• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 187
  • 61
  • 42
  • 31
  • 20
  • 14
  • 14
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 415
  • 415
  • 206
  • 122
  • 119
  • 100
  • 100
  • 99
  • 97
  • 78
  • 66
  • 62
  • 60
  • 59
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Modeling And Simulation Of All-electric Aircraft Power Generation And Actuation

Woodburn, David 01 January 2013 (has links)
Modern aircraft, military and commercial, rely extensively on hydraulic systems. However, there is great interest in the avionics community to replace hydraulic systems with electric systems. There are physical challenges to replacing hydraulic actuators with electromechanical actuators (EMAs), especially for flight control surface actuation. These include dynamic heat generation and power management. Simulation is seen as a powerful tool in making the transition to all-electric aircraft by predicting the dynamic heat generated and the power flow in the EMA. Chapter 2 of this dissertation describes the nonlinear, lumped-element, integrated modeling of a permanent magnet (PM) motor used in an EMA. This model is capable of representing transient dynamics of an EMA, mechanically, electrically, and thermally. Inductance is a primary parameter that links the electrical and mechanical domains and, therefore, is of critical importance to the modeling of the whole EMA. In the dynamic mode of operation of an EMA, the inductances are quite nonlinear. Chapter 3 details the careful analysis of the inductances from finite element software and the mathematical modeling of these inductances for use in the overall EMA model. Chapter 4 covers the design and verification of a nonlinear, transient simulation model of a two-step synchronous generator with three-phase rectifiers. Simulation results are shown
282

Fully Levitated Rotor Magnetically Suspended by Two Pole-Pair Separated Conical Motors

Kascak, Peter Eugene 27 July 2010 (has links)
No description available.
283

Sensorless Vector Control and Field Weakening Operation of Permanent Magnet Synchronous Machines

Zhang, Yuan 17 December 2010 (has links)
No description available.
284

A Study of Field-Oriented Control of a Permanent Magnet Synchronous Generator and Hysteresis Current Control for Wind Turbine Application

Baktiono, Surya 27 June 2012 (has links)
No description available.
285

Power Electronic Stages for a TFPMSM in Wave Power Applications

Falk Olson, Gustaf January 2016 (has links)
Direct drive wave energy conversion systems have been identified as a potentially major contributor to the world’s energy demands, forecasting shares of up to 25 % of the energy mix. Anders Hagnestål conducts research at the Royal Institute of Technology where a novel linear transverse flux permanent magnet generator is developed. This concept machine is particularly well-suited for the pertaining operating conditions in marine environments, producing large forces at low speeds with outstandingly low resistive losses. However, it exhibits severe magnetic saturation and draws unsymmetrical phase currents at nominal operation. In addition, it possesses a low power factor. All in all, this places stern requirements on the power electronic system and control algorithms. The aim of this thesis has been to design a functioning power conditioning system that connects the machine to the electric grid. For this purpose, a three-phase two-level voltage source converter is proposed to be back-to-back connected with two-level single-phase voltage source converters (active rectifiers) interfacing each and every machine phase. It is shown that the intermediate DC link can be maintained at a constant voltage with restricted ripple while feeding power at unity power factor to the grid by appropriately sizing the DC capacitor and adopting a feedback linearization control scheme. The phase currents can be controlled effectively by means of a cascaded gain-scheduled PID controller. By including a low-pass filter the iron losses in the machine may be suppressed even at lower switching frequencies. A constrained cost optimization indicates that the converter consequently can reach 99.1 % efficiency. Finally, with this thesis as a background, it is suggested that the thermal stresses on the selected semiconductor modules and the iron losses of the machine are evaluated to further improve the design. If higher efficiency of the active rectifiers is strived for, more complex converter topologies could be considered. / Direktdrivna vågenergiomvandlingssystem har utpekats som en potentiellt starkt bidragande resurs för att tillgodose världens efterfrågan på energi med andelar på uppemot 25 % av energimixen förutspådda. Anders Hagnestål bedriver forskning och utveckling av en ny typ av linjär permanentmagnetiserad transversalflödesmaskin vid Kungliga Tekniska Högskolan. Konceptmaskinen är särskilt väl lämpad för de rådande marina förhållandena genom att kunna producera stora krafter vid låga hastigheter med utomordentligt låga resistiva förluster. Maskinen går emellertid i kraftig magnetisk mättnad och drar asymmetriska strömmar vid nominell drift. Dessutom är effektfaktorn låg i jämförelse med standardmaskiner. Alltsomallt inför detta hårda krav på det effektelektroniska systemet och kontrollalgoritmerna. Målet med detta examensarbete har varit att designa ett funktionellt effektkonditioneringssystem som sammanfogar maskinen med det angränsande elektriska nätet. För att åstadkomma detta föreslås att en tvånivås-trefasomriktare kopplas rygg-mot-rygg till tvånivås-enfasomvandlare (aktiva likriktare) som i sin tur är kopplade till varje maskinfas. Med den här konfigurationen visas det att spänningen på den mellanliggande DC-länken kan hållas konstant med begränsat rippel, alltmedan effekt tillförs nätet vid effektfaktor ett genom att dimensionera DC-kondensatorn på rätt sätt och använda en kontrollag baserad på exakt linjärisering. Maskinens fasströmmar kan kontrolleras effektivt med hjälp av en kaskadkopplad PID-regulator med schemalagda förstärkningsfaktorer. Genom att inkludera ett lågpassfilter förväntas det att järnförlusterna i maskinen kan begränsas även vid lägre switchfrekvenser. Genom att lösa ett kostnadsoptimeringsproblem visas det att den resulterande aktiva likriktaren kan uppnå en verkningsgrad på 99.1 %. Slutligen, med det här examensarbetet som grund, föreslås det att den termiska stressen på de valda halvledarkomponentsmodulerna och järnförlusterna i maskinen utvärderas för att ytterligare förbättra designen. Om högre verkningsgrad eftersträvas hos de aktiva likriktarna kan mer komplicerade omvandlartopologier övervägas.
286

On analytical modeling and design of a novel transverse flux generator for offshore wind turbines

Svechkarenko, Dmitry January 2007 (has links)
The object of this thesis is to develop a cost effective direct-driven wind generator suited for offshore wind turbines. As the generator price is a complicated function dependent on many parameters, the emphasis is mainly put on reduction of the weight of active materials, such as copper, laminated steel, permanent magnets, and electrical insulation. The higher specific torque and power density of a transverse flux permanent magnet (TFPM) machine in comparison to conventional radial-flux machines make it a promising solution for direct-driven wind turbine generators. The novel TFPM generator investigated in this work due to its possibly more compact construction would allow a better utilization of the available nacelle space. The analytical model, including evaluation of the synchronous inductance, is developed and applied in parametric study of a 5 MW wind turbine generator. The influence of the design variables with respect to the analyzed characteristics is investigated. A number of machines that have approximately the same performances are found. These machines are compared and the optimal ranges for the main parameters are suggested. One possible design topology is presented in more details with dimensions and main characteristics. This generator is compared with radial-flux generators with surface-mounted and tangentially-polarized magnets. It is found that the analyzed TFPM generator would favor a smaller outer diameter, reduced total active weight, and reduced weight of the magnet material. The TFPM would however require a longer axial length. TFPM generators with a broader range of output power have also been investigated. Generators rated 3, 5, 7, 10, and 12 MW are analyzed and their characteristics with respect to the output power are compared. The novel transverse flux topology has been found to be promising for low-speed hightorque applications, such as direct-driven wind turbines in the multi-megawatt range. / QC 20101118
287

Real-time torque ripple compensationfor PMSMs in robotics applications

Jieqiong, Wang January 2024 (has links)
The Permanent Magnet Synchronous Motors (PMSM) have wide application in the robotics field due to its efficiency and reliability. As a servo system, it demands high precision in different control applications. Torque ripple is a critical issue resulting in mechanical vibrations and shortening the life of PMSMs, especially at low speeds. Because the magnitude of speed harmonics is proportional to the magnitude of the torque harmonics of the same order, methods to reduce speed harmonics can be utilized for torque ripple minimization. This thesis work proposes three methods for torque ripple reduction. One method is based on harmonic speed control (HSC) and harmonic current control (HCC). Another method uses the fuzzy to adjust PI parameters based on HSC-HCC. The third method utilizes torque ripple estimation (TRE) and HCC. In the proposed methods, torque ripples are estimated using a torque ripple model (TRM). At low speeds, speed harmonics and current harmonics are obtained based on an adaptive linear neural-based filter. The errors between the optimal harmonic current reference from HSC or TRE and the harmonic current from extraction are used to generate harmonic voltage in HCC. This harmonic voltage is fed back to compensate and reduce torque ripple. Furthermore, a feedforward compensation method is proposed to minimize torque ripple across a range of speeds based on the feedback compensation results. Finally, simulations and experiments are carried out to demonstrate the validity and performance of the proposed torque ripple reduction methods.
288

Terminal Behavioral Modeling of Electric Machines for Real-time Emulation and System-level Analysis

Nazari, Arash 20 September 2022 (has links)
Stability and sustainability of operation of interconnected power converter systems has been an important focus of study in the field of power electronics and power systems. With ever-increasing application of electrical machines by means of electrification of vehicles, airplanes and shipboards, detailed study of the relating dynamics is very important to ensure the proper implementation and stable behavior of the overall system. In this work, the application of the black box approach study of the power converters has been expanded to the electrical machines. Using this modeling method, it is possible of have accurate behavior of electrical and mechanical terminals of the machine without the detailed information about the internal structure of the machine, material characteristics or topology of the machine. Instead, accurate model of electrical and mechanical terminals of the machine are achieved by measuring specific frequency responses of the machine to distinguish dynamic relation of the various electrical and mechanical quantities of the machine. The directly measured frequency responses, are coupled with the dynamics of the source and load in the electrical and mechanical terminals of the machine thus in order to decoupled the described couplings a mathematical process is used that results in decoupling of the controller and drive on the electrical side and the dynamics of the mechanical load and mechanical shaft at the mechanical terminal of the machine. Resulting model is the linear time invariant representation of the electrical machine at a specific operating point. Additionally, this work represents the application of this modeling method for accurate measurement of internal parameters of the machine such as inductances and mechanical inertia and characterization of the mechanical shaft coupler. Resulting unterminated model of the machine is a very important matter of information for system integrators and electrical and mechanical designs related to the application of the machine, to ensure the stable and sustainable operation of the machine. This work for the first time, represents the experimental implementation of this terminal behavioral modeling method for studying electrical machines as well as describes some of the practical limitations of this methodology. By incorporating and integrating a combination of commercially available devices such as frequency response analyzer, Hardware-In-The-Loop (HIL), Power-Hardware-In-The-Loop (PHIL), a test setup has been developed that is capable of control, operate and study arbitrary frame small-signal related measurements required for terminal behavioral study of the electrical machines. Resulting model of the machine that has been extracted from this modeling method is then used to compare in time domain with the real machine in the case of transient change in the mechanical load on the shaft to discover the validity of this modeling procedure. / Master of Science / According to the data from the International Energy Agency, around half of the electricity used globally is consumed by electric motors. Moreover, the growth in the electrical vehicle industry will increase their application even further, hence the development of high-fidelity models of electric machines for real-time emulation, system-level analyses, and stability studies still stands out as an important and needed research focus. New modeling concepts that go beyond the standard industry practice can be used at the design and integration stage to ensure the stable behavior of the overall system. Furthermore, convenient testing and identification pressures can help ensure the long-term operation of the system. Aligned with this trend, this thesis is studying permanent magnet synchronous machines (PMSM) using small-signal terminal-behavioral three-port networks. Having such a behavioral model of the machine available provides many opportunities for system integrators, and even enables an in-situ system observation and stability assessment at both the machine's electrical and mechanical interfaces. This capability can undoubtedly be of high importance in practice, as it is offering new insights into dynamic interactions of the electro-mechanical systems, the governor or turbine control design in ships, aircrafts, electrical vehicles, and even large synchronous machines in power plants. A so-called characterization testbed has been built that combines Hardware-In-The-Loop (HIL) and Power-Hardware-In-The-Loop (PHIL) environments, with sensor-interface boards that are used to properly scale measured signals for machine control. The Frequency-Response-Analyzer is used to sweep the proper electrical or mechanical terminal of the machine by perturbing the proper control signal within the machine controller running in PHIL and reading d-q currents, voltages, torque, and speed variables whose dynamic ratios are then obtained without the need for interrupting the normal operation of the electrical machine. The capability of acquiring such a detailed model of the machine while the machine is in operation is an important benefit of this modeling method, in comparison to the conventional identification methods widely applied in the industry. The resulting model is a linearized time invariant representation of the electrical machine at a specific operating point of interest, and can be used by system integrators to ensure the stability of the system using well known stability assessment methodologies. Furthermore, this modeling strategy has been experimentally verified for the first time on electrical machines, and the resulting model has been compared with the transient behavior of the machine in the presence of a step change in the mechanical load of the machine.
289

High performance drive for electric vehicles – System comparison between three and six phase permanent magnet synchronous machines

Döbler, Ralf, Schuhmann, Thomas, Inderka, Robert B., von Malottki, Sicong 07 May 2024 (has links)
In this paper, three different system topologies for a high performance electric vehicle drive are compared to each other. Next to the classical three phase permanent magnet synchronous machine in different connection schemes, also one topology containing a six phase machine has been included into the study. Suitable inverter topologies are discussed as well as the design of the multiphase winding of the six phase machine. For each of the topologies under investigation, identical types of power semiconductor devices available on the market have been defined as well as an identical active volume of the inverter. The three system topologies (three phase single star machine with parallel inverters, three phase machine in H-bridge / six leg connection, six phase double star machine) have been compared to each other regarding their performance as well as their active short circuit and no-load characteristics. It has been shown by means of simulation that the six phase PSM structure offers some remarkable advantages with regard to its three phase counterparts which makes it adequate for high performance electric vehicle drive applications.:I. Introduction II. Inverter Topologies II.a) Three Phase, Single Star with Parallel Inverter (m3) II.b) Three Phase, H-bridge (m3h) II.c) Six Phase, Double Star (m6) III. Design of Electrical Machine IV. Simulation Results IV.a) Peak Performance IV.b) Induced Back-e.m.f. IV.c) Stationary Short Circuit Condition V. System Comparison VI. Conclusion
290

Improved Control of a Primary Linear Actuator using State-Space

Lagerström, Arvid January 2024 (has links)
This master’s thesis investigates the possibility of replacing the traditional triple cascaded Proportional-Integral (PI) controller architecture, used to regulate a PermanentMagnet Synchronous Motor (PMSM), with a state-space approach. Using theory regarding PMSMs and Electromechanical Actuators (EMAs) as a foundation, the thesisdescribes the design process of the proposed control methods up until implementation. The two state-space approaches evaluated in the thesis are: a single Linear-QuadraticRegulator (LQR) method and a torque reference generating LQR together with a setof two PI controllers for current regulation. Evaluation of the chosen methods wasdone based on simulations in Simulink/Simscape, containing verified models mimicking real hardware, with several input cases. Based on simulation results, the combined LQR and PI method was deemed promisingto replace the current cascaded PI control architecture. The open end of the reportallows for further implementation and evaluation on the real platform to confirm theresults obtaiend through simulations.

Page generated in 0.0771 seconds