• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 8
  • 5
  • 5
  • 4
  • 4
  • 1
  • Tagged with
  • 56
  • 23
  • 12
  • 12
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Fabrication par pervaporation microfluidique de matériaux composites d'architecture et de composition contrôlées pour la réalisation de MEMS organiques / Fabrication of composite materials with controlled composition and architecture using microfluidics for the making of organic MEMS

Laval, Cédric 11 December 2015 (has links)
Ce travail de thèse porte sur la réalisation de MEMS organiques dans un dispositif original, le microévaporateur, couplant la technique MIMIC (Micromolding in Capillaries) à la pervaporation microfluidique. Il est expliqué comment le phénomène de pervaporation peut être utilisé pour concentrer des solutions polymériques diluées jusqu'à l'obtention de matériaux composites dans des géométries de dimensions typiques 25 μm x 100 μm x 10 mm. Il a été montré qu'il est possible d'établir des modèles décrivant cette croissance en excellent accord avec l'expérience et l'étude de l'influence de différents paramètres (concentration, géométrie...) sur la croissance a alors permis de prédire les vitesses de croissance des matériaux composites. Deux systèmes ont été réalisés à partir de ces derniers, associés à deux effets : l'effet bilame thermique et l'effet piezorésistif mettant en avant une preuve de concept d'une nouvelle voie de fabrication des MEMS organiques : la voie microfluidique. Un dispositif plus complexe comprenant également des vannes microfluidiques a permis de programmer des matériaux à gradients de composition dans la longueur de divers matériaux allant des cristaux colloïdaux aux matériaux polymères. / This work deals with the making of organic MEMS within an original device, the microevaporator, coupling the MIMIC technique (Micromolding in Capillaries) and microfluidic pervaporation. It is shown how the pervaporation phenomenon can be used to concentrate polymeric diluted solutions until we obtain composite materials into geometries with typical dimensions about 25 μm x 100 μm x 10 mm. We showed that it is possible to establish models which describe this growth in excellent agreement with experiments and the study of the influence of different parameters (concentration, geometry...) upon the growth thus allowed us to predict the growth velocities of those composite materials. Two systems have been made associated to two effects : bimetallic strip effect and piezoresistive effect in order to demonstrate a new proof of concept of a new way to make organic MEMS using microfluidics. A more complex device including microfluidic valves allowed us to encode materials with a gradient of composition within their largest dimension from colloidal cristals to polymeric materials.
42

Selektive Si1-xCx-Epitaxie für den Einsatz in der CMOS-Technologie

Ostermay, Ina 04 March 2013 (has links)
Ziel dieser Arbeit ist die Entwicklung selektiver Si1-xCx-Prozesse, die eine mechanische Zugspannung im Kanal von NMOS-Transistoren erzeugen, und so durch eine gezielte Änderung der Bandstruktur die Elektronenbeweglichkeit und damit auch die Leistungsfähigkeit der Bauteile erhöhen soll. In der vorliegenden Arbeit werden die wichtigsten Fragestellungen zum Wachstum der Si1-xCx-Schichten näher beleuchtet. Dabei werden zwei Methoden zum Wachstum der Schichten charakterisiert. Neben einem disilanbasierten UHV-CVD-Verfahren wird ein LP-CVD-Verfahren unter der Verwendung von Trisilan herangezogen. Für beide Prozessvarianten konnten mithilfe einer zyklischen Prozessführung selektive, undotierte und in-situ phosphordotierte Abscheidungen realisiert werden. Es wird gezeigt, dass die Disilanprozesse aufgrund ihrer geringen Wachstumsraten einen hohen Anteil interstitiellen Kohlenstoffs bedingen. Durch FT-IR-Analyse konnte belegt werden, dass sich während des Wachstums Siliziumkarbid-präzipitate bilden, die das epitaktische Wachstum nachhaltig schädigen können. Erweiterte man das Wachstum infolge der Zugabe von German zum ternären System Si1-x-yCxGey (y=0,05…0,07) wurde ein starker Anstieg der Wachstumsraten festgestellt. Die Aktivierungsenergie für das epitaktische Wachstum sinkt durch die Zugabe von German und der substitutionelle Kohlenstoffgehalt kann erhöht werden. Es wird gezeigt, dass German nicht nur für die Unterstützung des Ätzprozesses hilfreich ist, sondern im LP-CVD-Verfahren zur Unterstützung des HCl-basierten Ätzprozesses dienen kann. Ein weiterer Schwerpunkt der Arbeit liegt in der Abscheidung und Charakterisierung in-situ phosphor-dotierter Schichten. Es wird nachgewiesen, dass Phosphor die Wachstumsrate erhöht und dass Phosphor und Kohlenstoff in Konkurrenz um substitutionelle Gitterplätze stehen. Phosphor ist außerdem auch die Spezies, für die die größte Anisotropie hinsichtlich des Einbaus auf Si(110) im Vergleich zu Si(001) beobachtet wurde: Je nach Prozessführung wird auf Si(110)-Ebenen nahezu doppelt so viel Phosphor eingebaut wie auf Si(001). Dieser Effekt ist insofern von großer Relevanz, als dass ein steigender Phosphoranteil auch die thermische Stabilität der Schichten herabsetzt. Die Relaxationsvorgänge basieren bei Si1-xCx-Schichten auf Platzwechselvorgängen substitutioneller Kohlenstoffatome zu interstitiellen Silizium-Kohlenstoff-Hanteldefekten unter der Bildung einer Leerstelle. Es wurde ein Modell vorgeschlagen, nach dem Phosphor durch die Entstehung von PV-Komplexen diese Reaktion begünstigt, wodurch die Relaxationsvorgänge beschleunigt werden. Infolge einer dreidimensionalen Atomsondenanalyse kann der Endzustand der Relaxation – die Bildung stöchiometrischen Siliziumkarbids – belegt werden. In-situ phosphordotierte Si1-xCx-Schichten mit ca. 4*1020 at/cm³ Phosphorgehalt und 1,8 at.% Kohlenstoff wurden erfolgreich in NMOS-Transistoren der 45 nm Generation integriert und mit ebenfalls im Rahmen der Dissertation entwickelten Si:P-Rezepten verglichen. Die höchste Leistungssteigerung von 10 % konnte durch die Kombination aus beiden Prozessen erzielt werden, bei dem auf die spannungserzeugende Si1-xCx-Schicht zur Senkung des Silizidwiderstandes eine Si:P-Kappe aufgebracht wird. Die Einprägung einer Zugspannung in den Transistorkanal wurde mittels Nano beam diffraction nachgewiesen und wurde auf Basis des piezoresistiven Modells mit SiGe-PMOS-Transistoren verglichen.
43

Soft dielectric elastomer oscillators driving bioinspired robots

Henke, E.-F. Markus, Schlatter, Samuel, Anderson, Iain A. 29 January 2019 (has links)
Entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. To produce them we must integrate control and actuation in the same soft structure. Soft actuators (e.g. pneumatic, and hydraulic) exist but electronics are hard and stiff and remotely located. We present novel soft, electronicsfree dielectric elastomer oscillators, able to drive bioinspired robots. As a demonstrator we present a robot that mimics the crawling motion of the caterpillar, with integrated artificial nervous system, soft actuators and without any conventional stiff electronic parts. Supplied with an external DC voltage, the robot autonomously generates all signals necessary to drive its dielectric elastomer actuators, and translates an in-plane electromechanical oscillation into a crawling locomotion movement. Thereby, all functional and supporting parts are made of polymer materials and carbon. Besides the basic design of this first electronic-free, biomimetic robot we present prospects to control the general behavior of such robots. The absence of conventional stiff electronics and the exclusive use of polymeric materials will provide a large step towards real animal-like robots, compliant human machine interfaces and a new class of distributed, neuron-like internal control for robotic systems.
44

Polymer Nanocomposite-Based Wide Band Strain Sensor for 3D Force Measurement Using Piezoelectric and Piezoresistive Data Fusion

Ahmed Mohammed Al Otaibi (11205843) 29 July 2021 (has links)
<div>Polymer nanocomposites (PNC) have an excellent potential for in-situ strain sensing applications in static and dynamic loading scenarios. These PNCs have a polymer matrix of polyvinylidene fluoride (PVDF) with a conductive filler of multi-walled carbon nanotubes (MWCNT) and have both piezoelectric and piezoresistive characteristics. Generally, this composite would accurately measure either low-frequency dynamic strain using piezoresistive characteristic or high-frequency dynamic strains using piezoelectric characteristics of the MWCNT/PVDF film sensor. Thus, the frequency bands of the strain sensor are limited to either piezoresistive or piezoelectric ranges. In this study, a novel weighted fusion technique, called Piezoresistive/Piezoelectric Fusion (PPF), is proposed to combine both piezoresistive and piezoelectric characteristics to capture the wide frequency bands of strain measurements in real-time. This fuzzy logic (FL)-based method combines the salient features (i.e., piezoresistive and piezoelectric) of the nanocomposite sensor via reasonably accurate models to extend the frequency range over a wider band. The FL determines the weight of each signal based on the error between the estimated measurements and the actual measurements. These weights indicate the contribution of each signal to the final fused measurement. The Fuzzy Inference System (FIS) was developed using both optimization and data clustering techniques. In addition, a type-2 FIS was utilized to overcome the model’s uncertainty limitations. The developed PPF methods were verified with experimental data at different dynamic frequencies that were obtained from existing literature. The fused measurements of the MWCNT/PVDF were found to correlate very well with the actual strain, and a high degree of accuracy was achieved by the subtractive clustering PPF’s FISs algorithm. <br></div><div><br></div><div>3D force sensors have proven their effectiveness and relevance for robotics applications. They have also been used in medical and physical therapy applications such as surgical robots and Instrument Assisted Soft Tissue Manipulation (IASTM). The 3D force sensors have been utilized in robot-assisted surgeries and modern physical therapy devices to monitor the 3D forces for improved performances. The 3D force sensor performance and specifications depend on different design parameters, such as the structural configuration, placement of the sensing elements, and load criterion. In this work, different bioinspired structure configurations have been investigated and analyzed to obtain the optimal 3D force sensor configuration in terms of structural integrity, compactness, the safety factor, and strain sensitivity. A Finite Element Analysis (FEA) simulation was used for the analysis to minimize the time of the development cycle.</div><div><br></div><div><br></div><div>A tree branch design was used as the 3D force sensor’s elastic structure. The structure was made of aluminum with a laser-cutting fabrication process. The PVDF/MWCNT films contained piezoresistive and piezoelectric characteristics that allowed for static/low strain measurements and dynamic strain measurements, respectively. Two compositions with 0.1 wt.% and 2 wt.% PVDF/MWCNT sensing elements were selected for piezoelectric and piezoresistive strain measurements, respectively. These characteristic measurements were investigated under different vibration rates in a supported beam experiment. The 3D force sensor was tested under dynamic excitation in the Z-direction and the X-direction. A Direct Piezoresistive/Piezoelectric Fusion (DPPF) method was developed by fusing the piezoresistive and piezoelectric measurements at a given frequency that overcomes the limited frequency ranges of each of the strain sensor characteristics. The DPPF method is based on a fuzzy inference system (FIS) which is constructed and tuned using the subtractive clustering technique. Different nonlinear Hammerstein-Wiener (nlhw) models were used to estimate the actual strain from piezoresistive and piezoelectric measurements at the 3D force sensor. The DPPF method was tested and validated for different strain signal types using presumed Triangle and Square signal waves data. The DPPF has proven its effectiveness in fusing piezoresistive and piezoelectric measurements with different types of signals. In addition, an Extended Direct Piezoresistive/Piezoelectric Fusion (EPPF) is introduced to enhance the DPPF method and perform the fusion in a range of frequencies instead of a particular one. The DPPF and EPPF methods were implemented on the 3D force sensor data, and the developed fusion algorithms were tested on the proposed 3D force sensor experimental data. The simulation results show that the proposed fusion methods have been effective in achieving lower Root Mean Square Error (RMSE) than those obtained from the tuned nlhw models at different operating frequencies.</div>
45

Piezoresistive Models for Polysilicon with Bending or Torsional Loads

Larsen, Gerrit T. 12 August 2009 (has links) (PDF)
This thesis presents new models for determining piezoresistive response in long, thin polysilicon beams with either axial and bending moment inducing loads or torsional loads. Microelectromechanical (MEMS) test devices and calibration methods for finding the piezoresistive coefficients are also presented for both loading conditions. For axial and bending moment inducing loads, if the piezoresistive coefficients are known, the Improved Piezoresistive Flexure Model (IPFM) is used to find the new resistance of a beam under stress. The IPFM first discretizes the beam into small volumes represented by resistors. The stress that each of these volumes experiences is calculated, and the stress is used to change the resistance of the representative resistors according to a second-order piezoresistive equation. Once the resistance change in each resistor is calculated, they are combined in parallel and series to find the resistance change of the entire beam. If the piezoresitive coefficients are not initially known, data are first collected from a test device. Piezoresistive coefficients need to be estimated and the IPFM is run for the test device's different stress states giving resistance predictions. Optimization is done until changing the piezoresistive coefficients provides model predictions that accurately match experimental data. These piezoresistive coefficients can then be used to design and optimize other piezoresistive devices. A sensor is optimized using this method and is found to increase voltage response by an estimated 10 times. For torsional loads, the test device consists of a slider-crank connected to two torsional legs. The slider-crank creates torsional stress in the legs which causes a change in the electrical resistance through the legs. A model that predicts the effects of a scissor hinge on the slider-crank is presented. Torsional stresses in the legs are calculated delete{using the membrane analogy.} and the legs are discretized into long parallel resistors and the stresses delete{from the membrane analogy} applied to each resistor. Assuming a second-order piezoresistance, an optimization is then done to find the piezoresistive coefficients by changing them until the model prediction fits the test data. These coefficients can be used to predict angular displacement from resistance measurements in fully integrated torsional sensors. Potential applications are discussed, and a torsional accelerometer is presented.
46

Dresdner Beiträge zur Sensorik

Gerlach, Gerald 25 July 2017 (has links)
Seit 1996 wird von Prof. Dr.-Ing. habil. Gerald Gerlach die Buchreihe „Dresdner Beiträge zur Sensorik“ herausgegeben, in der herausragende wissenschaftliche Beiträge der Technischen Universität Dresden, insbesondere auch des Institutes für Festkörperelektronik, publiziert werden. Zu den bisher vorliegenden Bänden sind seitdem weitere Bände hinzugekommen. Das Profil des Institutes wird durch folgende Forschungsgebiete geprägt: Thermische Infrarotsensoren, Piezoresistive Sensoren auf der Basis quellfähiger Hydrogele, Ultraschalltechnik, Funktionelle Dünnschichten, Nanoptische Sensoren. Mit der Berufung von Prof. Dr.-Ing. habil. Gerald Gerlach auf den Lehrstuhl für Festkörperelektronik zum 01.01.1996 wurde das Spektrum der Forschungsarbeiten insbesondere um die Fachgebiete der Siliziumsensoren für unterschiedliche Meßgrößen und des Entwurfs komplexer Sensor- und Aktor-Systeme in der Mikrosystemtechnik erweitert. Das Zusammenwirken von Physik, Elektronik und Technologie der Mikroelektronik bei Forschung, Entwicklung und Fertigung sowie Applikation leistungsfähiger Sensoren ist Gegenstand von Lehre und Forschung des IFE. / Since 1996 the book series „Dresdner Beiträge zur Sensorik“ edited by Prof. Dr.-Ing. habil. Gerald Gerlach has been published. The aim of this series is the publication of outstanding scientific contributions of TU Dresden, especially of those compiled at the Institute for Solid-State Electronics. The Solid-State Electronics Laboratory (Institut für Festkörperelektronik - IFE) is one of 12 laboratories of the Electrical and Computer Engineering Department at Technische Universität Dresden. Together with the Semiconductor Technology and Microsystems Lab and several chairs of the Circuits and Systems and the Packaging Labs, the Solid-State Electronics Laboratory is responsible for the microelectronics specialization in the Electrical Engineering program. Research and teaching field of the Institute for Solid-State Electronics are dedicated to the interaction of physics, electronics and (microelectronics) technology in: materials research, technology, and solid state sensor operational principles, application of sensors for special measurement problems, design of sensors and sensor systems including the simulation of components as well as of complex systems, development of thin films and multilayer stacks for sensor applications, application of ultrasound for nondestructive evaluation, medical diagnostics and process measurement technology.
47

Développement d'une instrumentation embarquée pour le contrôle de dermes équivalents en culture / Development of embedded system for the control of cultured equivalent dermis

Yusifli, Elmar 18 December 2017 (has links)
La peau est un organe capable de se régénérer et de cicatriser. Elle constitue la première barrière de protection de notre organisme contre les agressions physico-chimiques extérieures. Depuis plusieurs décennies des recherches ont été menées pour maîtriser la culture du derme pour plusieurs applications telles que la greffe des grands brulés. L’aspect technologique de ce domaine a fait l’objet de plusieurs travaux. Dans les années 2000, l'équipe de notre laboratoire a proposé la méthode de culture du derme associée à des microsystèmes en silicium. C’est l’unique méthode actuelle qui permet la mesure des forces isométrique du derme équivalent lors de sa culture.Dans une première étude, nous avons proposé des nouvelles méthodes de mesure des forces isométriques qui s’exercent dans des peaux reconstruites en culture entre deux lames de silicium afin de fabriquer un bio-dispositif miniaturisé à faible coût. Ainsi, les dimensions optimales ont été calculées et des nouvelles lames ont été fabriquées. L’optimisation que nous avons retenue est relative à l’amélioration de la sensibilité de la mesure des forces. Afin de quantifier le fléchissement de lames due aux forces isométriques appliquées par le derme en culture, nous avons opté pour la mesure des déplacements des lames sous l’effets des forces isométriques, à l’aide d’ondes acoustiques de surface (SAW). Ce choix se justifie par la simplicité de l’intégration des transducteurs interdigités qui génèrent les ondes acoustiques, de la possibilité d’utiliser une interrogation sans fils et la réalisation physique de l’intercorrélation des ondes générées.A l’aide de simulation nous avons identifié les déformations des ondes et les écarts de fréquence qu’elles provoquent. En effet, la dissymétrie de la courbe d’intercorrélation des signaux transmis et reçus, par les transducteurs interdigités, est intiment liée à l’écart de fréquence de l’onde reçue. Nous avons démontré que le fléchissement engendre bien la dissymétrie dans l’axe du temps qui peut être mesurée plus précisément dans les limites d‘échantillonnage. Deux démonstrateurs sont modélisés et fabriqués dans la salle blanche afin de valider l’instrumentation et le principe de transduction d’un signal chirpé avec une onde acoustique de surface. Les résultats obtenus montrent que la méthode de mesure à l’aide d’une onde acoustique nous permet de faire de mesure de force mais dans une gamme d’intensité plus élevée que celle attendue. Par la suite, nous avons étudié la méthode de mesure de forces par les capteurs à base de piézorésistances. Sachant que la technique est basée sur la variation de résistivité du matériau déformé, nous avons décidé de replacer les grilles de lame prévue pour l’accrochage du derme en culture par le matériau piézorésistif implanté sur les micro poutres. Afin d’améliorer la résolution de détection de faibles forces une série de calcul et de simulations de la position et les dimensions du matériau piézorésistif et des micropoutres sont effectués et présentés. Une autre étude que nous avons menée en parallèle concerne le développement d’une instrumentation embarquée permettant de suivre la croissance du derme en culture basé sur un système de vision. Vu les conditions strictes de notre cahier de charges qui exigeait la portabilité et l’autonomie de système final, nous avons prévu le développement d’un système de vision embarqué basé sur un module de caméra et une carte FPGA. La caméra à haute définition montée sur le système de boite de culture finale avec un objectif permet de prendre des images de fluorescences des cellules en culture. / The skin is an organ which can regenerate and heal. It is the first shield of protection of our body against external physico-chemical aggression. For several decades, researches have been conducted to control the dermis culture for several applications such as grafting large burns. The technological aspect of this area has been the subject of several works. In the 2000s, the team of our laboratory proposed the dermis culture method associated with silicon microsystems. This is the only current method that allows the measurement of isometric forces of the equivalent dermis during its culture.In a first stage of study, in order to produce a miniaturized and low-cost bio-device, we proposed new methods to measure isometric forces in reconstructed skins in culture between two silicon beams. Thus, the optimal dimensions were calculated and new beams were fabricated. The chosen optimization is related to improve the sensitivity of the force measurement. To quantify the deflection of the beams due to the isometric forces applied by the dermis in culture, we opted for the measurement of the displacements of the beams under the influence of the isometric forces by using surface acoustic waves (SAW). This choice is justified by the simplicity of the integration of the interdigital transducers (IDT) that generate the SAW, the possibility of using a wireless interrogation and the physical realization of the cross-correlation of the generated waves.Using simulation, we have identified the frequency deviations caused by wave deformations. Indeed, the dissymmetry of the cross-correlation curve of the signals generated and received by IDT is closely related to the frequency deviation of the received wave. We have evidenced that the beam deflection generates the dissymmetry in the time axis which can be measured more precisely within the limits of sampling. Two demonstrators were designed and manufactured in the clean room to validate the instrumentation and the principle of transducing a chirped signal with a SAW. The obtained results show that the proposed SAW-based force measuring method allows us to measure force, but in a higher intensity range than expected. Subsequently, we studied the method of force measurement by piezoresistors. Considering that the technique is based on the variation of resistivity of the deformed material, we decided to replace the silicon grids provided for the attachment of the dermis in culture by the piezoresistive material implanted on the silicon micro-beams. To improve the low-resolution detection, a series of calculations and simulations of the positions and the dimensions of the piezoresistive material and the micro-beams have been carried out and presented. Another study that we conducted in parallel concerns the development of an on-board instrumentation to monitor the growth of the dermis in culture based on a vision system. Considering of the strict conditions of our specifications that required the portability and autonomy of the final system, we developed an embedded vision system based on a camera module and a FPGA card. The high definition camera mounted on the system of final culture box with a lens allows to take fluorescence images of cells in culture.
48

Étude des propriétés piézorésistives de jonctions tunnel MIM pour la réalisation de jauges de déformations / Study of the piezoresistive properties of MIM tunnel junctions for the realisation of strain gauges

Rafael, Rémi 12 December 2018 (has links)
De nouvelles applications émergent avec le développement de l’électronique souple comme des panneaux tactiles pliables, ou des capteurs de mouvement humain portables (wearable). Les technologies bien maîtrisées des jauges silicium sont mal adaptées à ces usages (faible élongation maximale, hautes températures de fabrication). Dans ce contexte, il est nécessaire de développer de nouveaux types de jauges. De nombreuses alternatives sont étudiées, qu’on peut diviser en deux catégories principales : les transducteurs nanoscopiques et les transducteurs composites. Dans ce travail, on étudie la possibilité d’utiliser une jonction tunnel MIM (Métal Isolant Métal) comme jauge de contrainte. Ce genre de dispositif est très peu étudié dans la littérature et la structure utilisée est généralement de type MIS (Métal Isolant Semi-conducteur). À chaque fois, la sensibilité du dispositif est expliquée par les propriétés du semi-conducteur (silicium). Les objectifs de cette thèse sont donc la compréhension des propriétés piézorésistives des jonctions MIM, l’optimisation de leur sensibilité et la fabrication d’un démonstrateur exploitant les technologies de la plastronique. Des jonctions de différentes natures (électrodes de différents métaux) sont fabriquées par évaporation et par ALD (Atomic Layer Deposition). La variation du courant en fonction de la contrainte est mesurée grâce à un banc de flexion. Le facteur de jauge associé est indépendant de la nature des électrodes mais varie fortement (de 40 à 75) en fonction du sens de polarisation de la jonction. Le facteur de jauge associé à la variation sous contrainte des paramètres géométriques (épaisseur et surface) est calculé mais reste inférieur à 13. Les phénomènes géométriques ne peuvent donc pas expliquer la sensibilité observée. L’étude de l’équation du courant Fowler Nordheim (identifié comme courant dominant dans nos jonctions) montre que cette sensibilité doit être associée à la variation sous contrainte de la hauteur de barrière aux interfaces métal/isolant, et/ou de la masse effective des électrons dans l’alumine. Des mesures de photoémission sont réalisées pour mesurer la hauteur de barrière des jonctions. À terme, cette méthode pourrait permettre de mesurer la variation sous contrainte, et donc de comprendre pleinement l’origine de la sensibilité des jonctions MIM. Pour finir, un démonstrateur intégrant des jauges MIM à effet tunnel (capteur de pression) est réalisé avec un substrat souple en polyimide rigidifié par une structure imprimée en 3D. Ce dispositif démontre la compatibilité des méthodes de fabrication des MIM avec les technologies souples et plastiques. / New applications are emerging with de development of flexible electronic like flexible touch panels and wearable movement sensors. The well mastered silicon technologies are ill adapted to these uses (low maximal elongation, high fabrication temperatures). In this context, it is necessary to develop new types of strain gauges. Numerous possibilities have been studied that can be divided in two main categories: nanosomic transducers and composite transducers. In this work, we study the possibility to use a MIM (Metal Insulator Metal) tunnel junction as strain gauge. This kind of structure is very unusual in the literature were the only similar article are based on MIS (Metal Insulator Semiconductor) junctions. The objectives of this thesis are thus the understanding of the piezorisistive properties of MIM structures, the optimisation of their sensitivity, and the realisation of a sensor prototype exploiting plastonic technologies.
49

Synthese und Charakterisierung dünner Hydrogelschichten mit modulierbaren Eigenschaften

Corten, Cathrin Carolin 13 June 2008 (has links) (PDF)
Im Mittelpunkt dieser Arbeit stand die Darstellung sensitiver Blockcopolymere und deren Gele, die als Ausgangsmaterialien in Sensor- und Aktorsystemen einsetzbar sind. Die Vereinigung verschiedener Ansprechparameter stellt erhöhte Anforderung an die Synthese. Geringe Ansprechzeiten lassen sich mit einer Gelgröße im µm-Bereich erreichen. Hydrogele dieser Größenordnungen können durch nachträgliche Vernetzung funktioneller linearer Polymere ermöglicht werden. Die Makroinitiatormethode ermöglichte den Aufbau verschiedener linearer photovernetzbarer Blockcopolymere. Zum Einen wurde das temperatursensitive P(n-BuAc)-block-P(PNIPAAm-co-DMIAAm) erhalten, des Weiteren gelang die Darstellung der multi-sensitiven Blockcopolymere P2VP-block-P(NIPAAm-co-DMIAAm) und P4VP-block-P(NIPAAm-co-DMIAAm). Die Blockcopolymere wurden mit variierenden Blocklängen und Verhältnissen sowie mit unterschiedlichem Vernetzergehalt dargestellt. Die Charakterisierung der Blockcopolymere erfolgte mittels 1H-NMR-Spektroskopie, GPC-Messungen (Zusammensetzung) und DSC-Messungen (thermische Eigenschaften). Das Löslichkeitsverhalten in wässrigen Medien wurde durch Dynamische Lichtstreuung bestimmt. Die Beschreibung des Quellverhaltens der vernetzten Schichten erfolgte durch vornehmlich durch optische Methoden (SPR/OWS, WAMS, Ellipsometrie). Die Veränderung des E-Moduls in Abhängigkeit äußerer Parameter konnte mittels AFM untersucht werden. Die Reaktion der Schichten wurde gegenüber Temperatur, pH-Wert und Salzkonzentrationen getestet. Die charakterisierten Filme konnten im Anschluss als sensitive Schichten in piezoresistiven Sensorsystemen verwendetet werden.
50

Micromachined flow sensors for velocity and pressure measurement

Song, Chao 27 August 2014 (has links)
This research focuses on developing sensors for properties of aerodynamic interest (i.e., flow and pressure) based on low-cost polymeric materials and simple fabrication processes. Such sensors can be fabricated in large arrays, covering the surface of airfoils typically used in unmanned vehicles, allowing for the detection of flow separation. This in turn potentially enables, through the use of closed-loop control, an expansion of the flight envelope of these vehicles. A key advance is compensation for the typically inferior performance of these low cost materials through both careful design as well as new readout methods that reduce drift, namely a readout methodology based on aeroelastic flutter. An all-polymer micromachined piezoresistive flow sensor is fabricated, based on a flexible polyimide substrate and an elastomeric piezoresistive composite material. The flow sensor comprises a cantilever that is extended into the embedding flow; flow-induced stress on the cantilever is sensed through the piezoresistive composite material. Increasing the sensitivity of the sensor is achieved by either utilizing a long single-cantilever beam or using a dual-cantilever beam supporting a flap extending into the flow. In the latter case, the sensor demonstrates increased sensitivity with a reduced cantilever length. The increase in sensitivity helps to reduce sensor drift, which in turn is further reduced by a new measurement method, the vibration amplitude measurement method. In this drift reduction measurement method, the flow-induced vibration amplitude of the sensor structure (i.e., the amplitude of the aeroelastic flutter induced by the flow), instead of the absolute value of cantilever deflection, is measured in order to find the flow rate. Measurement of this relative resistance change instead of the absolute resistance in the piezoresistor rejects common-mode drift and greatly reduces overall drift. Experimental results verify the expected drift reduction. Sensor drift is also reduced when the elastomeric piezoresistive material is replaced by a Pt thin film piezoresistor. Development of pressure sensors based on polymers proceeds by encapsulating a reference cavity within a multilayer polymer structure and forming capacitor plates on the polymeric membranes encapsulating the cavity. Measuring the capacitance change induced by changes in the embedding pressure (which cause changes in the positions of the bounding polymeric membranes) enables calculation of the pressure. The use of polymeric membranes requires understanding the leakage rate of gas into the reference cavity, which is a source of pressure drift. Developing a polymer-based pressure sensor that solves the problem of sensor drift as a result of gas permeation entails the fabrication of a silicon pressure reference cavity embedded in the polymer substrate, which results in a more hermetic and lower drift sensor while preserving the flexibility of the embedding polymer. Both wired and wireless versions of pressure and flow sensors of these types were developed and characterized. Further, the sensors were characterized on airfoils and their performance in a wind tunnel was determined.

Page generated in 0.0749 seconds