Spelling suggestions: "subject:"photoelectron"" "subject:"hotoelectron""
121 |
Electronic and optical properties of hybrid gold - organic dye systemsMalicki, Michal 01 October 2009 (has links)
In order to gain insights into the electronic interactions between metallic gold and self-assembled monolayers composed of π-conjugated thiols, a series of thiol-containing molecules based on a stilbene backbone were synthesized and assembled on gold surface. The resulted monolayers were characterized with a variety of surface-sensitive techniques and the electronic properties of the obtained surfaces were studied with the use of ultraviolet photoelectron spectroscopy. Work-function changes and alignment of the molecular energy levels with respect to the Fermi level of the metal were investigated and important insights regarding the electronic properties of the metal / organic interfaces were obtained.
Another aspect of interactions between organic dyes and metallic gold was studied in the context of spectroscopic properties of systems incorporating gold nanoparticles with organic fluorophores covalently attached to the nanoparticle surface. Ultrafast dynamics of the excited-state deactivation of the organic fluorophores attached to the surface of gold nanoparticles were studied with the use of a fs transient absorption technique. It was found that the close proximity of a gold nanoparticle had a profound impact on the excited-state lifetime of the studied organic fluorophore. The influence of the structure of the studied systems on the excited-state deactivation dynamics of the organic fluorophores was described.
|
122 |
Angle-Resolved Photoelectron Spectroscopy Studies of the Many-Body Effects in the Electronic Structure of High-Tc Cuprates / Winkelaufgelöste Photoemissionsuntersuchungen zu Vielteilcheneffekten in der elektronischen Struktur von Hochtemperatursupraleitern / Исследования многочастичных эффектов в электронной структуре высокотемпературных сверхпроводников методом фотоэлектронной спектроскопии с угловым разрешением.Inosov, Dmytro 27 June 2008 (has links) (PDF)
In spite of the failures to find an ultimate theory of unconventional superconductivity, after many years of research the scientific community possesses a considerable store of theoretical knowledge about the problem. Over time, the focus is gradually shifted from finding a theoretical description of an experimentally observed phenomenon to distinguishing between multiple models that offer comparably reasonable descriptions. From the point of view of an experimentalist, this means that any qualitative under-standing of an experimental observation would no longer suffice. Instead, the empha-sis in the experimental research should be shifted to accurate quantification of obser-vations, which becomes possible only if the results available from all the available ex-perimental methods are connected together by the theoretical glue. Among the meth-ods that are to be unified, ARPES plays a central role. The reason for this is that it gives access to the single-particle excitation spectrum of the material as a function of both momentum and energy with very high resolution. Other experimental techniques, such as inelastic neutron scattering (INS), Raman spectroscopy, or the newly estab-lished Fourier-transform scanning tunneling spectroscopy (FT-STS) probe more com-plicated two-particle spectra of the electrons and up to now can not achieve the mo-mentum resolution comparable with that of ARPES. Such reasoning serves as the mo-tivation for the present work, in which some steps are done towards understanding the anomalous effects observed in the single-particle excitation spectra of cuprates and relating the ARPES technique to other experimental methods. First, the electronic properties of BSCCO are considered — the superconducting cuprate most studied by surface-sensitive methods. The recent progress in un-derstanding the electronic structure of this material is reported, focusing mainly on the many-body effects (renormalization) and their manifestation in the ARPES spectra. The main result of this part of the work is a model of the Green’s function that is later used for calculating the two-particle excitation spectrum. Then, the matrix element effects in the photoemission spectra of cuprates are discussed. After a general introduction to the problem, the thesis focuses on the recently discovered anomalous behavior of the ARPES spectra that partially originates from the momentum-dependent photoemission matrix element. The momentum- and excitation energy dependence of the anomalous high-energy dispersion, termed “waterfalls”, is covered in full detail. Understanding the role of the matrix element effects in this phenomenon proves crucial, as they obstruct the view of the underlying excitation spectrum that is of indisputable interest. Finally, the work describes the relation of ARPES with other experimental methods, with the special focus on the INS spectroscopy. For the optimally doped bilayer Bi-based cuprate, the renormalized two-particle correlation function in the superconducting state is calculated from ARPES data within an itinerant model based on the random phase approximation (RPA). The results are compared with the experimental INS data on BSCCO and YBCO. The calculation is based on numerical models for the normal and anomalous Green’s functions fitted to the experimental single-particle spectra. The renormalization is taken into account both in the single-particle Green’s function by means of the self-energy, and in the two-particle correlation function by RPA. Additionally, two other applications of the same approach are briefly sketched: the relation of ARPES to FT-STS, and the nesting properties of Fermi surfaces in two-dimensional charge density wave systems.
|
123 |
Gas phase molecular relaxation probed by synchrotron radiation experimentsRius i Riu, Jaume January 2002 (has links)
<p>This thesis presents experimental studies of gas phasemolecular relaxation after excitation with synchrotron photonsin the 15-35 eV and in the 70-350 eV regions.</p><p>In the 15-35 eV region, molecular relaxation by neutraldissociation processes and non</p><p>Franck-Condon effects in N2 and O2 molecules have beenstudied by means of dispersed fluorescence and photoelectronspectroscopy experimental techniques, respectively. From thedispersed fluorescence data, excitation functions for themeasured atomic fluorescence spectra have been obtained. Fromthe recorded photoelectron spectra vibrational branching ratioshave been produced. The results obtained reveal that Rydbergseries and singly and doubly excited valence states of theappropriate symmetry energetically accessible in the studiedregion and interactions between themaccount for most of theobserved effects in these two type of experiments.</p><p>In the 70-350 eV range, molecular relaxation processesresulting in fragmentation of CD4 and SF6 after absorption ofsynchrotron light have been studied by energy resolved electronion coincidence technique using a multicoincidence experimentalstation developed by our group during the last five years forsuch type of experiments. The coincidence measurements yieldedmass spectra from which information about the kinematics of thedetected fragments has been deduced by means of Monte Carlosimulations of the experimental peak shapes. The obtainedresults show completely different dissociation patternsdepending on the molecular electronic states studied. Thesepatterns reflect the bonding properties of the excited orbitalsand they permit the description and in some cases theidentification of the different molecular relaxation pathwaysobserved. The achievements presented in this thesis exemplifythe potential of the multicoincidence station used in thereported experiments.</p>
|
124 |
Influence of surface passivation on the photoluminescence from silicon nanocrystalsSalivati, Navneethakrishnan 07 January 2011 (has links)
Although silicon (Si) nanostructures exhibit size dependent light emission, which can be attributed to quantum confinement, the role of surface passivation is not yet fully understood. This understanding is central to the development of nanocrystal-based detectors. This study investigated the growth, surface chemistry, passivation with deuterium (D2), ammonia (ND3) and diborane (B2D6) and the resulting optical properties of Si nanostructures.
Si nanocrystals less than 6 nm in diameter are grown on SiO2 surfaces in an ultra high vacuum chamber using hot-wire chemical vapor deposition and the as grown surfaces are exposed to atomic deuterium. Temperature programmed desorption (TPD) spectra show that that the nanocrystals surfaces are covered by a mix of monodeuteride, dideuteride and trideuteride species. The manner of filling of the deuteride states on nanocrystals differs from that for extended surfaces as the formation of the dideuteride and trideuteride species is facilitated by the curvature of the nanocrystal. No photoluminescence (PL) is observed from the as grown unpassivated nanocrystals. As the deuterium dose is increased, the PL intensity also begins to increase. This can be associated with increasing amounts of mono-, di- and trideuteride species on the nanocrystal surface, which results in better passivation of the dangling bonds and relaxing of the reconstructed surface. At high deuterium doses, the surface structure breaks down and amorphization of the top layer of the nanocrystal takes place. Amorphization reduces the PL intensity. Finally, as the nanocrystal size is varied, the PL peak shifts, which is characteristic of quantum confinement.
The dangling bonds and the reconstructed bonds at the NC surface are also passivated and transformed with D and NDx by using deuterated ammonia (ND3), which is predissociated over a hot tungsten filament prior to adsorption. At low hot wire ND3 doses PL emission is observed at 1000 nm corresponding to reconstructed surface bonds capped by predominantly monodeuteride and Si-ND2 species. As the hot wire ND3 dose is increased, di- and trideuteride species form and intense PL is observed around 800 nm that does not shift with NC size and is associated with defect levels resulting from NDx insertion into the strained Si-Si bonds forming Si2=ND. The PL intensity at 800 nm increases as the ND3 dose is increased and the intensity increase is correlated to increasing concentrations of deuterides. At extremely high ND3 doses PL intensity decreases due to amorphization of the NC surface. In separate experiments, Si NCs were subjected to dissociative (thermal) exposures of ammonia followed by exposures to atomic deuterium. These NCs exhibited size dependent PL and this can be attributed to the prevention of the formation of Si2=ND species.
Finally, deuterium-passivated Si NCs are exposed to BDx radicals formed by dissociating deuterated diborane (B2D6) over a hot tungsten filament and photoluminescence quenching is observed. Temperature programmed desorption spectra reveal the presence of low temperature peaks, which can be attributed to deuterium desorption from surface Si atoms bonded to subsurface boron atoms. The subsurface boron likely enhances nonradiative Auger recombination. / text
|
125 |
Dendrimer-encapsulated nanoparticles : synthetic methods and characterization including extended X-ray absorption-fine structureWeir, Michael Glen 07 February 2011 (has links)
This work describes the synthesis of dendrimer-encapsulated nanoparticles (DENs) and the expansion of the characterization ability for these materials. The dendrimer-template method for the synthesis of nanoparticles allows precise control over the size, composition and structure of nanoparticles in the 40-250 atom range. In this size regime, the surface structure of the nanoparticles dominates their catalytic properties. The long term goal of this research is to correlate the structure of these nanoparticles to their catalytic activity, improving the ability to predict superior catalysts a priori. As a prerequisite for this analysis, the precise structure of the catalytically active nanoparticle must be determined.
Characterization of nanoparticles in the 1-2 nm region is significantly more difficult than more commonly used nanoparticles of 3-5 nm diameter or larger. Typical characterization of these nanoparticles involves UV-vis spectroscopy for Mie absorbance and transmission electron microscopy for size analysis. This work involves the use of extended X-ray absorption-fine structure (EXAFS) to determine the local structure of the nanoparticles. For monometallic Pt DENs, EXAFS was combined with UV-vis, TEM, X-ray photoelectron spectroscopy (XPS) and electrochemistry to determine that the Pt system is not simply nanoparticles but a more complex, bimodal state.
EXAFS has also been used to differentiate between different bimetallic structures. For PdAu DENs, there are two synthetic methods used. When both metals are reduced simultaneously, the resulting nanoparticles have a quasi-random alloy structure. These nanoparticles were then extracted from the dendrimer into an organic solvent by use of alkanethiols. The extraction process changed the alloy structure into Au-core/Pd-shell. When Pd and Au were reduced in sequence, the DENs were formed as a Au-core/Pd-shell material, regardless of the order of the reduction of the metals. The Au-core/Pd-shell structure was also present after extraction.
In addition to structural analysis to determine the result of different synthetic methods, EXAFS was also used in situ to measure the structure of Pt DENs during the oxidation of absorbed CO. These in situ measurements are important for determining the structure of the actual catalyst rather than the precursor nanoparticle. In this case, the Pt DENs changed from a bimodal distribution into fully reduced nanoparticles by the application of a reducing potential. The binding of CO to the Pt DENs and subsequent oxidation did not cause measurable agglomeration of the nanoparticles.
This reduction of the Pt system by electrochemical means was also explored as a synthetic method. The Pt-dendrimer complex was placed on a TEM grid for electrochemical treatment. A potential step was shown to reduce some of the Pt-dendrimer complexes into Pt nanoparticles of the expected size. However, most of the complexes were not reduced. Therefore, only the standard chemical reduction followed by electrochemical treatment is sufficient to fully reduce the nanoparticle samples.
This work has explored additional synthetic methods for the synthesis of monometallic and bimetallic DENs. The use of EXAFS, as well as other advanced characterization techniques, has advanced knowledge of the structure of various DENs. Both the characterization toolset and the synthetic methods will provide a basis for investigations of catalytically active materials. / text
|
126 |
Μελέτη & χαρακτηρισμός λεπτών υμενίων με φασματοσκοπίες φωτοηλεκτρονίων από ακτίνες-Χ (XPS)Μιχαλόπουλος, Νικόλαος 05 February 2015 (has links)
Στην παρούσα διπλωματική εργασία αναλύονται λεπτά υμένια (thin films) διαφόρων πολυμερικών ή ολιγομερών οργανικών ενώσεων, με την επεξεργασία μετρήσεων που είχαν ληφθεί με την επιφανειακά ευαίσθητη τεχνική της φασματοσκοπίας φωτοηλεκτρονίων από ακτίνες Χ (XPS). Από την ανάλυση των φασμάτων XPS προκύπτουν συμπεράσματα τόσο για την παρουσία συγκεκριμένων χημικών στοιχείων στα δείγματα (ποιοτική ανάλυση) όσο και για την συγκέντρωση των στοιχείων αυτών στην περιοχή ανάλυσης (ποσοτική ανάλυση). / This thesis analyzed thin films (thin films) various polymeric or oligomeric organic compounds, the processing of measurements taken with the surface sensitive technique of spectroscopy X-ray photoelectron (XPS). From the analysis of XPS spectra resulting conclusions as to the presence of certain chemical elements in samples (qualitative analysis) and for the concentration of these elements in the analysis (quantitative analysis).
|
127 |
Μελέτη της ηλεκτρονικής δομής διεπιφανειών οργανικών υμενίων με ανόργανα υποστρώματα με τη χρήση επιφανειακά ευαίσθητων τεχνικών / Study of the interfacial electronic structure of organic films with inorganic substrates using surface sensitive techniquesΠαπαευθυμίου, Βασιλική 25 June 2007 (has links)
Η κατασκευή συσκευών μικροηλεκτρονικής με οργανικούς ημιαγωγούς όπως τρανζίστορς και φωτοεκπομποί δίοδοι οργανικών (FETs, OLEDs), αναπτύσσεται ταχύτατα τα τελευταία χρόνια. Οι φυσικές και χημικές αλληλεπιδράσεις που συμβαίνουν στις διεπιφάνειες των οργανικών με τα ηλεκτρόδια παίζουν καθοριστικό ρόλο στη λειτουργία τέτοιων συσκευών και επομένως η μελέτη της διεπιφανειακής ηλεκτρονικής δομής είναι σημαντική για την κατανόηση της λειτουργίας αυτών των διατάξεων. Στην παρούσα εργασία η ηλεκτρονική δομή των διεπιφανειών ενός συζυγιακού ολιγομερούς (Ooct-OPV5) με ανόργανα υποστρώματα, συγκεκριμένα το οξείδιο Ινδίου-Κασσιτέρου (ITO), τον πολυκρυσταλλικό Au, την επιφάνεια Si(111) (Si με προσμίξεις τύπου –Ν και -P) και υπέρλεπτα υμένια SiO2(1-5 nm) / Si(111), μελετήθηκε με φασματοσκοπίες φωτοηλεκτρονίων από ακτίνες –Χ και υπεριώδες (XPS, UPS). Το Ooct-OPV5 χρησιμοποιείται ως πρότυπο για το poly(p-phenylenevinylene) (PPV), ένα πολυμερές που έχει ήδη χρησιμοποιηθεί σε συσκευές OLEDs. Το ITO χρησιμοποιείται ως άνοδος στα OLEDs επειδή είναι διαφανές και έχει υψηλή ηλεκτρική αγωγιμότητα. Ο χρυσός είναι αδρανές υπόστρωμα που χρησιμοποιείται ως ηλεκτρόδιο στα FETs. Τέλος, η μελέτη διεπιφανειών του οργανικού με το Si παρουσιάζει ενδιαφέρον, προκειμένου να ενσωματωθούν οι οργανικοί ημιαγωγοί σε μικροηλεκτρονικές συσκευές με βάση το Si. Η μελέτη έγινε σε σύστημα υπερυψηλού κενού (UHV) με τις τεχνικές XPS και UPS. Τα υποστρώματα καθαρίζονταν in-situ με ιοντοβολή με Ar+ και θέρμανση. Ακολούθως γινόταν σταδιακή απόθεση του ολιγομερούς και παρασκευάζονταν υπέρλεπτα υμένια (πάχους ~10 nm) πάνω στα καθαρά υποστρώματα. Σε κάθε στάδιο της απόθεσης λαμβάνονταν τα φάσματα XPS του οργανικού και των υποστρωμάτων. Από την ανάλυση των φασμάτων αυτών προσδιορίζονται οι διεπιφανειακές αλληλεπιδράσεις και η μεταβολή της κάμψης των ζωνών των ημιαγώγιμων υλικών. Με τη φασματοσκοπία UPS μελετάται η ζώνη σθένους της διεπιφάνειας και μετράται η διεπιφανειακή διπολική στοιβάδα. Από το συνδυασμό των πειραματικών αποτελεσμάτων μπορούν να κατασκευάζονται σχηματικά διαγράμματα των ζωνών στις διεπιφάνειες. Με βάση τα πειραματικά αποτελέσματα καταλήγουμε στα εξής συμπεράσματα: Στις διεπιφάνειες του ολιγομερούς με το ITO, τον Au, το Si (τύπου -p) και το SiO2(1-1.8 nm)/Si(111) υπάρχει διεπιφανειακή διπολική στοιβάδα (eD) ενώ στη διεπιφάνεια Ooct-OPV5/ Si (τύπου -n) όχι. Αυτά τα διεπιφανειακά δίπολα σχετίζονται με την ύπαρξη διεπιφανειακών καταστάσεων και εξυπηρετούν τη μεταφορά φορτίου μεταξύ των υλικών που έρχονται σε επαφή στα πρώτα στάδια του σχηματισμού των διεπιφανειών. Κατά το σχηματισμό της διεπιφάνειας Ooct-OPV5/ Si (τύπου - p), το eD σχετίζεται με την αλληλεπίδραση των μορίων του ολιγομερούς με τις επιφανειακές καταστάσεις του Si. Στις διεπιφάνειες Ooct-OPV5/ με Au και Si, η μεταφορά φορτίου ολοκληρώνεται με τη μεταβολή της κάμψης των ζωνών του οργανικού υμενίου κατά ~0.20 eV. Τα φράγματα έγχυσης οπών (eΦbh) ή τα valence band offsets (ΔEV) καθορίστηκαν επίσης σε όλες τις περιπτώσεις. Στη διεπιφάνεια Ooct-OPV5 / Au το eΦbh μετρήθηκε 1.05 eV και επομένως ο Au είναι ακατάλληλο ηλεκτρόδιο για την έγχυση οπών. Το ITO αποδεικνύεται επίσης ακατάλληλο (eΦbh=1.45 eV) και η επιφάνειά του θα πρέπει να υφίσταται κατεργασία προκειμένου να χρησιμοποιείται ως άνοδος σε συσκευές OLEDs. Στην περίπτωση του Si, το valence band offset μεταξύ αυτού και του ολιγομερούς βρέθηκε ~0.4 eV. Η παραπέρα τροποποίηση της επιφάνειας του Si(111) με υπέρλεπτα υμένια SiO2 αυξάνει το ΔEV κατά ~0.2 eV. / The development of organic-based devices, like transistors and light emitting diodes (FETs, OLEDs), is progressing rapidly over the past few years. A great deal of the physics and chemistry that govern the performance of such devices occur at the interfaces between the organic components and the inorganic electrodes, making the study of the interfacial electronic properties essential. In this work, the electronic structure of the interface formed between a conjugated oligomer (Ooct-OPV5) and inorganic substrates, ιn particular indium-tin oxide (ITO), polycrystalline Au, the Si(111) surface (Si n- and p-doped), and ultrathin (1-5 nm) SiO2 films on Si(111), was studied by X-ray and Ultraviolet photoelectron spectroscopies (XPS, UPS). Ooct-OPV5 is a model for poly(p-phenylenevinylene) (PPV), a polymer that has already been used in OLEDs. ITO is the common anode used in OLEDs because of its transparency and high electrical conductivity. Gold was chosen due to its inert nature and because it is used as a source/drain in FETs. Finally, the study of organic/silicon structures is of great importance for the incorporation of organics in Si-based microelectronic systems. All XPS and UPS measurements were carried out in an ultrahigh vacuum (UHV) apparatus. All substrates were cleaned in-situ by Ar+ sputtering and annealing. High purity oligomer films of up to ~10 nm thickness were produced in-situ by stepwise deposition on the clean substrates. The evolution of the oligomer and substrate-related XPS peaks was followed during Ooct-OPV5 deposition on all substrates. Analysis of these spectra clarified the interfacial chemistry and band bending in the semiconducting materials. UPS spectroscopy is used for the determination of the valence band at the interface and the interfacial dipoles. The interfacial energy band diagrams were deduced in all cases from the combination of experimental results. Based on our experimental data we reached the following conclusions: Dipoles are formed at the interfaces of the oligomer with ITO, Au, Si (p-doped) and SiO2(1-1.8 nm)/Si(111), while the Ooct-OPV5/ Si (n-doped) interface is dipole free. These interface dipoles (eD) are related to the existence of interfacial states and serve for the charge transfer between the materials in contact at the initial stages of the interface formation. In the case of the Ooct-OPV5/ Si (p-doped) interface, eD is related to the interaction of the oligomer molecules with Si surface states. At the Ooct-OPV5/Au and Si interfaces, the charge transfer is completed with a band bending of ~0.20 eV in the oligomer film. The hole injection barriers (eΦbh) or valence band offsets (ΔEV) were also determined in all interfaces. This barrier was measured 1.05 eV at the Ooct-OPV5/ Au interface, and thus Au is inappropriate electrode for hole injection. ITO is also proved a poor hole-injecting electrode (eΦbh=1.45 eV), and thus its surface should be modified by treatments when used as an anode in OLEDs. On the other hand, the valence band offset between the Si substrate and the oligomer is measured ~0.4 eV. Modification of the Si(111) surface with ultra-thin SiO2 layers increases ΔEV by ~0.2 eV.
|
128 |
Near Surface Composition and Reactivity of Indium Tin Oxide: An Evaluation Towards Surface Chemical Concepts and Relevance in Titanyl Phthalocyanine Photovoltaic DevicesBrumbach, Michael T. January 2007 (has links)
Photovoltaics manufactured using organic materials as a substitute for inorganic materials may provide for cheaper production of solar cells if their efficiencies can be made comparable to existing technologies. Photovoltaic devices are comprised of layered structures where the electrical, chemical, and physical properties at the multiple interfaces play a significant role in the operation of the completed device. This thesis attempts to establish a relationship between interfacial properties and overall device performance by investigation of both the organic/organic heterojunction interface, as well as the interface between the inorganic substrate and the first organic layer with useful insights towards enhancing the efficiency of organic solar cells.It has been proposed that residual chemical species may act as barriers to charge transfer at the interface between the transparent conductor (TCO) and the first organic layer, possibly causing a large contact resistance and leading to reduced device performance. Previous work has investigated the surface of the TCO but no baseline characterization of carbon-free surfaces has previously been given. In this work clean surfaces are investigated to develop a fundamental understanding of the intrinsic spectra such that further analyses of contaminated surfaces can be presented systematically and reproducibly to develop a chemical model of the TCO surface.The energy level offset at the organic/organic heterojunction has been proposed to relate to the maximum potential achievable for a solar cell under illumination, however, few experimental observations have been made where both the interface characterization and device performance are presented. Photovoltaic properties are examined in this work with titanyl phthalocyanine used as a novel donor material for enhancement of spectral absorption and optimization of the open-circuit potential. Characterization of the interface between TiOPc and C60 coupled with characterization of the interface between copper phthalocyanine and C60 shows that the higher ionization potential of TiOPc does correlate to greater open circuit potentials.Examination of photovoltaic behavior using equivalent circuit modeling relates the importance of series resistance and recombination to the homogeneity of the solar cell structure.
|
129 |
Insights into the solvation and selectivity of chiral stationary phases using molecular dynamics simulations and chemical force microscopyNita, Sorin 14 August 2008 (has links)
The mechanism by which chiral selectivity takes place is complicated by the surface morphology, the possible involvement of the solvent, and the characteristics of the chiral molecules at the surface. My goal is to model and understand the factors which lead to significant discrimination in the case of three closely related chiral stationary phases: N-(1-phenylethyl)-N’-[3-(triethoxysilyl)propyl]-urea (PEPU), [(3,5-dinitrobenzoyl)-amino]-N-[3-(triethoxysilyl)propyl]-2-phenylacetamide (DNB-phenyglycine), and [(3,5-dinitrobenzoyl)amino]-N-[3-(triethoxysilyl)propyl]-4-methylpentanamide (DNB-leucine).
Ab initio calculations are used to develop molecular models of these chiral selectors. These models are employed in molecular dynamics (MD) simulations, which provide the theoretical framework for modelling chiral interfaces in different solvent mixtures. The MD simulations of PEPU interfaces show that, in alcohol/water mixtures, the alcohols form domains at the interface with the hydrophobic portions of the molecule tending to orient towards the surface. This disrupts the water hydrogen bonding networks at the interface and leads to the exclusion of water from the surface region relative to the bulk. The MD simulations of DNB-phenylglycine and DNB-leucine selectors in hexane/2-propanol mixtures demonstrate that the interfaces are distinct both in terms of the selector orientations at the surface and in the number of hydrogen bonds formed with 2-propanol. This occurs despite the structural similarity between these two selectors.
The interfaces are also prepared experimentally by attaching the chiral selectors onto oxidized Si(111) samples and AFM tips. In particular, for DNB-phenylglycine and DNB-leucine samples, two synthetic routes have been explored. Using AFM, the morphologies of the resulting chiral interfaces are obtained. X-ray photoelectron spectroscopy and refraction-absorption infrared spectroscopy provide information regarding the relative distribution of the compounds on the surface. Using chemical force microscopy (CFM) measurements, chiral self-selectivity is examined in various solvent mixtures. For PEPU interfaces, the extent of hydrogen bonding at the surface is the dominant contributor to the measured forces. In the case of DNB-phenylglycine and DNB-leucine, CFM measurements of the chiral self-selectivity in 2-propanol demonstrate that chiral discrimination is present in both systems, but larger forces are observed for DNB-phenylglycine, consistent with the molecular dynamics study that shows much weaker solvent interactions with this species. / Thesis (Ph.D, Chemistry) -- Queen's University, 2008-08-14 11:26:37.436
|
130 |
Etaloninių V2O5 ir VO2 bandinių Rentgeno fotoelektronų spektrų tyrimas / XPS study of V2O5 and VO2 standard samplesŠarkauskas, Karolis 11 May 2012 (has links)
Darbo tikslas yra ištirti etaloninių vanadžio pentoksido ir dioksido Rentgeno fotoelektronų spektrus siekiant nustatyti cheminį poslinkį tarp oksidų V 2p spektrų smailių. Darbe išsamiai aprašytos vanadžio dioksido ir prntoksido struktūros, oksidų savybės, Rentgeno fotoelektronų spektroskopijos metodo pagrindai bei V2O5 ir VO2 Rentgeno fotoelektronų spektrų ypatumai. Aprašyti atliktų eksperimentų metodai. Pateikti eksperimentų ir literatūrinės duomenų bazės analizės rezultatai. Atliktas darbas leido nustatyti sekančius faktus: cheminis poslinkis tarp vanadžio dioksido ir pentoksido etaloninių bandinių Rentgeno fotoelektronų spektrų V 2p3/2 smailių lygus 0.7 eV matuojant spektrus spektrometru XSAM 800 (Kratos Analytical, Anglija); literatūrinių duomenų analizę parodė, kad tikimiausia cheminio poslinkio vertė tarp V 2p3/2 smailių įvairiuose vanadžio junginiuose lygi 1.1 eV; skirtumas tarp eksperimentiškai gautos cheminio poslinkio vertės ir analogiško dydžio gauto iš literatūrinių duomenų analizės sąlygotas tuo, kad buvo matuojami gryni VO2 ir V2O5 bandiniai, o analizei buvo naudojama duomenų visumą apie įvairius vanadžio junginius. / The main aim of the presented work was to investigate the chemical shift between XPS V 2p peaks of standard V2O5 and VO2 samples. The structure and physical properties of vanadium dioxide and pentoxide, X-ray photoelectron spectroscopy basis and some singularities of these oxides XPS spectra are presented. The experimental methods, the results of experiments and the literature analysis results are described. The executed work has allowed establishing following facts: the chemical shift between vanadium dioxide and pentoxide standard samples XPS V 2p peaks is equal to 0.7 eV; the analysis of the literature base shows that this shift for various vanadium compounds is 1.1 eV; the difference between measured chemical shift and chemical shift value established from literature analysis is caused because XPS spectra of pure oxides samples was measured in present work and the analysis of the literature base was performed for various vanadium compounds.
|
Page generated in 0.0834 seconds