• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 12
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 18
  • 13
  • 11
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A study of gas lift on oil/water flow in vertical risers

Brini Ahmed, Salem Kalifa 01 1900 (has links)
Gas lift is a means of enhancing oil recovery from hydrocarbon reservoirs. Gas injected at the production riser base reduces the gravity component of the pressure drop and thereby, increases the supply of oil from the reservoir. Also, gas injection at the base of a riser helps to mitigate slugging and thus, improving the performance of the topside facility. In order to improve the efficiency of the gas lifting technique, a good understanding of the characteristics of gas-liquid multiphase flow in vertical pipes is very important. In this study, experiments of gas/liquid (air/water) two-phase flows, liquid/liquid of oil/water two-phase flows and gas/liquid/liquid (air/oil/water) three-phase flows were conducted in a 10.5 m high 52 mm ID vertical riser. These experiments were performed at liquid and gas superficial velocities ranging from 0.25 to 2 m/s and ~0.1 to ~6.30 m/s, respectively. Dielectric oil and tap water were used as test fluids. Instruments such as Coriolis mass flow meter, single beam gamma densitometer and wire-mesh sensor (WMS) were employed for investigating the flow characteristics. For the experiments of gas/liquid (air/water) two-phase flow, flow patterns of Bubbly, slug, churn flow regimes and transition regions were identified under the experimental conditions. Also, for flow pattern identification and void fraction measurements, the capacitance WMS results are consistent with those obtained simultaneously by the gamma densitometer. Generally, the total pressure gradient along the vertical riser has shown a significant decrease as the injected gas superficial velocity increased. In addition, the rate of decrease in total pressure gradient at the lower injected gas superficial velocities was found to be higher than that for higher gas superficial velocities. The frictional pressure gradient was also found to increase as the injected gas superficial velocity increased. For oil-water experiments, mixture density and total pressure gradient across the riser were found to increase with increasing water cut (ranging between 0 - 100%) and/or mixture superficial velocity. Phase slip between the oil and water was calculated and found to be significant at lower throughputs of 0.25 and 0.5 m/s. The phase inversion point always takes place at a point of input water cut of 42% when the experiments started from pure oil to water, and at an input water cut of 45% when the experiment’s route started from water to pure oil. The phase inversion point was accompanied by a peak increase of pressure gradient, particularly at higher oil-water mixture superficial velocities of 1, 1.5 and 2 m/s. The effects of air injection rates on the fluid flow characteristics were studied by emphasizing the total pressure gradient behaviour and identifying the flow pattern by analysing the output signals from gamma and WMS in air/oil/water experiments. Generally, riser base gas injection does not affect the water cut at the phase inversion point. However, a slight shift forward for the identified phase inversion point was found at highest flow rates of injected gas where the flow patterns were indicated as churn to annular flow. In terms of pressure gradient, the gas lifting efficiency (lowering pressure gradient) shows greater improvement after the phase inversion point (higher water cuts) than before and also at the inversion point. Also, it was found that the measured mean void fraction reaches its lowest value at the phase inversion point. These void fraction results were found to be consistent with previously published results.
12

Produção por método da temperatura de inversão de fases, estudo de estabilidade físico-química, digestabilidade in vitro e citotoxicidade de nanopartículas lipídicas sólidas encapsulando beta-caroteno / Production by phase inversion temperature method, study of physicochemical stability, in vitro digestibility and cytotoxicity of beta-carotene load solid lipid nanoparticle

Graziela Veiga de Lara Gomes 12 February 2015 (has links)
Nanopartículas lipídicas sólidas (SLN) são sistemas coloidais nanoparticulados muito utilizados para encapsulação de substâncias hidrofóbicas, com o intuito de proteger e aumentar a sua biodisponibilidade. Tais sistemas podem ser produzidos por métodos de baixa energia, como a temperatura de inversão de fase (PIT), a qual é baseada na mudança de solubilidade do tensoativo não iônico polietoxilados com a temperatura. O estudo do comportamento de tais sistemas durante a passagem pelo trato gastrointestinal torna-se interessante, caso deseje-se incorpora-los em matrizes alimentícias. Os modelos in vitro dinâmicos têm sido desenvolvidos para simular mais efetivamente os atributos que ocorrem in vivo, e dentre eles o mais conhecido é o sistema TIM (TNO intestinal model), que simula os principais eventos que ocorrem no lúmen do intestino delgado. Outro parâmetro importante a ser analisado, em nanopartículas passíveis de serem ingeridas, é a citotoxicidade, que pode ser avaliado através do emprego de culturas celulares intestinais e epiteliais. O presente trabalho de doutorado teve como objetivo a utilização de manteiga de cupuaçu e manteiga de murumuru para encapsulação do beta-caroteno em nanopartículas lipídicas sólidas produzidas pelo método PIT, e o estudo de sua citotoxicidade e digestibilidade in vitro dinâmica. Os tensoativos utilizados foram o Cremophor RH 40 e o Span 80, e os sistemas foram produzidos na presença e na ausência de alfa-tocoferol. De maneira geral pode-se dizer que as nanopartículas apresentaram diâmetro médio ao redor de 35 nm com polidispersidade 0,2 e permaneceram estáveis por um período de 4 meses. Os sistemas produzidos com manteiga de murumuru preservaram melhor o beta-caroteno encapsulado e o alfa-tocoferol agiu como um antioxidante na preservação do bioativo. As nanopartículas apresentaram estabilidade física frente às diferentes condições de stress, exceto quando foram expostas em concentrações salinas muito altas e pH básico. No que diz respeito à digestibilidade, as nanopartículas permaneceram estáveis no estômago e começaram a desestabilizar no duodeno; a biodisponibilidade total do beta-caroteno foi de 50 e 49% para respectivamente as partículas de manteiga de murumuru e manteiga de cupuaçu; a lipólise foi de 51% para as nanopartículas de manteiga de cupuaçu e de 49,8% para as nanopartícula de murumuru. Em relação aos estudos em linhagem de células in vitro e a avaliação da toxicidade, pode-se dizer que as linhagens de HEPG-2 apresentaram maior viabilidade celular do que as linhagens de CaCo-2 e a morte celular começou a ser mais pronunciada na diluição de 11,38µg/ml para as células de HEPG-2 e na diluição de 5,69 µg/ml para as células de CaCo-2, portanto, caso se deseje aplicá-las em matrizes alimentícias, é aconselhável respeitar essas concentrações. Além do mais, os resultados mostram que as nanopartículas avaliadas tem um potencial muito bom para encapsular compostos bioativos lipossolúveis e se mostraram um bom veiculo para serem empregadas em alimentos. / Solid lipid nanoparticles are colloidal delivery systems used for encapsulation of hydrophobic substances, with the aim to protect and increase bioavailability. Such systems could be produced by low energy methods, like phase inversion temperature (PIT) which is based in the change of solubility nonionic polyethoxylated surfactants with temperature. In order to incorporate these systems in foods, it is important studying their behavior under gastrointestinal tract conditions. The in vitro dynamic models had been developed to simulate more effectively the properties that occur in vivo, between them the TIM system (TNO intestinal model) is one of the most known, which simulates the most important events that occur in the lumen of the small intestine. Other important parameter in nanoparticles that can be ingested is the cytotoxicity that can be evaluated using intestinal and epithelial cell cultures. This doctoral work aimed to use cupuaçu butter and murumuru butter to encapsulate beta-carotene in solid lipid nanoparticles produced by the PIT method, moreover the study of these particles cytotoxicity and digestibility in dynamic in vitro systems. The surfactants used were Chemophor RH 40 and Span 80, and the systems were produced in the presence and absence of alpha-tocopherol. Generally one can say that these nanoparticles present average diameter around 35 nm with polydispersity 0.2 and remain stable during 4 months. The systems based with murumuru butter showed better preservation of the beta-carotene encapsulated and alpha-tocopherol acted like an antioxidant in the bioactive preservation. The nanoparticles presented physical stability faced various stress conditions, with the exception of very high saline concentrations and basic pH. Regarding the digestibility, the nanoparticles remain stable in the stomach and start to destabilize in the duodenum; the total bioavailability of beta-carotene were 50 and 49% to the murumuru butter and cupuaçu butter, respectively; the lipolysis were 51% to the nanoparticles based in cupuaçu butter and 49.8% to the murumuru based nanoparticles. Regarding the studies of in vitro cellular uptake and toxicity one can say that the HEPG-2 present bigger cellular viability than the Caco-2 and the cellular death begin with dilution of 11,38µg/ml for cells of HEPG-2 and with dilution of 5,69 µg/ml for cells of CaCo-2, so if one desire to apply in food matrices it is advisable to respect these concentrations. Furthermore, the results showed that the tested nanoparticles had a very good potential to encapsulate bioactive liposoluble components and are a good way to be applied in food matrices.
13

Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

Villalobos, Luis Francisco 08 1900 (has links)
The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication of hybrid membranes in existing facilities. In the CIPS process, a first step forms the thin metal-rich selective layer of the membrane, and a succeeding step the porous support. Precipitation of the selective layer takes place in the same solvent used to dissolve the polymer and is induced by a small concentration of metal ions. These ions form metal-coordination-based crosslinks leading to the formation of a solid skin floating on top of the liquid polymer film. A subsequent precipitation in a nonsolvent bath leads to the formation of the porous support structure. Forming the dense layer and porous support by different mechanisms while maintaining the simplicity of a phase inversion process, results in unprecedented control over the final structure of the membrane. The thickness and morphology of the dense layer as well as the porosity of the support can be controlled over a wide range by manipulating simple process parameters. CIPS facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. The nature of the CIPS process facilitates a precise loading of a high concentration of metal ions that are located in only the top layer of the membrane. Moreover, these metal ions can be converted—during the membrane fabrication process—to nanoparticles or crystals. This simple method opens up fascinating possibilities for the fabrication of metal-rich polymeric membranes with a new set of properties. This dissertation describes the process in depth and explores promising applications: (i) catalytic membranes containing palladium nanoparticles (PdNPs), (ii) antibiofouling tight-UF membranes containing silver chloride (AgCl) crystals, and (iii) palladiumrich PBI hollow fibers for H2 recovery.
14

Freestanding graphite cathode with graphene additive for aluminum dual-ion batteries

Rosvall, Adam January 2023 (has links)
In today’s fast adjustment to renewable energy, new battery technologies are needed to meetthe ever-growing demands of energy storage. Cheaper and easier to produce materials areneeded, as well as materials with a lower environmental impact. One new and interestingtechnology is the dual-ion battery, and more specifically the aluminum dual-ion battery. Thisbattery uses cheap and abundant aluminum together with a graphitic cathode to work. However,a lot of research today uses expensive and sophisticated cathode materials to make this type ofbattery work. Therefore, this thesis focuses on creating a cheap and easy to produce graphitecathode material through the phase inversion method for the use in aluminum dual-ionbatteries, that is also freestanding for better energy density. Graphene is also used as anadditive to improve the electrical conductivity of the material, and the material is later tested in afull cell with the typical ionc liquid electrolyte EMImCL/AlCl4.Through phase inversion, a freestanding graphite cathode is produced with 8 wt% PVDF binderand 0.4 wt% graphene. The material has a porous structure and an enhanced electricalconductivity with the graphene added. Through CV cycling and symmetric Al-Al tests the batteryreactions are shown to work. However, when cycling the cell with a constant current there areproblems, probably coming from some sort of soft shorting or side reactions. It is revealed thatapart from the expected reactions, Ni dissolution from the contact tabs also takes place, andmay cause problems. Further tests are needed to validate if this material works. However,because no new active materials have been introduced to the battery chemistry, it is reasonableto believe that the battery will work with some small changes.Tek nisk-naturvetensk apliga fak ulteten, Upps ala universitet. Utgiv nings ort U pps al a/Vis by . H andledare: Anwar Ahniy az , Äm nesgranskar e: D aniel Brandell, Ex aminator: Lena Klintberg
15

Application of Ultrasound Imaging for Noninvasive Characterization of Phase Inverting Implants

Solorio, Luis, Jr. 26 June 2012 (has links)
No description available.
16

Studies On Phase Inversion

Deshpande, Kiran B 01 1900 (has links)
Agitated dispersions of one liquid in another immiscible liquid are widely used in chemical industry in operations such as liquid-liquid extraction, suspension polymerisation, and blending of polymers. When holdup of the dispersed phase is increased, in an effort to increase the productivity, at a critical holdup, the dispersed phase catastrophically becomes the continuous phase and vice versa. This phenomenon is known as phase inversion. Although the inversion phenomenon has been studied off and on over the past few decades, the mechanism of phase inversion (PI) has yet not become clear. These studies have however brought out many interesting aspects of PI, besides unravelling the effect of physical and operational variables on PL Experiments show that oil-in-water (o/w) and water-in-oil (w/o) dispersions behave very differently, e.g water drops in w/o dispersions contain oil droplets in them, but oil drops in o/w dispersions contain none, dispersed phase hold up at which inversion occurs increases with agitation speed for w/o dispersions but decreases for o/w dispersions. A common feature of both types of dispersions however is that as agitation speed is increased to high values, inversion holdups reach a constant value. A further increase in agitation speed does not change inversion hold up. Although this finding was first reported a long time ago, the implications it may have not received any attentions. In fact, the work reported in the literature since then does not even mention it. The present work shows that this finding has profound implications. Starting with the finding that at high agitation speed inversion hold up does not change with agitation speed, the present work shows that inversion hold up also does not change with agitator diameter, type of agitator and vessel diameter. In these experiments, carried out in agitated vessel, energy was introduced as a point source. The experiments carried out with turbulent flow in annular region of two coaxial cylinders, inner one rotating, in which energy is introduced nearly uniformly throughout the system, show that the inversion holdup remains unchanged. These results indicate that constant values of inversion holdups for a given liquid-liquid systems (o/w and w/o) are properties of the liquid-liquid systems alone, independent of geometrical and operational parameters. A new hypothesis is proposed to explain the new findings. Phase inversion is considered to occur as a result of imbalance between breakup and coalescence of drops. Electrolytes, which affect only coalescence of drops, were therefore added to the system to investigate the effect of altering coalescence of drops on phase inversion. The experiments performed in the presence of electrolyte KI at various concentrations indicate that addition of electrolyte increases the inversion holdup for both o/w and w/o dispersions for three types of systems: non polar-water, polar-water and immiscible organic-organic. Higher the concentration of electrolyte used, higher was the holdup required for phase inversion. These findings indicate that while the addition of electrolyte increases coalescence of drops in lean dispersions, it has exactly opposite effect on imbalance of breakage and coalescence of drops at high holdups near phase inversion point. The opposite effect of electrolytes in lean and concentrated dispersions could be explained qualitatively, but only in part in the light of a new theory, involving multi-particle interactions. The phase inversion phenomenon is quantified in a simple manner by testing the breakage and coalescence rate expressions available in literature. It has been found that, equilibrium drop size (where breakage and coalescence events are in dynamic equilibrium) approaches infinity near phase inversion holdup which is not an ex perimentally observed fact. To capture the catastrophic nature of phase inversion, two steady state approach is proposed. The two steady states namely the stable steady state and unstable steady state, are achieved by modifying the expression for coalescence frequency on the basis of (i) shear coalescence mechanism and, (ii) recognising the fact that at high dispersed phase holdup the droplets are already in contact with each other at all times and hence rendering the second order coales cence process to a first order one. Using two steady states approach, catastrophic phase inversion is shown to occur at finite drop size.
17

Multiphase flow measurement using gamma-based techniques

Arubi, Isaac Marcus Tesi January 2011 (has links)
The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves. This has led oil companies to develop smaller/marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective soluti8ons of on-line continuous multiphase flow measurement. The pattern recognition approach for clamp-on multiphase measurement employed in this research study provides one means for meeting this need. Cont/d.
18

Estudo experimental de escoamento multifásico em duto anular de grande diâmetro / Experimental study of multiphase flow in large annular duct

Colmanetti, Alex Roger Almeida 29 September 2016 (has links)
Escoamentos gás-líquido assim como escoamento líquido-líquido-gás em duto de geometria anular estão presentes em muitas aplicações industriais, por exemplo, em poços de petróleo direcionais. No entanto, até mesmo características globais de escoamento gás-líquido nessa geometria, como os padrões de escoamento ou gradiente de pressão, não são ainda totalmente compreendidas. E ainda, informações são escassas quando se refere a escoamento trifásico nessa geometria, cuja aplicação está relacionada ao fenômeno de inversão de fase, que é de extrema importância não apenas para ao setor petrolífero, como para a indústria alimentícia. O presente estudo experimental tem como objetivo avaliar o escoamento líquido-gás, apresentar dados inéditos de escoamento gás-líquido para três viscosidades de óleo, além de avaliar o fenômeno de inversão de fase em escoamento ascendente vertical em duto anular de grande diâmetro. Um aparato experimental inclinável com 10,5 m de comprimento foi projetado e construído para este trabalho. As dimensões radiais do duto anular estão em escala real, conforme se verifica em poços de petróleo e gás. A investigação em escoamento gás-líquido foi conduzida utilizando água, óleo e ar comprimido como fluidos de trabalho em escoamento ascendente vertical em duas geometrias: (i) um tubo com diâmetro de 95 mm e (ii) um duto de configuração anular e concêntrico, com diâmetro hidráulico de valor igual ao diâmetro do tubo. A avaliação do fenômeno de inversão de fase em escoamento trifásico foi conduzida em condições equivalentes em três geometrias: (i) tubo vertical menor com diâmetro de 50 mm, (ii) tubo com diâmetro de 95 mm e (iii) um duto anular concêntrico. Padrões de escoamento, queda de pressão e fração volumétrica de fase foram obtidos para ambos os escoamentos gás-líquido e líquido-líquido-gás. Os dados coletados nesse trabalho são de grande importância para o desenvolvimento de novas correlações de fechamento, que são essenciais para o projeto otimizado de poços de petróleo. Dados inéditos de escoamento bifásico óleo-gás são apresentados, bem como um estudo pioneiro em inversão de fase em escoamento trifásico com velocidade superficial de gás e viscosidade do óleo elevadas. / Two-phase flows as well as three-phase flow in annular geometry are present in many industrial applications, for example in oil directional wells. However, even global characteristics of gas-liquid flow in this geometry, such as flow patterns and pressure gradient are not fully understood. Moreover, information is scarce when it refers to three-phase flow in this geometry, which application is related to the phase inversion phenomenon, which is of extreme importance and not only for the oil industry. This experimental study aims to evaluate the liquid-gas flow, present new data from gas-liquid flow for three oil viscosities and evaluate the phase inversion phenomenon in vertical upward flow in large diameter annular duct. An experimental apparatus with 10.5 m length was designed and built for this work. The radial dimensions of the annular duct are similar to full scale, as observed in oil and gas wells. The investigation into gas-liquid flow was conducted using water, oil and compressed air as working fluids in an ascending vertical flow in two geometries: (i) a tube with 95 mm diameter and (ii) a concentric annular duct with hydraulic diameter equivalent to the tube internal diameter. The evaluation of the phase inversion phenomenon in three-phase flow was conducted under equivalent conditions for three geometries: (i) smaller vertical tube with 50 mm of internal diameter, (ii) tube with 95 mm of internal diameter and (iii) concentric annular duct with hydraulic diameter of 95 mm. Flow patterns, pressure drop and volumetric phase fraction were obtained for both gas-liquid and gas-liquid-liquid flows. The data collected in this study are of great importance for the development of new closing correlations, which are essential for the optimized design of oil wells. New two-phase flow data for three oil viscosities, not found in the literature, are presented as well as a pioneer study in three-phase-flow phase inversion with high oil viscosity and high superficial gas velocity.
19

Avaliação da atividade antifúngica de óleo essencial de orégano (Origanum vulgare) nanoemulsionado e estudo de caso em queijo Minas Padrão / Evaluation of antifungal activity of nanoemulsions encapsulating oregano essential oil and case study in Minas Padrão cheese

Serna, Carolina Maria Bedoya 06 May 2015 (has links)
Este trabalho de Mestrado teve por objetivo avaliar a atividade antifúngica in vitro e em queijo Minas Padrão de duas formulações (A e B) de nanoemulsões encapsulando óleo essencial de orégano (Origanum vulgare) produzidas pelo método da temperatura de inversão de fases (método PIT). Cladosporium sp., Fusarium sp. e Penicillium sp. foram os fungos identificados nas amostras de queijo Minas Padrão deteriorados. Tais cepas foram utilizadas na avaliação da atividade antifúngica in vitro e em queijo Minas Padrão do óleo de orégano nanoemulsionado. Nos testes in vitro foram determinadas as concentrações mínimas inibitórias (CMI) do óleo essencial de orégano puro e nanoemulsionado sobre o Cladosporium sp., Fusarium sp. e Penicillium sp. Foram utilizadas fatias de queijo Minas Padrão para avaliar o efeito inibitório das nanoemulsões contendo óleo essencial de orégano. Por último foi avaliado o efeito inibitório das nanoemulsões durante o processo de maturação de queijos Minas Padrão. Determinaram-se valores de CMI para óleo essencial puro de 0,2; 0,3 µg/ml para Fusarium sp. e Penicillium sp., respectivamente. Enquanto para as duas formulações de nanoemulsão; os valores de CMI dependeram da quantidade de óleo essencial de orégano que estava contido nelas, obtendo-se valores de 0,26; 0,11 e 1,62 µg/ml para a formulação A de óleo de orégano nanoemulsionado sobre Cladosporium sp., Fusarium sp. e Penicillium sp., respectivamente, e CMIs de 0,32; 0,1 e 0,8 µg/ml para a formulação B de nanoemulsão sobre os mesmos gêneros de fungos. Os ensaios nas fatias de queijo evidenciaram que o efeito das CMIs, quando aplicadas na matriz alimentícia, foi nulo, permitindo o desenvolvimento normal dos fungos avaliados, da mesma forma se determinou a importância da atividade de água no crescimento fúngico. Já nos queijos em ambiente de maturação o efeito inibitório do óleo de orégano foi pouco satisfatório, o que indicou a importância do controle dos demais parâmetros ambientais no ambiente de maturação. Pode-se concluir que o óleo essencial de orégano nanoemulsionado apresentou efeito inibitório contra os gêneros de fungos avaliados. Quando controlados parâmetros ambientais como temperatura de armazenamento e atividade de água, seu efeito inibitório pode ser amplamente melhorado, apresentando-o como potencial alternativa na conservação dos alimentos. / This Master Thesis aimed to evaluate the in vitro antifungal activity and in Minas Padrão cheese of two formulations (A and B) of nanoemulsions encapsulating essential oil of oregano (Origanum vulgare) produced by the method of phase inversion temperature (PIT method). Cladosporium sp., Fusarium sp. and Penicillium sp. fungi were identified in deteriorated cheese samples. These strains were used in the evaluation of antifungal activity of oregano essential oil nanoemulsions, both in vitro and in cheese. Minimum inhibitory concentrations (MIC) of essential oil of pure oregano oil and nanoemulsions were determined. Cheese slices were used to evaluate the inhibitory effect of nanoemulsions containing essential oil of oregano. Finally the inhibitory effect of encapsulated oregano oil was tested during cheese ripening. MIC values determined for pure essential oil were 0.20 and 0.3 µg/ml for Fusarium sp. and Penicillium sp., respectively. As for the two nanoemulsion formulations, MIC values depended on the amount of essential oil of oregano which was contained therein, and the values for formulation A were 0.26, 0.11 and 1.62 µg/ml for Cladosporium sp., Fusarium sp. and Penicillium sp, respectively. For formulation B, the values of MIC were 0.32, 0.10 and 0.80 µg/ml. The tests on the cheese slices showed that the effect of MIC when applied in the food matrix was null, as the fungi growth was not avoided. As for the tests during cheese ripening, the inhibitory effect of oregano oil in nanoemulsions was unsatisfactory, which indicated the importance of controlling other environmental parameters in the maturation chamber. It can be concluded that the nanoemulsions of essential oil presented inhibitory effect against the genera of fungi evaluated. Controlled environmental parameters such as storage temperature and water activity, its inhibitory effect can be highly improved, and the nanoemulsions of oregano oil can be seen as a potential system for food preservation.
20

Inversion de phase d'émulsions induite par agitation / Phase inversion of emulsions produced by continuous stirring

Rondón González, Marianna 27 March 2007 (has links)
Ce travail porte sur l’inversion de phase catastrophique induite par l’agitation continue d’un système anormal eau-huile-surfactif, sans addition de phase, afin de réaliser des émulsions eau-dans-huile concentrées et finement dispersées. Les suivis rhéologiques et conductimétriques des systèmes sous agitation indiquent que l’inversion passe, en général, par la formation d’une émulsion multiple e/H/E dans laquelle une partie de la phase continue est inclue comme gouttelettes dans les gouttes de phase dispersée. Ainsi, le volume apparent de phase dispersée augmente jusqu’à atteindre une valeur critique à laquelle l’inversion se produit. Afin de maîtriser ce processus, l’influence de variables de formulation, composition et agitation sur le mécanisme d’inversion et sur ses paramètres caractéristiques a été étudié. Les données recueillies permettent de choisir les conditions de formulation et de procédé pour préparer, en un temps minimal, des émulsions E/H avec des propriétés requises. / This study deals with the catastrophic phase inversion produce by continuous stirring of an abnormal water-oil-surfactant system, without internal phase addition, in order to prepare concentrated and fine water-in-oil emulsions. The simultaneous conductivity and viscosity measurements of the system under stirring show that generally, the inversion takes place through the formation of a multiple w/O/W emulsion in which a portion of the external phase is continuously included as droplets in the dispersed phase drops. Consequently, the dispersed phase apparent volume increases until a critical value is reached and the inversion is triggered. In order to control this process, the influence of formulation, composition and stirring variables on the inversion mechanism and on its characteristic parameters is studied. The data collected can be used to prepare, in a minimal time, emulsions with required properties, by controlling the formulation and process conditions.

Page generated in 0.0686 seconds