• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 50
  • 12
  • 2
  • Tagged with
  • 204
  • 125
  • 42
  • 37
  • 32
  • 30
  • 23
  • 22
  • 21
  • 21
  • 20
  • 19
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Nanocomposites interactifs supportes en tant que photocatalyseurs contemporains et materiaux germicides : concepts et applications / Supported Interactive Nanocomposites as Contemporary Photocatalysts and Germicidal Materials : concept and Application

Gärban, Razvan Vasile 12 July 2011 (has links)
La recherche actuelle est entreprise dans l’optique de la révision complète du design chimique et des principes d’élaboration des photocatalyseurs composites supportés (PCCS) afin d’améliorer considérablement leurs capacités réactionnelles, la durabilité de leur action en temps et de résoudre le problème de pollution secondaire des milieux à traiter. Les travaux effectués ont permis la mise en œuvre d’un nouveau modèle de PCCS interactifs dont les composants photosensibles sont en fortes interactions chimiques avec leurs supports appartenant au groupe d’acides de Lewis. Cette particularité assure une grande sélectivité d’action des produits développés, leur fonctionnement durable en régime stationnaire, évite la pollution secondaire des effluents à traiter et garanti une performance photocatalytique comparable à celle du produit de référence Degussa P25.Les travaux réalisés ont permis d’acquérir de nouvelles connaissances scientifiques concernant le rôle de l’acidité de surface dans l’action photocatalytique et du taux de dissociation de l’eau adsorbée sur le produit actif. De plus, un ensemble de huit paramètres principaux assurant les meilleures conditions d’exploitation des PCCS a été établi.Les PCCS développés peuvent être appliqués, tout d’abord, dans le domaine de l’incinération photocatalytique des COV. Un prototype de filtre dynamique capable de traiter 50 m3/h de l’air avec une consommation d’énergie modérée, est conçu. Un nouveau type de matériaux composites à vocation germicide à base de polymères synthétiques fait également l’objet de la partie applicative de ces travaux de thèse. / The current research is undertaken in the context of the complete reconsideration of the supported composite photocatalysts (SCPC) chemical design and elaboration principles in order to improve their reaction capacities, to assure the sustainability of their action in time and to resolve the secondary pollution problem for the media to treat. This work enabled the implementation of a new model of interactive SCPC in which the photosensitive components occur in a strong chemical interaction with their supports belonging to the Lewis acid group. This feature provides the developed products with high selectivity, allows them to function in the stationary conditions, avoids the secondary pollution effect and guarantees the photocatalytic performance comparable with the one of the reference industrial photocatalyst Degussa P25. An important scientific knowledge on the role of the surface acidity in the photocatalytic action and on the dissociation state of the water adsorbed over the active product was acquired. Apart from this, a set of eight main parameters ensuring the best SCPC operation properties was established. The developed SCPC are forecasted to be firstly applied in the photocatalytic VOC oxidation processes. A prototype of such filter capable to treat 50 m3/h of air, having modest energy consumption, was designed. A new composite material with germicidal properties elaborated using synthetic polymer supports, also constitutes a subject of the applications part of this thesis.
22

Nanoparticules de TiO2 couplées à des photosensibilisateurs pour des applications en photocatalyse et en thérapie photodynamique / TiO2 Nanoparticles Coupled To Photosensitizers For Applications In Photocatalysis And Photodynamic Therapy

Youssef, Zahraa 19 December 2017 (has links)
Ce travail concerne le développement de nanoparticules de TiO2 et de SiO2 sensibilisées aux photosensibilisateurs pour application dans la photocatalyse et la thérapie photodynamique (PDT). Les NP ont été soit recouverts d'une coquille de polysiloxane, soit modifiés par l'aminopropyltriéthoxysilane (APTES) seul. Les PSs de tétraphényl monocarboxylphosphine (P1-COOH) ou de chlorine e6 (Ce6) ont été couplés aux NP par liaison amide. En photocatalyse, les NP hybrides modifiées par l'APTES, en particulier TiO2-APTES-Ce6, présentent une activité photocatalytique supérieure vis-à-vis de la dégradation du bleu de méthylène et de l’orange de méthyle sur les systèmes cœur-coquille sous lumière solaire et visible. Pour la PDT, des tests in vitro ont été désignés sur la lignée cellulaire de glioblastome U87 à différentes concentrations de NP éclairées à 652 nm. TiO2-APTES-Ce6 a révélé une bonne phototoxicité car la viabilité cellulaire a diminué de 89% après illumination. L'incorporation cellulaire et la localisation de ces NP et de leurs analogues de la silice ont été explorées. Les ROS impliqués dans la photocatalyse et la PDT ont été étudiés / This work addresses the development of dye-sensitized TiO2 and SiO2 nanoparticles (NPs) for application in photocatalysis and photodynamic therapy (PDT). The NPs were either coated with a polysiloxane shell or modified by aminopropyl triethoxysilane (APTES) alone. Monocarboxylic tetraphenyl porphyrin (P1-COOH) or chlorin e6 (Ce6) PSs were coupled to the NPs by amide bond. In photocatalysis, The APTES-modified sensitized NPs, particularly TiO2-APTES-Ce6, exhibit a superior activity towards the degradation of methylene blue and methyl orange over the core-shell systems under solar and visible light. For PDT, in vitro tests were conducted on the glioblastoma cell line U87 at different NPs’ concentrations illuminated at 652 nm. TiO2-APTES-Ce6 revealed a good phototoxicity as the cell viability decreased by 89% after illumination. The cellular uptake and localization of those NPs and their silica analogues were explored. The ROS involved in photocatalysis and PDT were investigated
23

Décomposition photocatalytique du méthanol sur des nanosphères de TiO₂ chargées de métal

Vu, Thuy-Dung 21 October 2019 (has links)
353121\u / The utilization of solar light-driven photocatalysts has attracted an increasing attention in creating green energy and purifying environment from harmful pollutants. In photocatalysis technology, semiconductor-based photocatalysis has diverse applications including the decomposition of organic pollutants. In particular, titanium dioxide (TiO₂)-based photocatalysts have been extensively studied because of their low cost and outstanding physical and chemical properties. However, the photocatalytic performance of TiO₂ is not very high due to the weak light absorption and the fast charge carrier recombination. Therefore, the main target of the research presented in this thesis is to develop new methods to prepare more efficient materials based on TiO₂ for organic pollutants decomposition. For this purpose, the uniform titanate nanodisks (TNDs) with an average diameter of 22 nm were first synthesized by using different types of capping agents, including benzyl alcohol (BA), benzyl ether (BE) and oleylamine (OM). SiO₂ nanospheres (SiO₂ NSs) in nanoscale diameter as the core of the structure were then coated with TNDs using a layer-by-layer deposition technique in the presence of polyethylenimine (PEI) solution to design the TND-PEI/SiO₂ NSs. Based on the developed TND-PEI/SiO₂ NSs, creating a heterojunction between TiO₂ and other visible light active semiconductors is one of the interesting ways to optimize and enhance performance of TiO₂ in the visible region. In order to synthesize these TiO₂-based heterojunction composites, several cation (Cu²⁺, Ni²⁺, and Pt²⁺) solutions were loaded over TND-PEI/SiO₂ NSs to obtain CuO/TiO₂/SiO₂, Ni²⁺/TiO₂/SiO₂ or Pt²⁺/TiO₂/SiO₂ materials, respectively. The co-existence of CuO, Ni²⁺, and Pt²⁺ functioning as co-catalysts led to a remarkable enhancement of the photocatalytic performance of TiO₂. The new developed materials have shown not only high porosity and high specific surface area, but also strong solar light absorption. As a result, the photocatalytic activity of these new materials and the effect of different co-catalysts were investigated in the photocatalytic decomposition of methanol. TiO₂-based heterojunction composites (CuO/TiO₂/SiO₂) was further treated by H₂S. This non-metal doping TiO₂ is a well-known and effective way to decrease the band gap, which can result in the absorption of more visible light. The photodegradation of methanol in aqueous solution was deployed to test the photocatalytic activities of TiO₂-based material and further widens its applications in water treatment. These modifications proved that the light absorption of CuO/TiO₂ was improved compared with Ni²⁺/TiO₂ and Pt²⁺/TiO₂. CuO/TiO₂ material after H₂S treatment was found to exhibit a good performance in the degradation of methanol from aqueous solutions under solar light irradiation.
24

Synthèse et caractérisation d'un photocatalyseur hétérogène à base de phosphore noir assisté par Ni₂P comme un co-catalyseur pour la génération d'hydrogène à partir de l'eau

Chouat, Anis 19 September 2022 (has links)
L'exploitation de l'énergie solaire présente une solution alternative efficace pour limiter la consommation de l'énergie fossile et résoudre ainsi les problèmes qui en découlent notamment la pollution et le changement climatique. La dissociation de l'eau par le procédé de la photocatalyse est considérée actuellement comme une méthode innovante pour la photogénération de l'hydrogène (H₂) à partir d'une ressource non carbonée. Les photocatalyseurs classiques mis en jeu ne sont malheureusement activables que sous l'irradiation de l'ultraviolet, ce qui limite leur activité catalytique sous la lumière solaire principalement formée par le visible. Grâce à ses propriétés optiques et électroniques, le phosphore noir (BP) est caractérisé par une bonne absorption lumineuse étendue sur le visible, et même l'infrarouge proche. Ainsi, il présente un candidat potentiel pour les procédés photocatalytiques. Ce travail présente une méthode alternative pour la synthèse d'un nanocomposite à base du BP assisté par le phosphure de nickel (Ni₂P). Cette méthode est basée sur la transition de phase induite par l'éthylènediamine en présence des ions nickel (Ni²⁺) pour la formation in-situ du Ni₂P en tant que co-catalyseur à la surface du BP formé. Les résultats obtenus montrent que l'activité photocatalytique du nanocomposite avec un ratio molaire Ni/P de 3 % atteint 406,08 μmol.g⁻¹.h⁻¹, qui est 185 fois plus élevé que le matériau sans co-catalyseur. Le plus important, le photocatalyseur a montré une efficacité quantique élevée allant jusqu'à 48,45 % à 360 nm et 7,90 % à 400 nm. La caractérisation du matériau synthétisé a prouvé que cette performance photocatalytique pourrait être expliquée par l'absorption lumineuse étalée sur le visible ainsi que l'efficacité de la séparation des porteurs de charges assurée par un contact intime entre le co-catalyseur et le matériau principal. Ce contact établi par une liaison covalente permet également d'avoir une stabilité notable. La stabilité du nanocomposite développé s'est manifestée par une capacité importante de réutilisabilité, ce qui lui permettrait d'être un photocatalyseur performant pour une application pratique. / The exploitation of solar energy presents an effective and an alternative solution to limit the consumption of fossil energy and to solve the correspondent problems, particularly the pollution and the climate change. The water splitting using the photocatalysis process is considered currently as an innovative method for the photogeneration of hydrogen (H₂) from a non-carbon resource. The involved conventional photocatalysts are unfortunately activable only under ultraviolet irradiation, which limits their catalytic activity under sunlight, mainly composed of the visible spectrum. Thanks to its optical and electronic properties, black phosphorus (BP) is characterized by a good light absorption including the visible and even the near-infrared spectrum. Thus, it presents a potential candidate for photocatalytic processes. This work presents an alternative method for the synthesis of a BP-based nanocomposite assisted by nickel phosphide (Ni₂P). This method is based on the ethylenediamine-induced phase transition in the presence of nickel ions (Ni²⁺) for the in-situ growth of Ni₂P as a co-catalyst on the surface of the as-synthesized BP. The obtained results show that the photocatalytic activity of the nanocomposite with Ni/P molar ratio of 3% reached 406.08 μmol.g⁻¹.h⁻¹, which is 185 times higher than the bare material. Most importantly, the photocatalyst showed a high quantum efficiency of up to 48.45% at 360 nm and 7.90% at 400 nm. The characterization of the synthesized material proved that this photocatalytic performance could be explained by the light harvesting efficiency including the visible light as well as the charge carrier separation efficiency ensured by the intimate contact between the co-catalyst and the main material. Also, this contact established by a chemical covalent bond provides a notable stability. The stability of the developed nanocomposite is manifested by a significant capacity for reusability, which would allow it to be a powerful photocatalyst in a practical application.
25

Design and development of nanostructured covalent organic framework hybrid composites as platform for sunlight-driven CO₂ reduction

Gopalakrishnan, Vishnu Nair 17 May 2023 (has links)
Titre de l'écran-titre (visionné le 9 mai 2023) / La thèse suivante examine la conversion du CO₂ à partir d'énergie solaire en utilisant des photocatalyseurs, qui est considérée comme l'un des techniques les plus intéressantes pour résoudre les problématiques du réchauffement climatique et de la crise énergétique. Il convient de souligner que cette thèse propose trois nouveaux composites hybrides nanostructurés pour la réduction photocatalytique du CO₂. La récolte de la lumière, la séparation des charges et les réactions de surface sont des aspects critiques qui ont un impact énorme sur la photoréduction du CO₂. Les cadres organiques covalents (COF) sont des candidats appropriés pour ces processus car ils offrent des caractéristiques et des propriétés structurelles exceptionnelles. De nombreux photocatalyseurs nanostructurés sont activement développés pour la photoréduction du CO₂. Les nanostructures multidimensionnelles et les hétérostructures sont largement étudiées en raison de leurs excellents attributs tels que la séparation efficace et la longue durée de vie des porteurs de charges. De manière prometteuse, les nanostructures et les nanocomposites des cadres organiques covalentes avec le graphène et ses dérivés, les dichalcogénures métalliques et les matériaux plasmoniques présentent d'excellentes performances photocatalytiques, selon des études de la littérature. D'abord, un cadre organique covalente, à base de céto-énamine TpPa-1 et de nanofeuillets d'oxyde de graphène réduit (rGO en anglais), a été développé par la technique d'assemblage in situ pour la photoréduction du CO₂ sous la lumière du soleil. Les interactions covalentes entre TpPa-1 et le rGO ont facilité la formation des bandes avec le potentiel requis, ainsi qu'une séparation de charge améliorée et une migration rapide des porteurs de charges vers la surface pour la réduction sélective du CO₂. Le médiateur électronique [Co(bpy)₃]²⁺ a servi pour apporter sites actifs pour la coordination, l'activation et la réduction des molécules de CO₂ en CO. De plus, un cadre organique covalente (COF) nanosphérique creux à base de TpPa-1, intégrée à un atome unique de Co-1T-MOS₂ (TpPa-1/Co-1T-MOS₂), a été conçu et développé via une stratégie à double ligand pour ajuster le potentiel des bandes et améliorer la séparation des charges afin d'optimiser l'efficacité de la photoréduction du CO₂. Les interactions entre TpPa-1 et Co-1T-MoS₂ ont facilité et amélioré la séparation des charges ainsi que la migration des porteurs de charge vers la surface, ce qui a entraîné une conversion sélective du CO₂ en CO. Finalement, les nanoparticules plasmoniques Au adhérés à une structure organique covalente tridimensionnelle, à base de porphyrine creuse (COF-366-Co) et avec un atome unique de Co (COF-366-Co[indice (H)]/Au), augmentent considérablement l'efficacité de la photoréduction du CO₂. Le nanocomposite conçu utilise le transfert d'électrons énergétiques induit par le plasmon, une meilleure collecte de lumière et des réactions de surface facilitées pour conduire les réactions redox photocatalytiques. Le nanocomposite développé (COF-366-Co[indice (H)]/Au) a montré une activité prometteuse vis-à-vis de la réduction photocatalytique du CO₂ sous irradiation à la lumière visible, qui a produit CO à un taux allant jusqu'à ~1200 µmolg⁻¹h⁻¹ et avec une sélectivité de 98 % sur H₂. / The ensuing thesis examines the conversion of carbon dioxide (CO₂) to value-added chemical and fuels under solar light irradiation by employing some of the emerging photocatalytic materials known as covalent organic frameworks (COFs). This approach of photocatalytic process is considered to be one of the most viable remedies to global warming and energy crisis dilemmas. Importantly, this thesis delivers three novel nanostructured hybrid composites based on COFs for photocatalytic CO₂ reduction to value-added chemicals and fuels. Light-harvesting, charge separation, and surface reactions are critical aspects that have an enormous impact on CO₂ photoreduction. Covalent organic frameworks can be suitable candidates for these processes as they offer outstanding structural features and properties. Diverse nanostructured photocatalysts are actively being developed for CO₂ photoreduction. Multidimensional nanostructures and nanocomposite heterostructures are widely studied because of their excellent attributes such as efficient separation and long lifetime of the excited charge carriers. Promisingly, nanostructures and nanocomposites of the covalent organic frameworks with graphene and its derivatives, metal dichalcogenides and plasmonic materials exhibit excellent photocatalytic performance, according to the literature reports. In this investigation, a keto-enamine TpPa-1 covalent organic framework and reduced graphene oxide nanosheet nanocomposite are developed by an in-situ assembling technique. The covalent interactions between TpPa-1 and rGO facilitated the formation of band edges with required potential and thereby to achieve an improved charge separation along with rapid migration of charge carriers to the surface toward the selective reduction of CO₂. By the support of the electron mediator [Co(bpy)₃]²⁺ in the hybrid served as the active sites for the coordination, activation, and reduction of CO₂ molecules to CO. A hollow nano spherical TpPa-1 covalent organic framework (COF) integrated with single atom Co-1T-MoS₂ (TpPa-1/Co-1T-MoS₂) is further designed and developed through a dual-ligand strategy to tune the band edge potential and enhance the charge separation to improve CO₂ photoreduction efficiency of the system. The interactions between TpPa-1 and Co-1T-MoS₂ aided and enhanced the charge separation as well as charge carrier migration to the surface resulted in selective conversion CO₂ to CO. Au plasmonic nanoparticles adorned three-dimensional hollow porphyrin-based covalent organic framework with Co single atom (COF-366-Co[subscript (H)]/Au) is developed via dual-ligand strategy and post-synthetic metallization method and found that this system significantly boosted up the CO₂ photoreduction efficiency. It utilizes the plasmon-induced energetic electron transfer, enhanced light harvesting, and surface reactions to drive the photocatalytic redox reactions. The developed COF-366-Co[subscript (H)]/Au exhibited fine activity toward photocatalytic CO₂ reduction under visible light irradiation, which yielded the CO at a rate up to ~1200 µmolg⁻¹h⁻¹ with a selectivity of 98% over H₂.
26

Sunlight-driven photoreduction of CO₂ using zeolitic imidazolate frameworks (ZIFs)-based nanocomposite to produce valuable products

Becerra Sanchez, Jorge 07 February 2023 (has links)
De nos jours, le développement de nouveaux matériaux capables de récolter la lumière solaire de manière efficace pour des applications photocatalytiques est un véritable défi pour la science. Par conséquent, les matériaux réticulaires qui agissent comme des blocs de construction, constitués de joints entre des lieurs organiques et des métaux, avec des propriétés plus adaptées à la photocatalyse, sont devenus encore plus attractifs. Cependant, conférer une fonctionnalité à ces matériaux avec un minimum de défauts cristallins, qui conduisent à une recombinaison de charge électron-trou, et une absorption maximale de la lumière reste un problème. Pour cette raison, différentes stratégies, comme le dopage, l'utilisation de cocatalyseur entre autres, ont été rapportées comme alternatives pour minimiser les problèmes mentionnés ci-dessus et par conséquent les désintégrations photocatalytiques. Néanmoins, les nanostructures de métaux nobles ont récemment montré des propriétés exceptionnelles d'absorption de la lumière, dans lesquelles des pairs électron-trous peuvent être générés et utilisés comme « porteurs de charges », qui améliorent l'activité photocatalytique sur les matériaux pour différentes applications. Les propriétés caractéristiques de ces nanostructures sont associées à l'effet des phénomènes de résonance plasmonique de surface localisée (LSPR en anglais). Les stratégies de préparation de matériaux plasmoniques pour les systèmes photocatalytiques sont très importantes pour améliorer les performances des réactions et les processus photocatalytiques souhaités. Des aspects critiques tels que la morphologie, la taille, les précurseurs chimiques entre autres doivent être pris en compte. Par exemple, l'utilisation du même métal avec une forme différente pourrait affecter ses performances photocatalytiques et déterminer son application. Ce document offre des preuves scientifiques intéressantes, dans le domaine de la photocatalyse, que les techniques d'ingénierie mentionnées ci-dessus sont cruciales pour le développement de matériaux à base de plasmons adaptés à la conversion du CO₂. Parmi ces preuves, des nanosphères d'or décorées à la surface d'un cadre d'imidazolate zéolitique (ZIF-67) ont montré un taux de génération de méthanol maximal de 1.6 mmol gcₐₜ⁻¹ h⁻¹ avec un rendement quantique apparent (AQY en anglais) de 6.4 %. Alors que les nanoparticules d'or en forme de nanotige ont doublé ce taux avec un AQY de 7.4 %. De plus, les nanoparticules d'or liées chimiquement avec des agents tensioactifs fonctionnels ont montré une amélioration significative des performances avec des taux de génération de 2.5 mmol gcₐₜ⁻¹ h⁻¹ en utilisant des charges métalliques inférieures et un AQY de 3.7 %. Alors qu'il existe un nombre croissant de rapports sûr de nouveaux matériaux réticulaires nanocomposites pour les processus photochimiques; les rapports de matériaux plasmoniques sur la chimie réticulaire sont encore rares. Par conséquent, ce rapport fournit un aperçu approfondi des différents concepts liés aux matériaux plasmoniques et à leurs applications sur les matériaux réticulaires afin d'identifier leurs opportunités et leurs défis sur la photocatalyse pour de futures considérations industrielles. / Nowadays the development of novel materials that can harvest solar light in an efficient way for photocatalytic applications is a real challenge for science. Therefore, reticular materials that act as building blocks, consisting of joints between organic linkers and metals, with properties more suitable for photocatalysis, have become even more attractive. However, imparting functionality to these materials with minimum crystalline defects, that lead to electron-hole charge recombination, and maximum light absorption is still an issue. For that reason, different strategies like doping, and usage of co-catalyst among others have been reported as alternatives to minimize the above-mentioned problems and consequently photocatalytic decays. Nevertheless, noble metal nanostructures have recently shown exceptional light absorption properties, in which electron-hole pairs can be generated and used as "charge-carriers", that enhance photocatalytic activity on materials for different applications. The characteristic properties of these nanostructures are associated with the effect of localized surface plasmonic resonance phenomena (LSPR). The strategies for the preparation of plasmonic materials for photocatalytic systems are highly crucial to achieve improvement in the performance of desired photocatalytic reactions and processes. Critical aspects such as morphology, size, and chemical precursors among others must be considered. For example, the use of the same metal with a different shape could affect its photocatalytic performance and determine its application. This document offers interesting scientific evidence, on the field of photocatalysis, that above-mentioned engineering techniques are crucial for the development of plasmon-based materials suitable for CO₂ conversion. Among this evidence, gold nanospheres decorated on the surface of zeolitic imidazolate framework (ZIF-67) showed a maximum methanol generation rate of 1.6 mmol gcₐₜ⁻¹ h⁻¹ with an apparent quantum yield (AQY) of 6.4%. While nanorod shape gold nanoparticles doubled this rate with an AQY of 7.4%. Furthermore, chemically bonded gold nanoparticles with functional surfactant agents showed a significant improve on the performance with generation rates of 2.5 mmol gcₐₜ⁻¹ h⁻¹ using lower metal loadings and AQY of 3.7%. While there is a growing number of reports of novel nanocomposite reticular materials for photochemical processes; reports of plasmonic materials on reticular chemistry are still scarce. Therefore, this report provides a brief overview and profound insight into different concepts related to plasmonic materials and their applications on reticular materials to identify their opportunities and challenges in photocatalysis for future industrial considerations.
27

Synthèse et caractérisation des matériaux nanostructurés et leur mise en oeuvre comme photocatalyseurs pour la dégradation du glyphosate en milieux aqueux

Feriani, Mabrouk 24 April 2018 (has links)
L’utilisation des pesticides n’a cessé d’augmenter en particulier le glyphosate, herbicide utilisé principalement dans l’agriculture. Ses effets ont été démontrés néfastes sur l’environnement et sur la santé humaine. Bien que la plupart du glyphosate résiduel soit adsorbé par les constituants du sol, une partie peut être désorbée ou atteindre les eaux de surface par érosion. Le renforcement des normes de qualité de l'eau en milieu agricole et urbain entraîne le développement de nouveaux procédés. Les photocatalyseurs à base de TiO2 peuvent procurer une solution attrayante pour l’élimination de cet herbicide. Actif uniquement dans le domaine de l’UV qui représente 4% du rayonnement solaire, étendre cette réactivité photocatalytique dans le domaine du visible est un enjeu majeur. Le dopage du TiO2 à l’azote et au graphène a permis une élimination totale du glyphosate au bout de 30 minutes. Après sa synthèse, le photocatalyseur GR-N/TiO2 a été caractérisé par différentes techniques à savoir la diffraction des rayons X (DRX), l’infrarouge à transformée de Fourier (FTIR), la spectroscopie de photoélectrons X (XPS) et la microscopie électronique par transmission (TEM). L'activité photocatalytique est testée sur la dégradation du glyphosate sous irradiation de la lumière visible. Les résultats montrent que le composite GR-N/TiO2 peut effectivement photodégrader le glyphosate grâce à une amélioration impressionnante de l’activité photocatalytique due à une grande adsorption du glyphosate sur le nanomatériau synthétisé et à l’extension de l'absorption au domaine du visible. / Pesticide use has been increasing especially for glyphosate an herbicide used mainly in agriculture. Its effects have been proven harmful to the environment and human health. Although most of the residual glyphosate can be adsorbed by the soil constituents, a part may be desorbed or reach surface waters by erosion. Strengthening the quality standards of water in agricultural and urban areas leads to the development of new processes. TiO2- based photocatalysts can provide an attractive solution for the elimination of this herbicide. Active under UV light which represents only 4% of solar radiation, extending this photocatalytic activity to the visible range is a major issue. Doping TiO2 with nitrogen and graphene shows a total elimination of glyphosate within 30 minutes of reaction. The photocatalyst GR-N/TiO2 was characterized by various techniques namely X-ray diffraction (XRD), infrared Fourier transform (FTIR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The photocatalytic activity was tested under visible light irradiation to glyphosate degradation. Results showed that the GRN/ TiO2 composite can effectively photodegrade glyphosate with an impressive improvement of the photocatalytic activity due to a large adsorption of glyphosate on the synthesized nanomaterial and the extension of the absorption to the visible light region conferred to photocatalyst.
28

Novel strategies to develop efficient titanium dioxide and graphitic carbon nitride-based photocatalysts

Nguyen, Chinh Chien 17 July 2018 (has links)
Afin de résoudre les problèmes environnementaux et énergétiques modernes, ces dernières années ont vu le développement de catalyseurs photocataytiques capables d’utiliser la lumière solaire. En effet, les possibles applications des semiconducteurs présentant des propriétés photocatalytiques dans les domaines de la production d’hydrogène ou la dégradation de polluants organiques ont généré un grand intérêt de la part de la communauté scientifique. Actuellement, les photocatalyseurs à base de dioxyde de titane (TiO₂) et de nitrure de carbone graphitique (g-C₃N₄) sont considérés comme les matériaux les plus étudiés pour leurs faibles coûts et leurs propriétés physico-chimiques exceptionnelles. Cependant, la performance photocatalytique de ces matériaux reste encore limitée, à cause de la recombinaison rapide des porteurs de charge et et d'une absorption limitée de la lumière. En générale, malgré des caractéristiques exceptionnelles, ces matériaux ne contribuent pas significativement à la séparation de charge et l’absorption de la lumière lorsqu’ils sont produits par des méthodes conventionnelles. L'objectif de cette thèse est de développer de nouvelles voies pour la production de matériaux efficaces basés sur TiO₂ et g-C₃N₄). Nous avons d'abord préparé de la triazine (CxNy) qui fonctionne comme un co-catalyseur d'oxydation ce qui facilite la séparation des paires «électron-trou» dans le système du photocatalyseur creux de type Pt-TiO₂-CxNy. La présence simultanée de Pt et de CxNy, qui servent comme co-catalyseurs de réduction et d'oxydation, respectivement, a permis une amélioration remarquable des performances photocatalytiques du TiO₂. De plus, nous avons développé une nouvelle approche, en utilisant un procédé de combustion de sphère de carbone assisté par l’air, pour préparer du C/Pt/TiO₂ . Ce matériau possède de nombreuses propriétés uniques qui contribuent de manière significative à augmenter la séparation « électron-trou », et en conséquence, à améliorer la performance photocatalytique. Dans le but de développer un matériau qui soit capable de fonctionner sous les rayons du soleil et dans l'obscurité, nous avons développé un photocatalyseur creux à double enveloppes : le Pt-WO₃/TiO₂-Au. Ce matériau a montré non seulement une forte absorption de la lumière solaire, mais aussi une séparation des charges élevée et une haute capacité de stockage d'électrons. Par conséquent, ce type de photocatalyseurs a montré une dégradation efficace des polluants organiques, à la fois sous la lumière visible (λ ≥ 420 nm) et dans l'obscurité. En ce qui concerne le g-C₃N₄, nous avons exploité la relation entre les lacunes d’azote et les propriétés plasmoniques des nanoparticules d’or (Au). Ce type de photocatalyseur du Au/g-C₃N₄ a été préparé en présence d’alcali suivi par une post calcination. En effet, les lacunes d’azote ainsi produites permettent le renforcement des interactions entre l’or et le g-C₃N₄ et des propriétés plasmoniques de l’or. Ces caractéristiques exceptionnelles renforcent l'utilisation efficace de l’énergie solaire ainsi que la séparation des paires « électron-trou », ce qui contribuent à la performance photocatalytique pour la production d'hydrogène du photocatalyseur. Afin d’améliorer la capacité d’absorption de la lumière visible de g-C₃N₄, une nouvelle voie de synthèse dénommée « poly-alcaline » a été développée. La possibilité d’ajouter du polyéthylèneimine (PEI) et de l’hydroxyde de potassium (KOH) pour générer de nombreux centres lacunaires en azote ainsi que des groupes hydroxyles dans la structure du matériau, a été explorée afin d’optimiser l’efficacité du matériau. De telles modifications ont démontré leurs capacités à réduire la bande interdite et à provoquer plus facilement la séparation de charges améliorant ainsi les propriétés photocatalytiques du photocatalyseur vis-à-vis de la production d’hydrogène. Cette méthode ouvre donc une nouvelle voie d’avenir pour préparer des photocatalyseurs nanocomposites efficaces possédant à la fois, une forte d’absorption de la lumière et une bonne séparation de charges. / The utilization of solar light-driven photocatalysts has emerged as a potential approach to deal with the serious current energy and environmental issues. Over the past decades, semiconductor-based photocatalysis has attracted an increasing attention for diverse applications including hydrogen production and the decomposition of organic pollutants. Currently, titanium dioxide (TiO₂) and graphitic carbon nitride (g-C₃N₄)-based photocatalysts have been considered as the most investigated materials because of their low cost, outstanding physical and chemical properties. However, their photocatalytic performances are still moderate owing to the fast charge carrier recombination and limited light absorption. The main target of the research presented in this thesis is to develop novel routes to prepare efficient materials based on TiO₂ and g-C₃N₄. These materials possess prominent features, which contribute to address the fast charge separation and light absorption problems. We firstly have prepared triazine (CxNy) acting as an oxidation co-catalyst, which efficiently facilitates electron-hole separation in a Pt-TiO₂-CxNy hollow photocatalyst system. The co-existence of Pt and CxNy functioning as the reduction and oxidation co-catalysts, respectively, has remarkably enhanced the photocatalytic performance of TiO₂. Next, we have also developed a new approach employing the air- assisted carbon sphere combustion process in preparing C/Pt/TiO₂. This material possesses many salient properties that significantly boost the electron-hole separation leading to enhanced photocatalytic performance. In an attempt to design a material that can operate under sunlight and in darkness, we have introduced Pt-WO₃/TiO₂-Au double shell hollow photocatalyst. The material has shown not only strong solar light absorption but also efficient charge separation and electron storage capacity. As a result, this type of photocatalyst exhibits a high activity performance for the degradation of organic pollutants both under visible light (λ ≥ 420 nm) and in the dark. Regarding to g-C₃N₄, we have explored the relationship between nitrogen vacancies and the plasmonic properties of Au nanoparticles employing alkali associated with the post-calcination method to prepare Au/g-C₃N₄. In fact, the produced nitrogen vacancies in the structure of g-C₃N₄ essentially enhance the interaction at Au/g-C₃N₄ interface and the plasmonic properties of Au nanoparticles. These outstanding features contribute to enhance the utilization of solar light and electron-hole separation that prompt the photocatalytic performance towards hydrogen production. Finally, we have employed a novel poly-alkali route to prepare a strong visible light absorption photocatalyst-based g-C₃N₄. The co-existence of PEI and KOH, which induces numerous nitrogen vacancies and incorporated hydroxyl groups in the structure of the resulted material, has been explored for the first time. These modifications have been proved to narrow the bandgap and facilitate the charge separation leading to enhance the solar light-driven hydrogen production. This method also opens up a new approach to prepare efficient nanocomposite photocatalysts possessing both strong light absorption and good charge separation.
29

Décomposition photocatalytique du méthanol sur des nanosphères de TiO₂ chargées de métal

Vu, Thuy-Dung 21 October 2019 (has links)
353121\u / The utilization of solar light-driven photocatalysts has attracted an increasing attention in creating green energy and purifying environment from harmful pollutants. In photocatalysis technology, semiconductor-based photocatalysis has diverse applications including the decomposition of organic pollutants. In particular, titanium dioxide (TiO₂)-based photocatalysts have been extensively studied because of their low cost and outstanding physical and chemical properties. However, the photocatalytic performance of TiO₂ is not very high due to the weak light absorption and the fast charge carrier recombination. Therefore, the main target of the research presented in this thesis is to develop new methods to prepare more efficient materials based on TiO₂ for organic pollutants decomposition. For this purpose, the uniform titanate nanodisks (TNDs) with an average diameter of 22 nm were first synthesized by using different types of capping agents, including benzyl alcohol (BA), benzyl ether (BE) and oleylamine (OM). SiO₂ nanospheres (SiO₂ NSs) in nanoscale diameter as the core of the structure were then coated with TNDs using a layer-by-layer deposition technique in the presence of polyethylenimine (PEI) solution to design the TND-PEI/SiO₂ NSs. Based on the developed TND-PEI/SiO₂ NSs, creating a heterojunction between TiO₂ and other visible light active semiconductors is one of the interesting ways to optimize and enhance performance of TiO₂ in the visible region. In order to synthesize these TiO₂-based heterojunction composites, several cation (Cu²⁺, Ni²⁺, and Pt²⁺) solutions were loaded over TND-PEI/SiO₂ NSs to obtain CuO/TiO₂/SiO₂, Ni²⁺/TiO₂/SiO₂ or Pt²⁺/TiO₂/SiO₂ materials, respectively. The co-existence of CuO, Ni²⁺, and Pt²⁺ functioning as co-catalysts led to a remarkable enhancement of the photocatalytic performance of TiO₂. The new developed materials have shown not only high porosity and high specific surface area, but also strong solar light absorption. As a result, the photocatalytic activity of these new materials and the effect of different co-catalysts were investigated in the photocatalytic decomposition of methanol. TiO₂-based heterojunction composites (CuO/TiO₂/SiO₂) was further treated by H₂S. This non-metal doping TiO₂ is a well-known and effective way to decrease the band gap, which can result in the absorption of more visible light. The photodegradation of methanol in aqueous solution was deployed to test the photocatalytic activities of TiO₂-based material and further widens its applications in water treatment. These modifications proved that the light absorption of CuO/TiO₂ was improved compared with Ni²⁺/TiO₂ and Pt²⁺/TiO₂. CuO/TiO₂ material after H₂S treatment was found to exhibit a good performance in the degradation of methanol from aqueous solutions under solar light irradiation.
30

Nanocomposites à base de g-C3N4 et ZnxCd1-xS comme photocatalyseurs pour la production d'hydrogène à partir de l'eau sous la lumière solaire

Gholipour, Mohammad Reza 24 April 2018 (has links)
Le processus de photocatalyse est l'un des moyens prometteurs d'utiliser l'énergie solaire à grande échelle pour différents types d'applications tels que la production d'hydrogène comme énergie propre ou encore la purification de l'eau et l'air contre les polluants et les produits chimiques nocifs. Néanmoins, le pourcentage de l’énergie du rayonnement solaire utilisé est généralement inférieur à 1%, en raison de la faible absorption de la lumière solair, de la rapide recombinaison de charge « électron-trou paires » et de l'instabilité photochimique. La modification de la structure des semi-conducteurs et la création de photocatalyseurs nanocomposites peuvent aider à surmonter ces problèmes. Le TiO2 est le photocatalyseur le plus étudié en raison de ses propriétés physiques et chimiques imortantes dans le processus de photocatalyse. Bien que son faible coût encourage à l'utiliser à grande échelle, sa largeur de bande interdite (EG =3.2 eV) importante, qui ne peut être activée que par irradiation UV, et sa vitesse de recombinaison des charges, ont limité son utilisation dans les applications industrielles. La création d'une hétérojonction entre TiO2 et d'autres semiconducteurs actifs sous la lumière visible est l’un des moyens les plus prometteurs pour utiliser les propriétés du dioxyde de titane dans la région du visible. De plus, le nitrure de carbone graphitique (g-C3N4) a été largement étudié pour la production d'hydrogène sous irradiation lumineuse visible. Malgré le fait qu'il peut être actif dans la région du visible et réduire les protons pour générer de l'hydrogène, son efficacité est considérablement limitée en raison de son taux de recombinaison de charge élevé et de sa faible surface spécifique. Nous avons synthétisé un photocatalyseur nanocomposite de g-C3N4 et TiO2 afin d’améliorer la procédure de séparation des charges et donc de produire plus d'hydrogène. Des nanodisques de titanate uniformes (TND) avec un diamètre compris entre 12 et 35 nm ont été synthétisés à l’aide d’une méthode solvothermale. Les feuilles nanométriques de g-C3N4 ont été synthétisés par des techniques de sonication, puis ont été mélangées avec des TND. Après cela, une étape de calcination a non seulement généré des contacts intimes avec deux semi-conducteurs, mais aussi converti les TND en nanoparticules de TiO2. En raison de la position des bandes de valence et de conduction des deux semi-conducteurs, les électrons photogénérés sont en mesure de passer du g-C3N4 au TiO2. Grâce à l’ajout de Pt comme cocatalyseur ainsi que comme fournisseur de sites actifs, les électrons photoexcités sont en capacité de réduire les protons de l'eau et de générer du dihydrogène. Cette hétérojonction pourrait produire plus du double l’hydrogène que le gC3N4 pur dans les mêmes conditions. Nous avons créé une nouvelle forme de feuille nanométrique de g-C3N4 contenant des lacunes de carbone avec des trous dans tous les plans de feuille. Après la synthèse du matériau de vrac g-C3N4 à partir du dicyandiamide, le matériau obtenu a été chauffé à 650 ° C sous argon pendant 2 h. Après avoir refroidi, il a été calciné à nouveau à 500 ºC pendant 2 heures sous air. Ainsi, sa surface spécifique a été considérablement augmenté de 28 m2.g-1 de g-C3N4 à 160 m2.g-1. En outre, ces traitements par étapes ont introduit certains défauts tels que des lacunes de carbone à l'intérieur de la structure des feuilles nanométriques de g-C3N4. Ces derniers ont fourni des sites photocatalytiques hautement actifs pour l'évolution de l'hydrogène. Par conséquent, sa production d'hydrogène est dix fois supérieure à celle du g-C3N4 brut sous irradiation de la lumière visible. Il a montré une efficacité quantique très élevée de 29,2% et 21,3% à 400 nm et 420 nm, respectivement. Enfin, nous avons généré une solution solide de zinc-cadmium (ZnxCd1-xS) par synthèse solvothermale en utilisant des précurseurs de glycérates métalliques de Cd et Zn. Ensuite, le matériau a été calciné (500 ºC pendant 4 heures) et traité avec H2S à 450 ºC pendant 2 heures. Ainsi, une solution solide homogène de ZnxCd1-xS avec structure cristallographique de wurtzite hexagonale a été formée. Il convient de mentionner que le semi-conducteur obtenu peut absorber une large partie du spectre visible, de plus, sa largeur de bande interdite est fortement affecté par le rapport Zn / Cd et varie entre 2,35 et 3,4 eV (0≤x≤1). Les meilleurs résultats pour l'évolution de l'hydrogène ont été obtenus à partir de l'échantillon Zn30Cd70S avec dépôt de MoS2 comme cocatalyseur. Il peut générer de l'hydrogène dans des longueurs d'onde les plus longues de la région de la lumière visible et ses rendements quantiques sont : 46,6% à 400 nm à 23,4% à 500 nm ainsi que 11,3% à 550 nm. / Photocatalysis process is one of the promising ways to use solar energy in large scale for various kind of application including producing hydrogen as clean energy and purify water and air from harmful pollutants and chemicals. Nevertheless, the solar conversion efficiency of photocatalysts are usually below 1% because of weak sunlight absorption, high charge recombination and high photochemical instability. Modifying semiconductor structure and creating nanocomposite photocatalyst can help to overcome these issues. TiO2 is the most well-known photocatalysts because of its physical and chemical properties in photocatalysis process. Although its low cost encourages people to utilize it in large scale, its large band gap, which can only be activated under UV irradiation, and high rate of charge recombination, limited its usage in industrial applications. Creating an heterojunction between TiO2 and others visible light active semiconductor, is one of the best way to take advantage of TiO2 in visible region. Furthermore, graphitic carbon nitride (g-C3N4) has been widely investigated for its potential in hydrogen production under visible light irradiation. Despite the fact that it can activated in visible light region and reduce protons to generate hydrogen, its efficiency is considerably limited because of its high rate of charge recombination and low specific surface area. We synthesized a nanocomposite photocatalyst of g-C3N4 and TiO2 in order to increase charge separation procedure and so it can produce more hydrogen. Uniform titanate nanodisks (TNDs) with diameter between 12 and 35 nm were synthesized with a solvothermal method. Nanosheets of g-C3N4 were synthesized via sonication techniques and then were mixed with TNDs. After that, a calcination step not only made intimate contacts with two semiconductors, but also converted TNDs into TiO2 nanoparticles. Due to the position of conduction band edges of two semiconductors, photogenerated electrons could transfer from g-C3N4 to TiO2. There with a help of Pt as a cocatalyst and active sites provider, photoexcited electrons reduced protons from water and generated hydrogen. This heterojunction could produce more than double hydrogen as pristine g-C3N4 under the same conditions. We created a novel g-C3N4 nanosheets with carbon vacancies and nanoholes throughout nanosheet planes. After synthesis g-C3N4 bulk material from dicyandiamide, the obtained material was heated to 650 ºC under argon flow for 2 hr. After it cooled down, it was calcined again at 500 ºC for 2 hr. As a result, its specific surface area increased significantly from 28 m2 g-1 of bulk g-C3N4 to 160 m2 g-1. Moreover, these stepwise treatments introduced some defects as carbon vacancies inside the structure of g-C3N4 nanosheets. They provided highly active photocatalytic sites for hydrogen evolution. Therefore, its hydrogen production was ten times higher than bulk material of g-C3N4 under visible light irradiation. It showed very high quantum efficiencies of 29.2% and 21.3% at 400 nm and 420 nm, respectively. Finally, we generated zinc cadmium solid solution (ZnxCd1-xS) with synthesizing metal-glycerate of Cd and Zn via solvothermal method. Then, the material was calcined (500 ºC for 4 hr) and treated with H2S at 450 ºC for 2hr. Thus, an homogeneous solid solution of ZnxCd1-xS with hexagonal wurtzite crystal structure was formed. It should be mentioned that the obtained semiconductor could absorb a wide range of visible light energy and its band gap is strongly affected by Zn/Cd ratio and varies between 2.35 and 3.4 eV (0≤x≤1). The best results for hydrogen evolution was gained from Zn30Cd70S sample with depositing MoS2 as a cocatalyst. It could generate hydrogen in longer wavelengths of visible light region and its quantum efficiencies were: 46.6 % at 400 nm to 23.4% at 500 nm as well as 11.3% at 550 nm.

Page generated in 0.0326 seconds