) has been associated with a variety of problems that include adverse health effects, reduction in visibility, damage to buildings and crops, and possible interactions with climate. Although stringent air quality regulations are in place, policy makers need efficient tools to test a wide range of control strategies. Sensitivity analysis provides predictions on how the interdependent concentrations of various PM2.5 components and also gaseous pollutant species will respond to specific combinations of precursor emission reductions. The Community Multiscale Air Quality Model (CMAQ) was outfitted with the Decoupled Direct Method in 3D for calculating sensitivities of particulate matter (DDM-3D/PM). This method was evaluated and applied to high PM2.5 episodes in the Southeast United States. Sensitivities of directly emitted particles as well as those formed in the atmosphere through chemical and physical processing of emissions of gaseous precursors such as SO2, NOx, VOCs, and NH3 were calculated. DDM-3D/PM was further extended to calculate receptor oriented sensitivities or the Area of Influence (AOI). AOI analysis determines the geographical extent of relative air pollutant precursor contributions to pollutant levels at a specific receptor of interest. This method was applied to Atlanta and other major cities in Georgia. The tools developed here (DDM-3D/PM and AOI) provide valuable information to those charged with air quality management.
476

Design Of A Mixer For Uniform Heating Of Particulate Solids In Microwave Ovens

Cevik, Mete 01 March 2011 (has links) (PDF)
The aim of this study is to design a mixer with appropriate parts for uniform treatment of the material in household microwave ovens which can not be achieved with the turntable. The designed mixer&rsquo / s performance was tested by the help of color and surface temperature values. In the design of the mixer primarily mixing in the vertical and radial directions were sought and for this purpose blades and wings for directing the material especially in these directions were present. The rotational motion of the mixer was provided by a shaft actuated by the motor of the turntable where the motor was replaced by a speed adjustable one. Couscous macaroni beads wetted with CoCl2 solution were dried for processing in the microwave oven. The initial color values of the samples were L*= 52.0&plusmn / 0.35, a*= 8.8&plusmn / 0.21 and b*= 14.1&plusmn / 0.11 . The studied parameters were microwave power level (10%, 40%, 67% and 100% ), processing time (60,90, 120 sec), speed of rotation of the mixer (5,10,15 rpm) , location (4up, 4bt, 6up, 6bt) for the cases of with and without the mixer. v The macaroni beads were well arranged in a mixing container and then put into the microwave oven for operation. Same parameters with coloring experiments were used for the surface temperature determination. After operation the container was photographed by an IR camera. Whether the designed mixer was present or not, average a* and b* values decreased while temperature increased . All these values were significantly affected by the time and power increase. The L* value became an insignificant parameter to decide for the performance Location of the particles in the container appeared as a significant parameter affecting the a*, b* and temperature values without the mixer whereas, with the use of the mixer it became an insignificant parameter indicating uniform energy distribution. Speed of rotation of the mixer was a significant parameter for both cases. However, the color values obtained did not show the same trend with mixer which it showed without mixer. It is concluded that the designed mixer is effective in providing homogeneity of the product by providing sufficient mixing in the container hence the particles can receive about equal energy. Keywords: Microwave oven, particulate solids, mixing, mixer design, testing performance, uniform treatment
477

Acoustic modelling and testing of advanced exhaust system components for automotive engines

Allam, Sabry January 2004 (has links)
<p>The increased use of the diesel engine in the passenger car, truck and bus market is due to high efficiency and lower fuel costs. This growing market share has brought with it several environmental issues for instance soot particle emission. Different technologies to remove the soot have been developed and are normally based on some kind of soot trap. In particular for automobiles the use of diesel particulate traps or filters (DPF:s) based on ceramic monolithic honeycombs are becoming a standard. This new exhaust system component will affect the acoustics and also work as a muffler. To properly design exhaust systems acoustic models for diesel particulate traps are needed. The first part of this thesis considers the modelling of sound transmission and attenuation for traps that consist of narrow channels separated by porous walls. This work has resulted in two new models an approximate 1-D model and a more complete model based on the governing equations for a visco-thermal fluid. Both models are expressed as acoustic 2-ports which makes them suitable for implementation in acoustic software for exhaust systems analysis. The models have been validated by experiments on clean filters at room temperature with flow and the agreement is good. In addition the developed filter models have been used to set up a model for a complete After Treatment Device (ATD) for a passenger car. The unit consisted of a chamber which contained both a diesel trap and a Catalytic Converter (CC). This complete model was also validated by experiments at room temperature. The second part of the thesis focuses on experimental techniques for plane wave decomposition in ducts with flow. Measurements in ducts with flow are difficult since flow noise (turbulence) can strongly influence the data. The difficulties are also evident from the lack of good published in-duct measurement data, e.g., muffler transmission loss data, for Mach-numbers above 0.1-0.2. The first paper in this part of the thesis investigates the effect of different microphone mountings and signal processing techniques for suppressing flow noise. The second paper investigates in particular flow noise suppression techniques in connection with the measurement of acoustic 2-ports. Finally, the third paper suggests a general wave decomposition procedure using microphone arrays and over-determination. This procedure can be used to determine the full plane wave data, e.g., the wave amplitudes and complex wave numbers k+ and k-. The new procedure has been applied to accurately measure the sound radiation from an unflanged pipe with flow. This problem is of interest for correctly determining the radiated power from an engine exhaust outlet. The measured data for the reflection coefficient and end correction have been compared with the theory of Munt [33] and the agreement is excellent. The measurements also produced data for the damping value (imaginary part of the wavenumber) which were compared to a model suggested by Howe [13]. The agreement is good for a normalized boundary layer thickness less than 30-40</p>
478

Design of Small Scale Anaerobic Digesters for Application in Rural Developing Countries

Rowse, Laurel Erika 01 January 2011 (has links)
The high incidence of upper respiratory diseases, contamination of waterways due to pathogens and nutrients from human and animal wastes, unsustainable deforestation, gender disparities in burden of disease due to unequal exposure to indoor air pollutants, and carbon black emissions from the burning of solid fuels are interrelated problems in many developing countries. Small scale anaerobic digestion provides a means of alleviating these problems by treating livestock waste onsite to produce biogas (methane and carbon dioxide) in rural areas in developing countries. Fuel can then be used for cooking, lighting, and heating. Methane fuel is an alternative to traditional three-stone fires, improved cook stoves, and liquid petroleum gas. However, there is a lack of information available on design methods for these systems. The goal of this research was to develop a design tool that could be used for anaerobic digester sizing based on livestock waste availability. An Excel spreadsheet model was developed for sizing the bioreactor and the gas container based upon recommended values from a literature review. Needed monitoring parameters for operation of an anaerobic digester in the field were identified and standard methods of analysis were recommended. Sample preservation techniques were detailed. Guidelines for pathogen reduction in thermophilic anaerobic digestion were identified. Further study of pathogen reduction in low temperature reactors currently in use in developing countries was recommended. Three digester designs included in the Excel spreadsheet model were: the polyethylene tubular digester, the floating drum digester, and the fixed dome digester. The design tool may be requested from Dr. Sarina Ergas, sergas(at)usf.edu. An organic loading rate of 1.0 kg VS/(m3*d) was chosen for use in the design tool based upon a review of the literature. A semi-empirical kinetic model was developed for defining the SRT based on the temperature inputted by the user. Three case studies, based upon livestock waste availability in a rural community in the Dominican Republic, were analyzed using the sizing design tool. The case studies were conducted on three scales: one household, six households, and a village of 48 households. The specific biogas production rates were, for Case Studies one through three, respectively, 0.0076, 0.0069, and 0.010 m3 biogas/kg Volatile Solids reduced. Additional future work included: characterization of human feces and guinea pig manure, laboratory and field testing of the Excel spreadsheet design tool, and promotion of anaerobic digesters by development workers, non-governmental organizations, and governments.
479

Simulating the contributions of local and regional sources to fine PM in megacities / Η συνεισφορά τοπικών και αποκρυσμένων περιοχών στα επίπεδα ρύπανσης των ευρωπαΐκών μεγαλουπόλεων

Σκυλλάκου, Ξακουστή 30 April 2014 (has links)
The Particulate Matter Source Apportionment Technology (PSAT) is used together with PMCAMx, a regional chemical transport model, to estimate how local emissions and pollutant transport affect primary and secondary particulate matter concentration levels in European megacities such as Paris, London and Po Valley. The case of Paris megacity was investigated in detail. During the summer and the winter period examined, only 13% of the PM2.5 is due to local Paris emissions, with 36% due to mid range (within 500 km from the center of the Paris) sources and 51% resulting from long range transport (more than 500 km from the center of the Paris). The local emissions contribution to elemental carbon (EC) is significant, with almost 60% of the EC originating from local sources during both summer and winter. Approximately 50% of the fresh primary organic aerosol (POA) originated from local sources and another 45% from areas 100-500 km from the receptor region during summer. Regional sources dominated the secondary PM components. More than 70% of the sulfate originated from SO2 emitted more than 500 km away from the center of the Paris. Also more than 45% of secondary organic aerosol (SOA) was due to the oxidation of VOC precursors that were emitted 100-500 km from the center of the Paris. Long range sources are more important during winter because the photochemical activity is lower. PSAT results for contributions of local and regional sources were also compared with observation-based estimates from field campaigns that took place during the MEGAPOLI project. PSAT predictions are in general consistent with these estimates OA and sulfate but PSAT predicts lower transported EC for both seasons. / Ο καταμεριστικός αλγόριθμος ατμοσφαιρικών σωματιδίων (PSAT, Particulate Matter Source Apportionment Technology) χρησιμοποιείται σε συνδυασμό με το τρισδιάστατο μοντέλο χημικής μεταφοράς PMCAMx με σκοπό να εκτιμήσει κατά πόσο οι τοπικές εκπομπές και η μεταφορά της ρύπανσης επηρεάζουν τα πρωτογενή και τα δευτερογενή επίπεδα σωματιδιακών συγκεντρώσεων σε Ευρωπαϊκές μεγαλουπόλεις όπως το Παρίσι, το Λονδίνο και η κοιλάδα του ποταμού Πάδου στη βόρεια Ιταλία (Po Valley). Η περίπτωση του Παρισιού μελετήθηκε λεπτομερώς. Κατά τη διάρκεια του καλοκαιριού και του χειμώνα που εξετάστηκε, μόνο το 13% των PΜ2.5 σωματιδίων προέρχονται από τοπικές πηγές, 36% προέρχεται από ενδιάμεσες πηγές (μεταξύ 500 km από το κέντρο του Παρισιού) και 51% από απομακρυσμένες περιοχές (σε αποστάσεις μεγαλύτερες των 500 km από το κέντρο του Παρισιού). Η συνεισφορά των τοπικών πηγών στο στοιχειακό άνθρακα είναι σημαντική, 60% περίπου του στοιχειακού άνθρακα προέρχεται από τοπικές πηγές κατά τη διάρκεια τόσο του καλοκαιριού όσο και του χειμώνα. Σχεδόν 50% των φρέσκων πρωτογενών οργανικών σωματιδίων (POA) προέρχονται από τοπικές πηγές και 45% από περιοχές 100-500 km από των αποδέκτη κατά τη διάρκεια του καλοκαιριού. Οι συνεισφορά από απομακρυσμένες περιοχές κυριαρχεί στα δευτερογενή σωματίδια. Περισσότερο από 70% των θεϊκών σωματιδίων προέρχεται από διοξείδιο του θείου το οποίο εκπέμπεται από αποστάσεις μεγαλύτερες των 500 km από το κέντρο του Παρισιού. Επίσης περισσότερο από το 45% των δευτερογενών οργανικών σωματιδίων οφείλεται στην οξείδωση των πτητικών οργανικών ενώσεων (VOCs) που εκπέμπονται από 100 έως 500 km μακριά από το κέντρο του Παρισιού. Οι απομακρυσμένες περιοχές είναι πιο σημαντικές κατά τη διάρκεια του χειμώνα λόγω της ελάχιστης φωτοχημείας. Τα αποτελέσματα που προέκυψαν από τον αλγόριθμο PSAT για τις συνεισφορές των τοπικών όσο και των απομακρυσμένων περιοχών επίσης συγκρίνονται με μετρήσεις πεδίου από πειραματικές διατάξεις στο πλαίσιο του διεθνούς προγράμματος MEGAPOLI. Ο αλγόριθμος PSAT προβλέπει γενικά ικανοποιητικά τις συνεισφορές σε σχέση με αυτές που υπολογίστηκαν από τις μετρήσεις πεδίου.
480

Methodology of Measuring Particulate Matter Emissions from a Gasoline Direct Injection Engine

Mireault, Phillip 19 March 2014 (has links)
A gasoline direct injection engine was set-up to operate with a dynamometer in a test cell. Test cycle and emissions measurement procedures were developed for evaluating the regulated and non-regulated gaseous emissions. Equipment and techniques for particulate matter measurements were adapted for use with the gasoline direct injection engine. The particulate matter emissions produced by the engine were compared between two different fuels; gasoline and E10 (10% ethanol and 90% gasoline). The gaseous emissions generated by the engine when it was run on gasoline and E30 (30% ethanol and 70% gasoline) were also compared. Particle number decreased with E10 for hot start conditions, while the opposite was observed for cold start conditions. Particulate matter emissions were found to track with acetylene and ethylene emissions.

Page generated in 0.0416 seconds