• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 20
  • 12
  • 10
  • 10
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 116
  • 116
  • 116
  • 41
  • 37
  • 21
  • 19
  • 18
  • 18
  • 17
  • 15
  • 14
  • 14
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Zesilovač s fázovým závěsem / Phase Lock Amplifier

Fábik, Peter January 2013 (has links)
The aim of the master thesis is on lock-in amplifiers. Amplifier's basic parts and lock-in circuits description is listed in introductory chapters. The thesis offers overview of parameters of chosen devices available on the market and their possible usage. We describe HF2LI device functions and usage of ziControl software. With the aim to verify properties of the device and ziControl software, one of the last chapters focuses on manipulation with HF2LI device. The conducted experiments and achieved results are presented in the last chapter.
22

High-frequency wide-range all digital phase locked loop in 90nm CMOS

Muppala, Prashanth 24 August 2011 (has links)
No description available.
23

Design of a Low Power Fractional-N PLL Frequency Synthesizer in 65nm CMOS

Chaille, Jack Ryan 23 May 2022 (has links)
No description available.
24

A non-sequential phase detector for low jitter clock recovery applications

Khattoi, Amritraj January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Andrew Rys / Clock and data recovery (CDR) circuits form the backbone of high speed receivers. These receivers are used in various applications such as chip to chip interconnects, optical communications and backplane routing. The received data in CDR circuits are potentially noisy and asynchronous, i.e. they are not accompanied by a clock. The CDR circuit has to generate a clock from the data and then retime the data. The CDR circuit that recovers the clock and retimes the data has to remove the jitter that is accumulated during its transport through channels due to inter symbol interference (ISI). There are stringent jitter specifications defined by various communication standards that must be addressed by CDR circuits. These make the design of CDR circuits more difficult for system designers as well the circuit designer. Many parameters have to be taken into consideration while designing a CDR circuit. The problem becomes even more interesting as there are various tradeoffs in the design. As speeds of communications increase, the maximum allowable jitter decreases. Jitter in CDR circuits arises due to a lot of factors and is also dependent on the method used for clock and data recovery. In CDR circuits that use phase locked loops to recover the clock and retime the data, jitter may be caused by the metastability of sequential elements used in phase detectors. Jitter is also caused by the phase noise of the VCO used in the PLL. In CDR circuits that use the delay locked loop to recover the clock and data, jitter may be caused by the metastability of sequential elements in phase detectors as well as the quality of reference clock that is used to re-time the data. Additional effects that can cause jitter in CDR circuits include the use of spread spectrum clocking, delta sigma noise shaping performance, etc. In this thesis a non-sequential linear phase detector has been proposed which does not use any sequential elements to avoid metastability issues in phase detectors. The output jitter in a CDR circuit that uses the proposed phase detector is measured and compared to a Hogge Phase Detector [5].
25

A TELEMETRY TRANSMITTER CHIP SET FOR BALLISTIC APPLICATIONS

Lachapelle, John, McGrath, Finbarr, Osgood, Karina, Egri, Bob, Moysenko, Andy, Henderson, Greg, Burke, Lawrence W., Faust, Jonah N. 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The U.S. Army’s Hardened Subminiature Telemetry and Sensor Systems (HSTSS) program has engaged the M/A-COM Corporation to work in the development of a highly accurate, crystal controlled telemetry transmitter chip set to be used in Army and other U.S. military munitions. A critical factor in this work is the operating environment of up to 100,000-g launch accelerations. To support the Army in this project, M/A-COM is developing integrated Voltage Controlled Oscillators (VCO) for L and S band, a silicon synthesizer/phase locked loop (PLL) IC, and a family of power amplifiers. Lastly, the transmitter module will be miniaturized and hardened using M/A-COM’s latest chip-onboard mixed technology manufacturing capabilities. This new chip set will provide the telemetry engineer with unprecedented design flexibility. This paper will review the overall transmitter system design and provide an overview for each functional integrated circuit.
26

OPTIMIZATION OF A MINATURE TRANSMITTER MODULE FOR WIRELESS TELEMETRY APPLICATIONS

Osgood, Karina, Burke, Larry, Webb, Amy, Muir, John, Dearstine, Christina, Quaglietta, Anthony 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / M/A-COM, Inc. has previously developed a highly integrated transmitter chip set for wireless telemetry applications for the military L and S band frequencies and the commercial 2.4GHz ISM band. The original chip set is comprised of a voltage controlled oscillator (VCO), a silicon phase locked loop (PLL), and a family of power amplifiers (PA's). Using these components, M/A-COM has produced a miniature IRIG-compliant transmitter module, which has been flight-tested by the U.S. Army’s Hardened Subminiature Telemetry and Sensor System (HSTSS) program. Since the initial offering, several product enhancements have been added. The module performance has been improved by tailoring the VCO specifically for direct frequency modulation applications. In addition to improving noise performance, these enhancements have produced improved modulation linearity, decreased lock time and increased carrier stability. Modulation rates in excess of 10Mbps have been demonstrated. High efficiency power amplifiers operating at 3V have also been added to the family of amplifiers (PAE > 50%). This greatly enhanced efficiency allows higher RF power output while maintaining the same miniature form factor for the transmitter. Further, M/A-COM has added a silicon-on-sapphire PLL to the chip set, which operates at frequencies up to 3.0GHz. This paper details the enhancements to the components within the chip set, and the improvement in performance of the transmitter module. Test data is presented for the transmitter modules and individual components.
27

Cmos Programmable Time Control Circuit Design For Phased Array Uwb Ground Penetrating Radar Antenna Beamforming

Reilly, Nicholas James 01 January 2017 (has links)
Phased array radar systems employ multiple antennas to create a radar beam that can be steered electronically. By manipulating the relative phase values of feeding signals among different antennas, the effective radiation pattern of the array can be synthesized to enhance the main lobe in a desired direction while suppressing the undesired side lobes in other directions. Hence the radar scanning angles can be electronically controlled without employing the bulky mechanical gimbal structure, which can significantly reduce radar system size, weight and power consumption. In recent years, phased array technologies have received great attentions and are explored in developing many new applications, such as smart communication systems, military radars, vehicular radar, etc. Most of these systems are narrow band systems, where the phase delays are realized with narrow band phase shifter circuits. For the impulse ground penetrating radar however, its operating frequency spans an ultrawide bandwidth. Therefore the traditional phase shifters are not applicable due to their narrow band nature. To resolve the issue, in this study, a true time delay approach is explored which can precisely control time delays for the feeding pulse signals among different antennas in the array. In the design, an on chip programmable delay generator is being developed using Global Foundry 0.18 µm 7 HV high voltage CMOS process. The time delay control is realized by designing a programmable phase locked loop (PLL) circuit which can generate true time delays ranging from 100 ps (picoseconds) to 500 ps with the step size of 25 ps. The PLL oscillator's frequency is programmable from 100MHz to 500MHz through two reconfigurable frequency dividers in the feedback loop. As a result, the antenna beam angle can be synthesized to change from 9.59° to 56.4° with a step of 2.75°, and the 3dB beamwidth is 10°. The power consumption of the time delay circuit is very low, where the supply voltage is 1.8V and the average current is as low as 472uA.
28

Estudo do jitter de fase em redes de distribuição de sinais de tempo. / Phase jitter in time signal distribution networks.

Bueno, Átila Madureira 04 June 2009 (has links)
As redes de distribuição de sinais de tempo - ou redes de sincronismo - têm a tarefa de distribuir os sinais de fase e freqüência ao longo de relógios geograficamente dispersos. Este tipo de rede é parte integrante de inúmeras aplicações e sistemas em Engenharia, tais como sistemas de comunicação e transmissão de dados, navegação e rastreamento, sistemas de monitoração e controle de processos, etc. Devido ao baixo custo e facilidade de implementação, a topologia mestre-escravo tem sido predominante na implementação das redes. Recentemente, devido ao surgimento das redes sem fio - wireless - de conexões dinâmicas, e ao aumento da freqüência de operação dos circuitos integrados, topologias complexas, tais como as redes mutuamente conectadas e small world têm ganhado importância. Essencialmente cada nó da rede é composto por um PLL - Phase-Locked Loop - cuja função é sincronizar um oscilador local a um sinal de entrada. Devido ao seu comportamentamento não-linear, o PLL apresenta um jitter com o dobro da freqüência de livre curso dos osciladores, prejudicando o desempenho das redes. Dessa forma, este trabalho tem como objetivo o estudo analítico e por simulação das condições que garantam a existência de estados síncronos, e do comportamento do jitter de fase nas redes de sincronismo. São analisadas as topologias mestre-escravo e mutuamente conectada para o PLL analógico clássico. / Network synchronization deals with the problem of distributing time and fre- quency among spatially remote locations. This kind of network is a constituent element of countless aplications and systems in Engineering, such as communication and data transmission systems, navigation and position determination, monitoring and process control systems, etc. Due to its low cost and simplicity, the master-slave architec- ture has been widely used. In the last few years, with the growth of the dynamically connected wireless networks and the rising operational frequencies of the integrated cir- cuits, the study of the mutually connected and small world architectures are becoming relevant. Essentially, each node of a synchronization network is constituted by a PLL - Phase-Locked Loop - circuit that must automatically adjust the phase of a local oscillator to the phase of an incoming signal. Because of its nonlinear behavior the PLL presents a phase jitter with the double of the free running frequency of the oscillators, impairing the network performance. Thus, this work aims to study, both analytically and by simulation, the existence conditions of the synchronous states and the behavior of the double frequency jitter in the synchronization networks. Specifically the One Way Master Slave (OWMS) and Mutually Connected (MC) network architectures for classical analogical PLLs are analyzed.
29

Phase Locked Loop using LABVIEW

Narashimhamurthy, Chetan January 2019 (has links)
The phase-locked loop is an important concept in the field of wireless communication. PLL:s have wide-ranging applications in many electronic circuits. The history and the basic principle of the phase-locked loop are discussed. The different building blocks and their roles are also described along with some of the major applications ofphase-locked loops. The thesis mainly describes how to build a phase-locked loop circuit using LabVIEW, as a laboratory experiment intended for a course in Radio Engineering. It was previously implemented in PSpice and this is described for comparison. The basic functions and features of LabVIEW are discussed. The primary circuit of a phase-locked loop is constructed in LabVIEW and its characteristics are noted. Some conclusions are drawn and future work on this phase-locked loop circuit using LabVIEW is suggested.
30

Design of a low jitter digital PLL with low input frequency

Jung, Seokmin 05 June 2012 (has links)
Complex digital circuits such as microprocessors typically require support circuitry that has traditionally been realized using analog or mixed-signal macros. PLL circuits are used in many integrated applications such as frequency synthesizers and inter-chip communication interfaces. As process technologies advance and grow in complexity, the challenge of maintaining required analog elements and performance for use in circuits such as PLLs grows. Recently, digital PLL (DPLL) has emerged as an alternative to analog PLL to overcome many constraints such as low supply voltage, poor analog transistor behavior, larger area due to integrated capacitor and process variability. However, DPLLs have high deterministic jitter due to quantization noise of time-to-digital converter (TDC) and digitally-controlled oscillator (DCO) and struggle with random jitter of oscillator. In this thesis, hybrid analog/digital proportional/integral control is used to suppress TDC quantization error and digital phase accumulation techniques to mitigate DCO quantization error. VCO phase noise was reduced using an embedded voltage-mode feedback. This feedback loop is implemented by using a switched-C circuit which converts frequency to current. Designed in a 130nm CMOS process, the proposed DPLL generates more than 1GHz output frequency with low input frequency and achieves superior jitter performance compared to conventional DPLL in simulations. / Graduation date: 2013

Page generated in 0.0568 seconds