• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 167
  • 46
  • 38
  • 17
  • 14
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 356
  • 207
  • 57
  • 49
  • 49
  • 35
  • 34
  • 34
  • 32
  • 31
  • 27
  • 25
  • 25
  • 25
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Affibody molecules for proteomic and therapeutic applications

Grönwall, Caroline January 2008 (has links)
This thesis describes generation and characterization of Affibody molecules with future applications in proteomics research, protein structure determinations, therapeutic treatment of disease and medical imaging for in vivo diagnostics. Affibody molecules are engineered affinity proteins developed by combinatorial protein engineering from the 58-residue protein A-derived Z domain scaffold. Novel Affibody molecules targeting human proteins were selected from a combinatorial library using phage display technology. In the first two investigations, an Affibody molecule specifically targeting the high abundant human serum protein transferrin was generated. The intended future use of this Affibody ligand would be as capture ligand for depletion of transferrin from human samples in proteomics analysis. Strong and highly specific transferrin binding of the selected Affibody molecule was demonstrated by biosensor technology, dot blot analysis and affinity chromatography. Efficient Affibody-mediated depletion of transferrin in human plasma and cerebrospinal fluid (CSF) was demonstrated in combination with IgG and HSA removal. Furthermore, depletion of five high abundant proteins including transferrin from human CSF gave enhanced identification of proteins in a shotgun proteomics analysis. Two studies involved the selection and characterization of Affibody molecules recognizing Alzheimer’s amyloid beta (Abeta) peptides. Future prospect for the affinity ligands would primarily be for therapeutic applications in treatment of Alzheimer’s disease. The developed A-binding Affibody molecules were found to specifically bind to non-aggregated forms of Abeta and to be capable of efficiently and selectively capture Abeta peptides from spiked human serum. Interestingly, the Abeta-binding Affibody ligands were found to bind much better to Abeta as dimeric constructs, and with impressive affinity as cysteine-bridged dimers (KD~17 nM). NMR spectroscopy studies revealed that the original helix one, of the two Affibody molecules moieties of the cysteine-bridged dimers, was unfolded upon binding, forming intermolecular β-sheets that stabilized the Abeta peptide, enabling a high resolution structure of the peptide. Furthermore, the Abeta-binding Affibody molecules were found to inhibit Abeta fibrillation in vitro. In the last study, Affibody molecules directed to the interleukin 2 (IL-2) receptor alpha (CD25) were generated. CD25-binding Affibody molecules could potentially have a future use in medical imaging of inflammation, and possibly in therapeutic treatment of disease conditions with CD25 overexpression. The selected Affibody molecules were demonstrated to bind specifically to human CD25 with an apparent affinity of 130-240 nM. Moreover, the CD25-targeting Affibody molecules were found to have overlapping binding sites with the natural ligand IL-2 and an IL-2 blocking monoclonal antibody. Furthermore, the Affibody molecules demonstrated selective binding to CD25 expressing cells. / QC 20100729
202

Affibody molecules targeting the epidermal growth factor receptor for tumor imaging applications

Friedman, Mikaela January 2008 (has links)
Tumor targeting and molecular imaging of protein markers specific for or overexpressed in tumors can add useful information in deciding upon treatment and assessing the response to treatment for a cancer patient. The epidermal growth factor receptor (EGFR) is one such tumor-associated receptor, which expression is abnormal or upregulated in various cancers and associated with a poor patient prognosis. It is therefore considered a good target for imaging and therapy. Monoclonal antibodies and recently also antibody fragments have been investigated for in vivo medical applications, like therapy and imaging. In molecular imaging a small sized targeting agent is favorable to give high contrast and therefore, antibody fragments and lately also small affinity proteins based on a scaffold structure constitute promising alternatives to monoclonal antibodies. Affbody molecules are such affinity proteins that are developed by combinatorial protein engineering of the 58 amino acid residue Z-domain scaffold, derived from protein A. In this thesis, novel Affibody molecules specific for the EGFR have been selected from a combinatorial library using phage display technology. Affibody molecules with moderate high affinity demonstrated specific binding to native EGFR on the EGFR-expressing epithelial carcinoma A431 cell line. Further cellular assays showed that the EGFR-binding Affibody molecules could be labeled with radiohalogens or radiometals with preserved specific binding to EGFR-expressing cells. In vitro, the Affibody molecule demonstrated a high uptake and good retention to EGFR-expressing cells and was found to internalize. Furthermore, successful imaging of tumors in tumor-bearing mice was demonstrated. Low nanomolar or subnanomolar affinities are considered to be desired for successful molecular imaging and a directed evolution to increase the affinity was thus performed. This resulted in an approximately 30-fold improvement in affinity, yielding EGFR-binding Affibody molecules with KD´s in the 5-10 nM range, and successful targeting of A431 tumors in tumor-bearing mice. To find a suitable format and labeling, monomeric and dimeric forms of one affinity matured binder were labeled with 125I and 111In. The radiometal-labeled monomeric construct, 111In-labeled-ZEGFR:1907, was found to provide the best tumor-to-organ ratio due to good tumor localization and tumor retention. The tumor-to-blood ratio, which is often used as a measure of contrast, was 31±8 at 24 h post injection and the tumor was clearly visualized by gamma-camera imaging. Altogether, the EGFR-binding Affibody molecule is considered a promising candidate for further development of tumor imaging tracers for EGFR-expressing tumors and metastases. This could simplify the stratification of patients for treatment and the assessment of the response of treatment in patients. / QC 20100723
203

Mapping Specificity Profiles and Protein Interaction Networks for Peptide Recognition Modules

Tonikian, Raffi 03 March 2010 (has links)
Protein-protein interactions are of vital importance to the cell as they mediate the assembly of protein complexes that carry out diverse biological functions. Many proteins involved in cellular signaling are built by the combinatorial use of peptide recognition modules (PRMs), which are small protein domains that bind to their cognate ligands by recognizing short linear peptide motifs. Thousands of PRMs are found in nature, requiring improved methods to better elucidate their molecular determinants of binding and to allow accurate mapping of their interaction networks. In this thesis, I describe the development and application of phage-displayed peptide libraries to map the binding specificities of two common PRMs. First, I generated specificity profiles for 82 C. elegans and human PDZ domains that could be organized into a specificity map. The map revealed that PDZ domains have far greater substrate sequence specificity than previously believed, providing significant insights into the relationships between PDZ structure and specificity, and allowing specificity prediction for uncharacterized domains. My results were used to predict both endogenous and pathogenic PDZ interactions. This analysis revealed that viruses have evolved ligands that specifically mimic PDZ domains to subvert host cell immunity. Second, I analyzed the binding specificity for the SH3 domain family in S. cerevisae. I found that, like PDZ domains, SH3 domains have binding specificities that are more detailed than the conventional classification system. The phage-derived specificity profiles were combined with data from oriented peptide and yeast two-hybrid screening to generate a highly accurate SH3 domain interaction network. Given the prominent role of SH3 domains in endocytosis, the SH3 domain interaction data was used to predict the dynamic localization of several uncharacterized endocytosis proteins, which was subsequently confirmed by cell-based assays. The application of the techniques described here to other PRM families will significantly improve protein interaction maps for signaling pathways, which will illuminate our understanding of the cell circuitry, allow the use of PRMs as general affinity reagent and detection tools, and guide the development of small molecule inhibitors that mimic their peptide ligands for therapeutic intervention.
204

Assessment of the immunogenicity of porcine <i>Circovirus</i> 2 (PCV2) vaccines : a prototype vaccine and a lambda display vaccine

Angunna Gamage, Lakshman Nihal 30 March 2010
Porcine <i>Circovirus</i> 2 (PCV2) associated diseases (PCVAD) cause economic loss to the global swine industry. Control measures for PCVAD largely depend on the use of PCV2 vaccines. The available commercial PCV2 vaccines contain either inactivated whole virus particles or recombinant PCV2 capsid protein. These preparations most likely contain varying amounts of immune-irrelevant proteins that can cause adverse injection site reactions, with compromised efficacy due to alteration of protective immune epitopes arising during the viral inactivation process. Other constraints include high production cost attributed to propagation of slow growing virus and expression and extraction of recombinant proteins, a requirement for adjuvants, and the induction of a Th2-biased immune response. Hence, development of new PCV2 vaccines is necessary.<p> There are two recommended PCV2 vaccination strategies. They are i. vaccinating sows, which relies on the passive transfer of maternal immunity to offspring, and ii. immunizing young piglets to induce an active immune response. The piglet vaccination has been shown to confer better protection from mortality. Maternal antibody interference to the induction of an active immune response is an obstacle when piglets are vaccinated at an early age. Can we sidestep this maternal antibody interference? To address this issue, I investigated whether a prototypical PCV2 vaccine, parenterally administered, could override maternally-derived PCV2 antibodies in seropositive piglets. The results of this study were not conclusive. However, they laid the foundation for future studies based upon using varying levels of vaccine antigen with different adjuvants, and administered to piglets with defined maternally derived PCV2 antibodies.<p> Subsequently, I examined if a new PCV2 vaccine candidate comprised of bacteriophage lambda particles displaying part of the PCV2 capsid protein could induce anti-PCV2 immunity. Initial experiments showed that pigs do not have pre-existing anti-lambda antibodies and thus will not neutralize display particles used as a vaccine at primary vaccination. I produced and characterized lambda phage particles displaying four immunodominant regions of porcine circovirus 2 (PCV2) capsid protein fused to the lambda capsid protein D i.e., D-CAP, phage display particles. Expression of D-CAP in <i>Escherichia coli</i> (<i>E. coli</i>) and its presence in the vaccine preparation was shown by ELISA and Western blots using anti-PCV2 polyclonal antiserum from a gnotobiotic pig. The vaccine, lambda particles displaying PCV2 capsid protein immunogenic epitopes fused to lambda D protein (LDP-D-CAP), administered without an adjuvant induced both humoral and cellular immunity to PCV2 in conventional pigs, as shown by ELISA, Western blots, virus neutralization assay and delayed type hypersensitivity (DTH) reactions. This work produced the first potential phage vaccine to PCV2. In order to further investigate the feasibility of using the lambda display technology. I produced and characterized two additional lambda display particle preparations, LDP-D-FLAG and LDP-D-GFP, displaying a FLAG tag and the green fluorescent proteins, respectively.
205

Two Dimensional Genetic Approach to the Development of a Controllable Lytic Phage Display System

Sheldon, Katlyn 20 February 2013 (has links)
Bacteriophage Lambda (λ) has played a historical role as an essential model contributing to our current understanding of molecular genetics. Lambda’s major capsid protein “gpD” occurs on each capsid at 405 to 420 copies per phage in homotrimeric form and functions to stabilize the head and likely to compact the genomic DNA. The interesting conformation of this protein allows for its exploitation through the genetic fusion of peptides or proteins to either the amino or carboxy terminal end of gpD, while retaining phage assembly functionality and viability. The lytic nature of λ and the conformation of gpD in capsid assembly makes this display system superior to other display options. Despite previous reports of λ as a phage display candidate, decorative control of the phage remains an elusive concept. The primary goal of this study was to design and construct a highly controllable head decoration system governed by two genetic conditional regulation systems; plasmid-mediated temperature sensitive repressor expression and bacterial conditional amber mutation suppression. The historical λ Dam15 conditional allele results in a truncated gpD fragment when translated in nonsuppressor, wild-type E. coli cells, resulting in unassembled, nonviable progeny. I sequenced the Dam15 allele, identifying an amber (UAG) translational stop at the 68th codon. Employing this mutant in combination with a newly created isogenic cellular background utilizing the amber suppressors SupD (Serine), SupE (Glutamine), SupF (Tyrosine) and Sup— (wild type), we sought to control the level of incorporation of undecorated gpD products. As a second dimension, I constructed two separate temperature-inducile plasmids whereby expression of either D or D::eGFP was governed by the λ strong λ CI[Ts]857 temperature-sensitive repressor and expressed from the λ PL strong promoter. Our aim was to measure the decoration of the λ capsid by a D::gfp fusion under varying conditions regulated by both temperature and presence of suppression. This was achieved utilizing this controllable system, enabling the measurement of a variable number of fusions per phage based on diverse genetic and physical environments without significantly compromising phage viability. Surprisingly, both SupE and SupF showed similar levels of Dam15 suppression, even though sequencing data indicated that only SupE could restore the native gpD sequence at amino acid 68 (Q). In contrast, SupD (S), conferred very weak levels of suppression, but imparted an environment for very high decoration of gpD::eGFP per capsid, even at lower (repressed) temperatures. The presence of albeit few wild-type gpD molecules allowed for an even greater display than that of the perceived “100%” decoration scenario provided by the nonsuppressor strain. It appears that the lack of wild-type gpD does not allow for the space required to display the maximum number of fusions and in turn creates an environment that affects both phage assembly and therefore phage viability. Finally, the use of Western blotting, confirmed the presence of gpD::eGFP fusion decoration by employing a polyclonal anti-eGFP antibody. The significance of this work relates to the unique structure of λ’s capsid and its ability to exploit gpD in the design of controlled expression, which is guiding future research examining the fusion of different therapeutic peptides and proteins. Furthermore this approach has important implications specifically for the design of novel vaccines and delivery vehicles for targeted gene therapy in which steric hindrance and avidity are important concerns. The execution of this project employed basic bacterial genetics, phage biology and molecular biology techniques in the construction of bacterial strains and plasmids and the characterization of the phage display system.
206

Mapping Specificity Profiles and Protein Interaction Networks for Peptide Recognition Modules

Tonikian, Raffi 03 March 2010 (has links)
Protein-protein interactions are of vital importance to the cell as they mediate the assembly of protein complexes that carry out diverse biological functions. Many proteins involved in cellular signaling are built by the combinatorial use of peptide recognition modules (PRMs), which are small protein domains that bind to their cognate ligands by recognizing short linear peptide motifs. Thousands of PRMs are found in nature, requiring improved methods to better elucidate their molecular determinants of binding and to allow accurate mapping of their interaction networks. In this thesis, I describe the development and application of phage-displayed peptide libraries to map the binding specificities of two common PRMs. First, I generated specificity profiles for 82 C. elegans and human PDZ domains that could be organized into a specificity map. The map revealed that PDZ domains have far greater substrate sequence specificity than previously believed, providing significant insights into the relationships between PDZ structure and specificity, and allowing specificity prediction for uncharacterized domains. My results were used to predict both endogenous and pathogenic PDZ interactions. This analysis revealed that viruses have evolved ligands that specifically mimic PDZ domains to subvert host cell immunity. Second, I analyzed the binding specificity for the SH3 domain family in S. cerevisae. I found that, like PDZ domains, SH3 domains have binding specificities that are more detailed than the conventional classification system. The phage-derived specificity profiles were combined with data from oriented peptide and yeast two-hybrid screening to generate a highly accurate SH3 domain interaction network. Given the prominent role of SH3 domains in endocytosis, the SH3 domain interaction data was used to predict the dynamic localization of several uncharacterized endocytosis proteins, which was subsequently confirmed by cell-based assays. The application of the techniques described here to other PRM families will significantly improve protein interaction maps for signaling pathways, which will illuminate our understanding of the cell circuitry, allow the use of PRMs as general affinity reagent and detection tools, and guide the development of small molecule inhibitors that mimic their peptide ligands for therapeutic intervention.
207

Assessment of the immunogenicity of porcine <i>Circovirus</i> 2 (PCV2) vaccines : a prototype vaccine and a lambda display vaccine

Angunna Gamage, Lakshman Nihal 30 March 2010 (has links)
Porcine <i>Circovirus</i> 2 (PCV2) associated diseases (PCVAD) cause economic loss to the global swine industry. Control measures for PCVAD largely depend on the use of PCV2 vaccines. The available commercial PCV2 vaccines contain either inactivated whole virus particles or recombinant PCV2 capsid protein. These preparations most likely contain varying amounts of immune-irrelevant proteins that can cause adverse injection site reactions, with compromised efficacy due to alteration of protective immune epitopes arising during the viral inactivation process. Other constraints include high production cost attributed to propagation of slow growing virus and expression and extraction of recombinant proteins, a requirement for adjuvants, and the induction of a Th2-biased immune response. Hence, development of new PCV2 vaccines is necessary.<p> There are two recommended PCV2 vaccination strategies. They are i. vaccinating sows, which relies on the passive transfer of maternal immunity to offspring, and ii. immunizing young piglets to induce an active immune response. The piglet vaccination has been shown to confer better protection from mortality. Maternal antibody interference to the induction of an active immune response is an obstacle when piglets are vaccinated at an early age. Can we sidestep this maternal antibody interference? To address this issue, I investigated whether a prototypical PCV2 vaccine, parenterally administered, could override maternally-derived PCV2 antibodies in seropositive piglets. The results of this study were not conclusive. However, they laid the foundation for future studies based upon using varying levels of vaccine antigen with different adjuvants, and administered to piglets with defined maternally derived PCV2 antibodies.<p> Subsequently, I examined if a new PCV2 vaccine candidate comprised of bacteriophage lambda particles displaying part of the PCV2 capsid protein could induce anti-PCV2 immunity. Initial experiments showed that pigs do not have pre-existing anti-lambda antibodies and thus will not neutralize display particles used as a vaccine at primary vaccination. I produced and characterized lambda phage particles displaying four immunodominant regions of porcine circovirus 2 (PCV2) capsid protein fused to the lambda capsid protein D i.e., D-CAP, phage display particles. Expression of D-CAP in <i>Escherichia coli</i> (<i>E. coli</i>) and its presence in the vaccine preparation was shown by ELISA and Western blots using anti-PCV2 polyclonal antiserum from a gnotobiotic pig. The vaccine, lambda particles displaying PCV2 capsid protein immunogenic epitopes fused to lambda D protein (LDP-D-CAP), administered without an adjuvant induced both humoral and cellular immunity to PCV2 in conventional pigs, as shown by ELISA, Western blots, virus neutralization assay and delayed type hypersensitivity (DTH) reactions. This work produced the first potential phage vaccine to PCV2. In order to further investigate the feasibility of using the lambda display technology. I produced and characterized two additional lambda display particle preparations, LDP-D-FLAG and LDP-D-GFP, displaying a FLAG tag and the green fluorescent proteins, respectively.
208

Recombinant Human Growth Hormone Production By Pichia Pastoris And Determination Of Its Interaction With Peptide Ligands

Inankur, Bahar 01 July 2010 (has links) (PDF)
In this study, the aim was to achieve high concentration of recombinant human growth hormone (rhGH) production by recombinant Pichia pastoris by investigating the effects of various operation parameters and to determine the suitable peptide ligand sequence that shows affinity and specificity to hGH. In this context, firstly the effect of temperature and Tween-20/80 addition on production and cell growth were investigated. While at T=30 and 32&deg / C, there was no difference, at 27 and 25&deg / C cell growth slowed down and production decreased significantly. The addition of Tween-20/80 in existence of co-substrate sorbitol did not affect the bioprocess while in absence of sorbitol Tween alone did not show the same positive effect on product formation and cell growth. Thereafter at T=30&deg / C, without addition of Tween, three sets of pilot scale bioreactor experiments were performed. In the first set, the effect of methanol feeding rate on bioprocess characteristics were investigated at the specific growth rates of &mu / =0.02, 0.03 and 0.04 h-1. While the highest cell concentration was achieved at &mu / =0.04 h-1, the highest rhGH concentration was achieved at &mu / =0.03 h-1. Secondly, conducting methanol feeding at &mu / =0.03 h-1, pH=5.5 experiment was conducted. The highest cell concentration, 45 g L-1 and maximum rhGH concentration 0.25 g L-1 were achieved at t=18 h of the process. Finally, the effect of batch sorbitol feeding on bioprocess was observed by the addition of 50 g L-1 sorbitol at t=0, 14 and 31 h of the production phase. It was shown that sorbitol addition to the medium increased process duration / hence cells enter stationary phase after a longer production phase. However, the protease concentration continued increasing with respect to time and at the end of the process reached twice the concentration it was obtained with single sorbitol addition case decreasing the rhGH concentration. In selection of the peptide sequence that shows affinity towards hGH, phage display method was conducted. Additionally the sequences from literature and computational design were used as alternatives. The interaction between these peptides and hGH was investigated by isothermal titration calorimetry and surface plasmon resonance.
209

Epitopes mapping and vaccine development of Mycoplasma hyopneumoniae through phage display technology

Yang, Wen-Jen 27 January 2003 (has links)
Mycoplasma hyopneumoniae is the etiologic agent causing chronic pneumonia of swine. The lung lesions of swine produce the slower growth rate and lower feed conversion ratio and finally cause economic loss. Although four genome projects of mycoplasma species had been completed, the genome-sequencing project of M. hyopneumoniae also closed to the finished stage. However, only a few genes and proteins of M. hyopneumoniae have been studied, the molecular pathogenic mechanism remains elusive. The research of molecular vaccine is still preliminary. In order to obtain more information about epitope structures as the basis to develop molecular vaccine against this pathogen, two phage-displayed random heptapeptides libraries were used to identify epitopes recognized by purified IgG of rabbit anti-M. hyopneumoniae hyperimmune serum in this study. Individual phage clones were isolated and verified the binding specificity to the purified IgG by Western blot analysis and competitive ELISA after three rounds of biopanning. The selected clones were further characterized by DNA sequencing analysis and deduced to amino acid sequences. There are six consensus sequences contained tri- to hepta-peptide existing among the selected phage clones by aligning the sequences of foreign amino acids displaying on pIII protein. The consensus sequences may be serving as crucial epitopes of M. hyopneumoniae. By searching the protein database of M. hyopneumoniae deposited in NCBI, some surface proteins were matched by the selected mimotopes. Like P97, the essential protein for attaching to cilia of swine, the deduced epitopes mainly located at a.a. from 365 to 382, 395 to 403 and 436 to 452, the R1 and R2 repeated sequences also matched by the mimotopes. To evaluate the potential of these mimotopes as effective vaccine, several phage clones were chosen to immunize mice by intraperitoneal and intranasal administration. There are specific antibody responses to these mimotopes existing in serum IgG, fecal extracts and bronchoalveolar lavage fluids IgA. The serum IgG subclass profiles analysis reveals that these are mainly existed in IgG1 subclass. Base on the results of IgG subclass profiles analysis in sera, the results suggest that the phage-derived vaccines mainly activate Th2 cellular immunity pathway with the strategy used in this study. The similar results were found in the inactivated vaccine. The Th2 activation will promote the elimination of extracellular microorganism. Western blotting analysis showed that each serum raised by the phage clones could recognize 2 to 5 mycoplasma proteins. With the results of growth inhibition assay, we found that the selected phage clones CS4 and 58 are better vaccine candidates and some proteins (97 kDa¡B56 kDa and 30 kDa) may play crucial roles in block the bacteria growth. The advantage was taken of the natural property of M13 phage to infect E. coli, which is initiated by the N terminal of pIII coat protein binding with the F pili of E. coli. Plaque reduction tests were proposed to demonstrate the humoral immunity responses induced by phage-derived vaccine containing the antibodies specifically against the foreign peptide displayed on pIII coat protein. The present results provide more epitope information of M. hyopneumoniae. The mice immunization results reveal that the phage-displayed mimotopes can be used as potential vaccine candidates. The strategy presented in this study can shorten the time course for vaccine development and provide an alternative pathway for searching vaccine candidates against M. hyopneumoniae.
210

Combinatorial protein engineering applied to enzyme catalysis and molecular recognition

Eklund, Malin January 2004 (has links)
<p>The recent development of methods for constructing andhandling large collections (libraries) of proteins, from whichvariants with desired traits can be isolated, hasrevolutionized the field of protein engineering. Key elementsof such methods are the various ways in which the genotypes(the genes) and the phenotypes (the encoded proteins) arephysically linked during the process. In one section of thework underlying this thesis, one such technique (phagedisplay), was used to isolateand identify protein librarymembers based on their catalytic or target molecule-bindingproperties.</p><p>In a first study, phage display libraries of the lipolyticenzyme Lipolase from Thermomyces lanuginosa were constructed,the objective being to identify variants with improvedcatalytic efficiency in the presence of detergents. Toconstruct the libraries, nine positions were targeted for codonrandomization, all of which are thought to be involved in theconformational change-dependent enzyme activation that occursat water-lipid interfaces. The aim was to introduce two tothree amino acid mutations at these positions per lipase gene.After confirming that the wt enzyme could be functionallydisplayed on phage, selections with the library were performedutilizing a mechanism-based biotinylated inhibitor in thepresence of a detergent formulation. According to rhodamineB-based activity assays, the fraction of active clonesincreased from 0.2 to 90 % over three rounds of selection.Although none of the variants selected using this approachshowed increased activity, in either the presence or absence ofdetergent compared to the wild type enzyme, the resultsdemonstrated the possibility of selecting variants of theenzyme based on catalytic activity.</p><p>In the following work, phage libraries of the StaphylococcalProtein A (SPA)-derived Z-domain, constructed by randomizationof 13 surface-located positions, were used to isolate Z domainvariants (affibodies) with novel binding specificities. Astargets for selections, the parental SPA domains as well as twopreviously selected affibodies directed against two unrelatedtarget proteins were used. Binders of all three targets wereisolated with affinities (KD) in the range of 2-0.5 µM.One SPA binding affibody (Z<sub>SPA-1</sub>) was shown to bind to each of the fivehomologous native IgG-binding domains of SPA, as well as theZdomain used as the scaffold for library constructions.Furthermore, the Z<sub>SPA-1</sub>affibody was shown to compete with one of thenative domains of SPA for binding to the Fc part of humanantibodies, suggesting that the Z<sub>SPA-1</sub>affibody bound to the Fc-binding surface ofthe Z domain. The majority of the affibodies isolated in theother two selections using two different affibodies as targets,showed very little or no binding to unrelated affibodies,indicating that the binding was directed to the randomizedsurface of their respective targets, analogously toanti-idiotypic antibodies.</p><p>The structure of the wild type Z domain/Z<sub>SPA-1</sub>affibody co-complex was determined by x-raycrystallography, which confirmed the earlier findings in thatthe affibody Z<sub>SPA-1</sub>affibody was shown to bind to the Fc bindingsurface of the Z domain. Further, both the Z domain and the Z<sub>SPA-1</sub>affibody had very similar three helix-bundletopologies, and the interaction surface involved ten out of thethirteen randomized residues, with a central hydrophobic patchsurrounded by polar residues. In addition, the interactionsurface showed a surprisingly high shape complementarity, giventhe limited size of the library used for selections. The Z<sub>SPA-1</sub>affibody was further investigated for use invarious biotechnological applications. In one study, the Z<sub>SPA-1</sub>affibody was successfully recruited as a novelaffinity gene fusion partner for production, purification anddetection of cDNA-encoded recombinant proteins using anSPA-based medium for affinity chromatography. Further, the SPAbinding capability of the Z<sub>SPA-1</sub>affibody was employed for site-specific andreversible docking of Z<sub>SPA-1</sub>affibody-tagged reporter proteins onto an SPAfusion protein anchored to a cellulose surface via acellulose-binding moiety. These generated protein complexesresembles the architecture of so-called cellulosomes observedin cellulolytic bacteria. The results suggest it may bepossible to use anti-idiotypic affibody-binding protein pairsas modules to build other self-assembling types of proteinnetworks.</p><p><b>Keywords:</b>phage display, selection, mechanism-basedinhibitor, affinity domains, crystal structure, Staphylococcusaureus protein A, affinity chromatography, anti-idiotypicbinding pairs, affibody, combinatorial, protein engineering,lipase, cellulosome, assembly.</p>

Page generated in 0.0529 seconds