• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 424
  • 192
  • 41
  • 35
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 14
  • 11
  • 5
  • 4
  • 4
  • Tagged with
  • 865
  • 153
  • 131
  • 111
  • 101
  • 91
  • 83
  • 69
  • 60
  • 56
  • 54
  • 51
  • 50
  • 50
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
811

Fonctionnement des étangs en réponse aux stress et perturbations d’origine anthropique : diversité, structure et dynamique des communautés végétales / Functioning of shallow lakes in response to anthropogenic stress and disturbances : diversity, organization and dynamic of vegetation

Arthaud, Florent 21 April 2013 (has links)
Un des enjeux importants de l’écologie est de comprendre comment les pratiques anthropiques affectent la biodiversité et quelles en sont les conséquences sur le fonctionnement des écosystèmes. L’objectif de cette thèse est d’améliorer la compréhension des mécanismes régissant les communautés végétales aquatiques, et plus particulièrement ceux liés aux perturbations anthropiques et aux phénomènes d’eutrophisation. Les méta-écosystèmes constitués de réseaux d’étangs agro-piscicoles sont des modèles d’étude adaptés à notre problématique car ils sont sous forte pression anthropique et présentent une forte variabilité environnementale. Dans un premier temps, nous avons étudié l’impact des modes de gestion des bassins versants sur l’eutrophisation des étangs. Dans un second temps, nous avons mesuré l’effet de l’eutrophisation sur la productivité et la diversité des communautés phytoplanctoniques. Enfin, nous avons relié 3 types de contraintes générées par les pratiques anthropiques (l’eutrophisation, l’assèchement et la connectivité entre les étangs) sur les communautés de plantes aquatiques en termes de diversité spécifique et fonctionnelle. L’effet de l’eutrophisation, le recrutement et l'établissement des communautés des plantes aquatiques a été abordé au travers de la relation entre la banque de graines et la végétation établie. L’eutrophisation est le facteur majeur responsable de la diminution de la biodiversité végétale dans les étangs. Cependant les perturbations récurrentes constituées par les assecs, engendrent une succession cyclique qui contribue à maintenir une forte biodiversité dans les étangs. / One important issue of research in Ecology is to understand how anthropogenic activities are influencing biodiversity and what are the consequences on ecosystem functioning. The aim of the study is to improve the knowledge of the mechanisms governing aquatic plant communities, particularly those related to human disturbance and eutrophication. Meta-ecosystems constituted by networks of fish-farming shallow lakes are study models adapted to our problematic because they are submitted to a strong anthropogenic pressure and because they show a high environmental variability. First, we studied the impact of watershed management practices on shallow lakes eutrophication. In a second step, we measured eutrophication effect on productivity and on diversity of phytoplankton communities. Finally, we were able to link 3 types of constraints generated by human practices (eutrophication, drying and connectivity between shallow lakes) to aquatic plant communities in terms of specific and functional diversity. The impact of eutrophication, recruitment and establishment of aquatic plant communities has been approached through the relationship between the seed bank and established vegetation. Eutrophication is the major factor responsible for the loss of plant biodiversity in shallow lakes. However frequent disturbances due to drying events induce a cyclic succession that helps maintain a high biodiversity.
812

Diversité des communautés phytoplanctoniques en relation avec les facteurs environnementaux en mer d'Iroise : approche par la modélisation 3D / Marine microbial biodiversity and hydrodynamical patterns : a 3D modelling approach

Cadier, Mathilde 10 June 2016 (has links)
Les facteurs environnementaux (physiques, chimiques et biologiques) influencent la composition des communautés de phytoplancton marin. D'autre part, le transport dynamique peut lui aussi impacter l'abondance relative des organismes au sein de ces communautés. Par conséquent, les biomasses phytoplanctoniques, ainsi que la nature des organismes qui les composent, présentent une importante variabilité à la fois sur le plan spatial (biorégionalisation) et sur le plan temporel (successions). Les régions côtières sont des zones particulièrement contrastées dans lesquelles les gradients environnementaux sont généralement marqués. Ainsi, la mer d'Iroise se caractérise par la présence d'un front de marée saisonnier (front d'Ouessant), particulièrement productif, qui sépare deux régimes distincts. A l'Est du front, les eaux du plateau continental sont régulièrement rendues homogènes par la présence de forts courants de marée alors que la zone du large est soumise à un cycle saisonnier marqué par une stratification verticale estivale. Il s'agit donc d'une région propice à l'étude plus générale des mécanismes d'interaction entre les structures frontales et la diversité phytoplanctonique.L'objet plus spécifique de cette thèse est de caractériser, à l'aide de la modélisation 3D, la nature et la diversité du phytoplancton en mer d'Iroise, à la fois en termes de groupes fonctionnels puis de diversité phénotypique, au cours d'un cycle saisonnier en général et plus particulièrement lors de la période estivale au niveau de la zone frontale.Les premiers résultats obtenus ont montré que la composition en groupes fonctionnels du phytoplancton présente un cycle saisonnier marqué, principalement influencé par la profondeur de la couche de mélange. Durant l'hiver, le picoplancton domine partout dans la zone d'étude. La stratification, qui s'installe à partir du mois d'Avril entraîne par la suite un bloom phytoplanctonique dominé par le microphytoplancton (principalement des diatomées). La période estivale correspond ensuite à la mise en place d'une bio-régionalisation des conditions environnementales en mer d'Iroise avec (i) la zone côtière mélangée qui reste fortement productive et dominée par les diatomées et (ii) la zone offshore, dans laquelle la croissance autotrophe est limitée par les nutriments en surface, ce qui favorise la coexistence entre microphytoplancton et picophytoplancton.Une seconde étude a porté sur la composition de la communauté phytoplanctonique en termes de diversité phénotypique pendant le mois de septembre. Les résultats mettent en évidence une zone de forte diversité en surface, légèrement décalée vers l'Ouest par rapport à la zone frontale (dans laquelle la biomasse est maximale). Au niveau de ce maximum de diversité, l'importance des échanges verticaux (upwelling et mélange) du côté chaud (stratifié) du front a été mise en évidence. Ainsi, un mélange entre des phénotypes ubiquistes présents dans la zone mélangée à l'Est du front et du picoplancton, issu à la fois du maximum de chlorophylle de subsurface et de la surface oligotrophe à l'ouest, est observé dans le maximum de diversité.Finalement, une dernière étude portant sur l'effet du cycle de marée vives eaux/ mortes eauxa permis de comprendre, et ce pour la première fois, les processus qui expliquent l'impact de ce cycle sur la modification de la biomasse phytoplanctonique et sur la composition de la communautéen terme de diversité phénotypique dans le système côtier homogène. Les résultats montrent une augmentation de la biomasse totale ainsi que de la proportion de diatomées et une diminution de la diversité lors des périodes de stratification associées aux mortes eaux. / Phytoplankton diversity depends on physical, chemical and biological local conditions. Moreover, physical transport could also impact the distribution of autotrophic organisms/species within phytoplankton communities. Therefore, phytoplanktonic assemblages exhibit significant spatial (bioregionalization) and temporal (successions) variability in terms of species diversity as well as productivity. Coastal regions are particularly contrasted area with sharp environmental gradients underlying strong heterogeneity in phytoplankton communities' composition. In this context, the Iroise Sea presents a seasonal, highly productive, tidal front, which separates two distinctregimes. Eastside, continental shelf waters are regularly mixed by tidal currents while offshore waters remain stratified throughout the whole summer period.Thus, the Iroise Sea may be an opportune region to study the processes linking the frontal structure dynamic and its impact on phytoplanktonic diversity.This thesis aims, more specifically, at characterizing phytoplankton communities in the Iroise Sea interms of both functional and phenotypic diversity over a seasonal cycle in general and during the summer at the frontal interface in particular. This work is based on a 3D numerical modeling approach using a physical/biogeochemical coupled model. As a first part of this thesis, the implementation of a regional configuration for the Iroise Sea has been conducted, including the technical coupling between the hydrodynamical model (ROMS-AGRIF) and the phytoplankton diversity model (DARWIN). This work was the first necessary step to simulate and study the Iroise sea phytoplanktonic diversity.Our results show a pronounced seasonal cycle of the phytoplankton functional composition, driven by the surface mixed layer depth that influenced light and nutrients' availabilty. Indeed, during winter, the biomass is dominated by picoplankton in the Iroise Sea. Then, as water column becomes stratified offshore, in April, a characteristic phytoplankton bloom occurs with a larger contribution of microphytoplancton (mainly diatoms). During summer, the nutrient-replete coastal well-mixed area remains highly productive and dominated by diatoms while surface stratified offshore waters (where phytoplankton growth is nutrient-limited) show higher coexistence between phytoplankton functional types.We also examined the phytoplankton phenotypic diversity simulated within the frontal region in relation with the surrounding areas in September (summer conditions). The results highlight a diversity maximum located at the surface slightly westward from the biomass maximum of the front. This diversity maximum is suggested to be the result of the upward transport of typical phenotypes from the offshore Deep Chlorophyll Maximum (DCM) toward the Surface at the west warm side of the front. Indeed, picoplanktonic phenotypes growing in the DCM coexist, in this diversity maximum, with those from the surface oligotrophic waters and ubiquitous ones growing in the eastside mixed coastal waters.Finally, the effect of tidal spring/neap tide cycle has been investigated and shows, for the first time, how this cycle impacts the phytoplankton biomass and the phenotypic community composition within the coastal well-mixed, homogeneous system. Indeed, the neap-tide conditions of reduced vertical mixing and stabilization lead to an increase in total phytoplankton biomass associated with the rapid development of fast-growing, opportunistic, diatoms species and a decrease in phenotypic diversity.
813

Spatial and temporal patterns exhibited by select physicochemical and biological water quality parameters in Lake Texoma, Oklahoma and Texas.

Clyde, Gerard A. 08 1900 (has links)
From August 1996 through September 1997 eleven fixed stations were sampled monthly in January, March , April , July, August, September, and November and fortnightly in May and June for the purposes of establishing baseline conditions present in Lake Texoma as related to U.S. Army Corps of Engineers chloride control activities in the upper Wichita River, Texas. Five reservoir zones were identified a priori using historical chloride concentration data and include the Red River Zone (RRZ), Red River Transition Zone (RRTZ), Main Lake Body (MLB), Washita River Transition Zone (WRTZ), and Washita River Zone (WRZ) in order of decreasing chloride concentration. The existence of the WRTZ is not supported here, however the Big Mineral Arm in the RRTZ was observed to be highly independent of the mixing patterns observed in the RRTZ and was treated post priori separately from the RRTZ. Spatial and temporal comparisons between reservoir zones were performed on seventeen (17) physicochemical parameters from each of the eleven sampling stations and phytoplankton count data from one sampling station within each reservoir zone and physicochemical parameters were observed to exhibit a fixed spatial gradient. Strong density gradients throughout the reservoir were observed to occur in conjunction with vertical stratification of the water column. Stratification stability at individual stations was attributable to both thermal and salinity density gradients throughout the period of stratification with the degree to which stratification is thermally or chemically induced influenced by inter-annual variability in hydraulic residence time. Hypolimnetic oxygen depletion rates were also observed to be affected by changes in hydraulic residence time with a long-term trend of decreasing relative areal hypolimnetic oxygen rates detected between the 1970s and 1990s. The algal assemblage present in Lake Texoma is dominated by the Cyanophyta, which comprises 82.1 % of the assemblage total standing crop with one species, Microcystis incerta, comprising 57.0 % of the assemblage total standing crop and is typical of a temperate eutrophic lake. The algal assemblage was affected more by temporal dynamics rather than spatial dynamics with variance observed in the algal assemblage attributable to physicochemical factors which vary through time.
814

Adaptive Evolution of Resource Use, Phenotypic Diversity, and Productivity of Phytoplankton Communities

Hellekant, Nils January 2019 (has links)
There is growing concern that the worldwide loss in biodiversity will harm the stability of the ecosystems, and thereby, the carrying capacity and critical ecosystem services the biosphere provides. Phytoplankton (microalgae) in lakes and oceans are arguably the most important primary producers. They are responsible for approximately half of the earth's primary production. However, there is little research into what influences the biodiversity of phytoplankton communities and of those studies the mechanisms for coexistence of phytoplankton have so far almost exclusively been studied on ecological time scales. We, therefore, explored how biodiversity and biomass (a proxy to primary production) of phytoplankton communities respond to co-varied environmental drivers over evolutionary time scales. We model adaptive evolution of phytoplankton' resource use, with a non-dimensionalized model of negatively buoyant phytoplankton inhabiting a partially mixed one-dimensional water column using reaction-advection-diffusion equations. We show that a number of environmental drivers have novel effects on biodiversity and biomass on evolutionary timescales. In contrast with previous non-evolutionary work, we found that decreasing light attenuation or increasing resource use efficiency can result in decreased biomass of plankton communities and nutrient-poor environments. One novel driver of species diversity was the combination of low rates of diffusion with relatively intermediate rates of sinking promote species diversity. Furthermore, we show that the phytoplankton turnover rate affects environmental heterogeneity and is, therefore, a contributing driver to species diversity.The evolution of half saturation constants can produce a variety of biodiversity-ecosystem function patterns as two positive, one unimodal, and one negative association were found when comparing biodiversity-ecosystem function. Collectively, our analyses suggest that environmental drivers can have substantially different effects over evolutionary timescales than those effects ecological modeling has previously shown.
815

Dinoflagellate cysts across the Cretaceous–Paleogene (K/Pg) boundary in the North Pacific; biostratigraphy, diversity, and paleoenvironmental reconstructions

McLachlan, Sandy Melvin Stuart 31 August 2021 (has links)
The central objective of this study is to understand phytoplankton community response following the global mass extinction event at the Cretaceous–Paleogene (K/Pg) boundary. The objective is approached through analysis of dinoflagellate cyst assemblages across the boundary interval in the North Pacific. Dinoflagellate cysts are powerful tools for deep time paleoenvironmental reconstructions and this group of microfossils has been vastly underutilized in this region of the world. On this premise, comprehensive marine palynological surveys were undertaken for the Oyster Bay Formation of eastern Vancouver Island, British Columbia, Canada and Shatsky Rise in the northwest Pacific. The Oyster Bay Formation work resulted in the discovery of the first K/Pg boundary succession west of the Rocky Mountains based on biostratigraphic controls and refined taxonomy for the genus Cannosphaeropsis found within these strata. Three new taxa are described: Cannosphaeropsis franciscana subsp. vacuoseptata subsp. nov., Cannosphaeropsis franciscana subsp. vesiculata subsp. nov. and Phelodinium fensomei sp. nov. The cyst assemblages reveal endemic associations and signals of transition between offshore coastal to estuarine settings in keeping with global eustatic trends. Oyster Bay Formation results and interpretations are compared to analyses of core samples from Deep Sea Drilling Project Site 577 at Shatsky Rise. Contrast is seen between a diverse, highly productive coastal to estuarine environment in the Oyster Bay Formation as represented by organic-walled taxa and an oligotrophic bathyal environment at Shatsky Rise during the same interval as represented by a small number of calcareous taxa. These two regions form the basis for comparison between differing assemblages in order to ascertain the extent to which phytoplankton communities were affected by changes in sea-surface and water mass conditions in conjunction with the K/Pg event. The findings reveal measurable impacts of climate and paleoenvironmental change reflected by shifts in assemblage composition and cyst morphology. A lack of extinction among many forms is consistent with studies from around the globe as presented in an exhaustive review of the literature. The dinoflagellates were marginally impacted with the most specialized taxa presenting a record of sea-surface temperature fluctuation, nutrient supply and opportunistic niche exploitation. / Graduate / 2022-08-20
816

Fytoplankton tatranských ples: faktory ovlivňující druhové složení a biomasu / Phytoplankton of the Tatra lakes: factors influencing taxonomic composition and biomass

Červenková, Lenka January 2010 (has links)
The aim of this diploma thesis was to describe species composition and biomass of phytoplankton in the Tatra Mountains lakes (Slovakia, Poland) and environmental factors influencing them. The surface layer of 89 lakes was sampled in September 2004. Flagellates from Chrysophyta, Dinophyta and Cryptophyta most frequently dominated the phytoplankton biomass. Lake in the same valley usually differed in their dominant taxonomic group as a result of different lake morphometry, catchment type and detailed geological structure. Based on the level of phytoplankton biovolume, the majority of lakes were ultraoligotrophic and oligotrophic, however, mesotrophic and even eutrophic conditions were recorded in some forest and meadow lakes. An allometric relationship between phytoplankton biomass and chlorophyll a was revealed. Specific chlorophyll content did not differ among taxonomic groups. Altogether 233 species were determined, the most diverse group were Chlorophyta. Species richness of lake was 3-46 and it was negatively correlated with altitude and positively correlated with lake area. The majority of species were rare both in term of biomass and number of lakes occupied by a particular species. Average local species biomass was positively correlated with regional distribution. The similarity of species...
817

Ecotoxicological effects on the coral endosymbiont Symbiodiniaceae of organic UV-filter chemicals

Walther, Nanna January 2022 (has links)
Coral bleaching causes the disappearance of unique ecosystems supporting thousands of different species. The corals health depends on its relationship with its endosymbiont, the zooxanthellate Symbiodiniaceae. This mutualistic relationship can be disrupted by anthropogenic chemical pollution by inducing physiologically stress in Symbiodiniaceae. This thesis investigates the effects of organic ultraviolet filter chemical in Symbiodiniaceae of four genera (Fugacium, Effrenium, Symbiodinium, Breviolum), with regards to their growth and photophysiological performance. Six Symbiodiniaceae strains were exposed to a mixture of the most commonly observed UV-filter at five different concentrations. The cells growth during exposure was followed with spectrophotometry optical density measures and flow cytometry cell counts. The photophysiological performance of Symbiodiniaceae cells in presence of UV-filter chemicals was obtained using chlorophyll fluorometry. This experiment revealed strain-specific sensitivity to UV-filter chemicals, where Symbiodiniaceae strains 421 and 4013 showed highest sensitivity on cell growth. A difference in photophysical performance of Symbiodiniaceae exposed to UV-filter chemicals was observed. The ecotoxicological effects observed in Symbiodiniaceae from UV-filter chemical exposure could indicate a contribution to the disruption of the mutualistic relationship between the coral host and Symbiodiniaceae.
818

Diversity and Production of Phytoplankton in the Offshore Mississippi River Plume and Coastal Environments

Wawrik, Boris 25 September 2003 (has links)
River discharge leads to extensive phytoplankton blooms often observed in ocean color satellite images to extend far into the open ocean as high chlorophyll plumes. We investigated diversity, distribution and ecology of phytoplankton populations in the Mississippi River plume, both spatially and in the water column using molecular tools. A method was developed for the quantification of diatom/pelagophyte rbcL (large subunit of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase) mRNA using quantitative PCR and applied to cultures and in the plume. The vertical structure of phytoplankton species in the Mississippi River plume was described by flow cytometry, pigments, rbcL mRNA and rbcL cDNA libraries. High productivity in the plume was associated with a large population of Synechococcus and elevated levels of cellular form IA rbcL mRNA. rbcL cDNA libraries indicated two vertically separated clades of Prochlorococcus (high-light and low-light adapted) in addition to a diverse group of prymnesiophytes and a microdiverse clade of prasinophytes, which may have dominated the SCM (Subsurface Chlorophyll Maximum). In situ sampling and satellite image analysis were used to estimate that the plume accounted for 41% and 13% of all surface water column ix productivity in the oligotrophic Gulf of Mexico, while covering less than 3% of its area. Coastally the plume is dominated by diatoms, which are replaced by a bloom of Synechococcus as the plume moves offshore. Diatoms as indicated by pigments and rbcL clone libraries again dominated the offshore, least productive plume. 15N uptake measurements indicated that rapid recycling of ammonium despite higher levels of nitrate primarily drives production in the offshore plume. rbcL mRNA levels and photosynthetic capacity displayed strong diel patters in three out of four time series sampled during the GRIST (Geochemical Rate/mRNA Integrated Study). In addition it was demonstrated that transcriptional regulation of the global nitrogen regulatory protein NtcA in Synechococcus WH7803 may involve a small cis-encoded anti-sense mRNA. Methods for the generation of large insert BAC (Bacterial Artificial Chromosome) from cultures and the environment were refined. Partial sequencing and genomic comparison of an ntcA containing BAC clone obtained from Synechococcus WH7803 indicated that ntcA is not part of a larger nitrogen assimilation operon in cyanobacteria.
819

USING AIRBORNE HYPERSPECTRAL IMAGERY TO ESTIMATE CHLOROPHYLL A AND PHYCOCYANIN IN THREE CENTRAL INDIANA MESOTROPHIC TO EUTROPHIC RESERVOIRS

Sengpiel, Rebecca Elizabeth 08 August 2007 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This thesis presents the results of an analysis of predicting phytoplankton pigment concentrations (chlorophyll a and phycocyanin) from remotely sensed imagery. Hyperspectral airborne and hand-held reflectance spectra were acquired on three reservoirs (Geist, Morse and Eagle Creek) in Central Indiana, USA. Concurrent with the reflectance acquisition, in situ samples were collected and analyzed in laboratories to quantify the pigment concentration and other water quality parameters. The resultant concentration was then linked to Airborne Imaging Spectrometer for Applications (AISA) reflectance spectra for the sampling stations to develop predictive models. AISA reflectance spectra were extracted from the imagery which had been processed for radiometric calibration and geometric correction. Several previously published algorithms were examined for the estimation of pigment concentration from the spectra. High coefficients of determination were achieved for predicting chlorophyll a in two of the three reservoirs (Geist R2 = 0.712, Morse R2 = 0.895 and Eagle Creek Reservoir R2 = 0.392). This situation was similar for PC prediction, where two of the three reservoirs had high coefficients of determination between pigment concentration and reflectance (Geist R2 = 0.805, Morse R2 = 0.878 and Eagle Creek Reservoir R2 = 0.316). The results of this study show that reflectance spectra collected with an airborne hyperspectral imager are statistically significant, p < 0.03, in predicting chlorophyll a and phycocyanin pigment concentration in all three reservoirs in this study without the consideration of other parameters. The algorithms were then applied to the AISA image to generate high spatial resolution (1 m2) maps of Chlorophyll a and Phycocyanin distribution for each reservoir.
820

Long-term response of zooplankton biomass and phenology to environmental variability in a eutrophic reservoir

Luken, Heather Grace 23 November 2020 (has links)
No description available.

Page generated in 0.0742 seconds