• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 3
  • 1
  • Tagged with
  • 20
  • 20
  • 18
  • 9
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development and characterization of polymeric nanoparticles(NPs) made from functionalized poly (D,L- lactide) (PLA)polymers

Essa, Sherief 11 1900 (has links)
Les nanoparticules polymériques biodégradable (NPs) sont apparues ces dernières années comme des systèmes prometteurs pour le ciblage et la libération contrôlée de médicaments. La première partie de cette étude visait à développer des NPs biodégradables préparées à partir de copolymères fonctionnalisés de l’acide lactique (poly (D,L)lactide ou PLA). Les polymères ont été étudiés comme systèmes de libération de médicaments dans le but d'améliorer les performances des NPs de PLA conventionnelles. L'effet de la fonctionnalisation du PLA par insertion de groupements chimiques dans la chaîne du polymère sur les propriétés physico-chimiques des NPs a été étudié. En outre, l'effet de l'architecture du polymère (mode d'organisation des chaînes de polymère dans le copolymère obtenu) sur divers aspects de l’administration de médicament a également été étudié. Pour atteindre ces objectifs, divers copolymères à base de PLA ont été synthétisés. Plus précisément il s’agit de 1) copolymères du poly (éthylène glycol) (PEG) greffées sur la chaîne de PLA à 2.5% et 7% mol. / mol. de monomères d'acide lactique (PEG2.5%-g-PLA et PEG7%-g-PLA, respectivement), 2) des groupements d’acide palmitique greffés sur le squelette de PLA à une densité de greffage de 2,5% (palmitique acid2.5%-g-PLA), 3) de copolymère « multibloc » de PLA et de PEG, (PLA-PEG-PLA)n. Dans la deuxième partie, l'effet des différentes densités de greffage sur les propriétés des NPs de PEG-g-PLA (propriétés physico-chimiques et biologiques) a été étudié pour déterminer la densité optimale de greffage PEG nécessaire pour développer la furtivité (« long circulating NPs »). Enfin, les copolymères de PLA fonctionnalisé avec du PEG ayant montré les résultats les plus satisfaisants en regard des divers aspects d’administration de médicaments, (tels que taille et de distribution de taille, charge de surface, chargement de drogue, libération contrôlée de médicaments) ont été sélectionnés pour l'encapsulation de l'itraconazole (ITZ). Le but est dans ce cas d’améliorer sa solubilité dans l'eau, sa biodisponibilité et donc son activité antifongique. Les NPs ont d'abord été préparées à partir de copolymères fonctionnalisés de PLA, puis ensuite analysés pour leurs paramètres physico-chimiques majeurs tels que l'efficacité d'encapsulation, la taille et distribution de taille, la charge de surface, les propriétés thermiques, la chimie de surface, le pourcentage de poly (alcool vinylique) (PVA) adsorbé à la surface, et le profil de libération de médicament. L'analyse de la chimie de surface par la spectroscopie de photoélectrons rayon X (XPS) et la microscopie à force atomique (AFM) ont été utilisés pour étudier l'organisation des chaînes de copolymère dans la formulation des NPs. De manière générale, les copolymères de PLA fonctionnalisés avec le PEG ont montré une amélioration du comportement de libération de médicaments en termes de taille et distribution de taille étroite, d’amélioration de l'efficacité de chargement, de diminution de l'adsorption des protéines plasmatiques sur leurs surfaces, de diminution de l’internalisation par les cellules de type macrophages, et enfin une meilleure activité antifongique des NPs chargées avec ITZ. En ce qui concerne l'analyse de la chimie de surface, l'imagerie de phase en AFM et les résultats de l’XPS ont montré la possibilité de la présence de davantage de chaînes de PEG à la surface des NPs faites de PEG-g-PLA que de NPS faites à partie de (PLA-PEG-PLA)n. Nos résultats démontrent que les propriétés des NPs peuvent être modifiées à la fois par le choix approprié de la composition en polymère mais aussi par l'architecture de ceux-ci. Les résultats suggèrent également que les copolymères de PEG-g-PLA pourraient être utilisés efficacement pour préparer des transporteurs nanométriques améliorant les propriétés de certains médicaments,notamment la solubilité, la stabilité et la biodisponibilité. / Biodegradable polymeric nanoparticles (NPs) have emerged as promising drug delivery carriers for the controlled drug release and targeting. The first part of this study aimed to develop biodegradable NPs from functionalized copolymers of poly (D,L-Lactide) (PLA). Those copolymers were explored as drug delivery systems in attempt to improve the drug delivery performance of conventional PLA NPs. The effect of PLA functionalization (insertion of chemical substituents onto PLA backbone) on the physicochemical properties of the obtained NPs was investigated. Moreover, the effect of polymer architecture (mode of organization of polymer chains in the resultant copolymer) on various drug delivery aspects was also studied. To reach those goals, various PLA based copolymers namely poly(ethylene glycol) (PEG) grafted on PLA backbone at 2.5% & 7% mol/mol of lactic acid monomers (PEG2.5%-g-PLA and PEG7%-g-PLA, respectively), palmitic acid grafted on PLA backbone at 2.5% grafting density (palmitic acid2.5%-g-PLA), and multiblock copolymer of PLA and PEG, (PLA-PEG-PLA)n were synthesized. In the second part, the effect of different PEG grafting densities over PLA backbone on the properties of PEG-g-PLA NPs either physicochemical or biological properties was investigated to reveal the optimal PEG grafting density required to develop stealth particles (long circulating NPs). Finally, functionalized PEG/PLA copolymers that showed the most satisfactory results in terms of various drug delivery aspects, such as size and size distribution, surface charge, drug loading, and controlled drug release were selected for encapsulation of itraconazole (ITZ) to improve its aqueous solubility, bioavailability and hence its antifungal activity. NPs were first prepared from functionalized PLA copolymers then analyzed for their major physicochemical parameters such as encapsulation efficiency, size and size distribution, surface charge, thermal properties, surface chemistry, % poly(vinyl alcohol) (PVA) adsorbed at the surface of NPs, and drug release pattern. Surface chemistry analysis using x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) phase imaging were used to study the chain organization behavior of each functionalized copolymer during NPs formulation. Generally speaking, functionalized PEG/PLA copolymers showed improved drug delivery behavior in terms of narrow size and size distribution, enhanced loading efficiency, less plasma protein adsorption onto their surfaces and less macrophage uptake, and finally better antifungal activity for ITZ loaded NPs. For the surface chemistry analysis, AFM phase imaging and XPS studies revealed the possibility of existence of more PEG chains at the surface of PEG-g-PLA NPs than (PLA-PEG-PLA)n during NPs formation. Our results demonstrate that properties of PLA-based NPs can be tuned by proper selection of both polymer composition and polymer architecture. Results also suggest that PEG-g-PLA copolymers could be used efficiently as a nanocarrier to improve various drug properties e.g. solubility, stability, and bioavailability.
12

Cultura de osteoblastos sobre arcabouço da blenda de PCL/PLGA : estudo in vitro e in vivo / Osteoblasts culture on PCL/PLGA blend scaffold : in vintro and in vivo study

Silva, Katia Fernanda 14 August 2018 (has links)
Orientador: Eliana Aparecida de Rezende Duek / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-14T20:10:35Z (GMT). No. of bitstreams: 1 Silva_KatiaFernanda_M.pdf: 16700696 bytes, checksum: 568261b128b361204100ac55aba7640b (MD5) Previous issue date: 2008 / Resumo: A Ciência dos Biomateriais é uma área de conhecimento multidisciplinar e está relacionada a implantes cirúrgicos e dispositivos médicos e odontológicos. Dentre as atuais aplicações dos biomateriais, a utilização de polímeros biorreabsorvíveis como arcabouço (scaffolds) para cultura de células tem se destacado como alternativa para tratamento de lesões e perda de tecidos. O objetivo deste trabalho foi obter e caracterizar arcabouços da blenda de poli(e-caprolactona) (PCL) e poli(D,L-ácido lático-co-ácido glicólico) (PLGA) nas diferentes composições (70/30, 50/50 e 30/70), preparados pelo método de fusão com adição e lixiviação de citrato de sódio. Os resultados obtidos através das análises de MEV evidenciaram que as amostras da blenda de PCL/PLGA 30/70 possuem tamanhos e quantidades de poros mais homogêneos quando comparadas às suas análogas de PCL/PLGA nas composições 50/50 e 70/30. Os materiais foram utilizados como arcabouço para cultura de osteoblastos e o estudo in vivo foi realizado pelo implante em tíbia de ratos. A cultura de células nas blendas de PCL/PLGA 70/30 e 30/70 mostraram um padrão de adesão e proliferação satisfatório, com intensa atividade celular comparado com a blenda na composição 50/50. No estudo in vivo as amostras de PCL/PLGA 30/70 com cultura apresentaram um crescimento celular mais intenso quando comparada com as blendas nas composições 70/30 com cultura, e nas diferentes composições sem cultura de células. Os resultados mostraram que a técnica utilizada no preparo das amostras é útil na confecção de arcabouços altamente porosos. Em função das análises in vitro e in vivo as blendas de PCL/PLGA 30/70 foram os arcabouços mais indicados para aplicações na engenharia de tecidos ósseos. / Abstract: The use of bioreabsorbable polymers as scaffolds for the cells culture has received special attention as an alternative for the treatment of lesions and the loss of tissue. The aim of this work was to obtain and to characterize porous scaffolds of poly(e-caprolactone) (PCL) and poly(D,Llactic acid-co-glycolic acid) (PLGA), blends, in different composition (30/70, 50/50 e 70/30), prepared by melting method with addition and leaching of sodium citrate. The morphology of samples obtained by SEM showed that PCL/PLGA 30/70 blends presented size and size distribution of porous more homogeneous when compared to PCL/PLGA 50/50 and 30/70. The culture of cells in PCL/PLGA 70/30 and 30/70 showed a satisfactory adhesion and proliferation, with intense cellular activity compared to PCL/PLGA 50/50. In the in vivo study, the samples of PCL/PLGA 30/70 showed a higher cellular grown compared to the results obtained in in vivo study of 70/30 blends with cells, 70/30 and 30/70 without cells. The results showed that the proposed technique allowed the preparation of highly porous scaffolds and the in vitro and in vivo showed that PCL/PLGA 30/70 blends were the most suitable scaffolds for applications in the bone tissue engineering. / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
13

Comparação de dois parafusos de interferência bioabsorvíveis estudo in vivo em ovinos /

Scorsato, Paulo Sérgio January 2019 (has links)
Orientador: Sheila Canevese Rahal / Resumo: O trabalho teve por objetivo comparar, por meio de exames de imagem e avaliações histológicas, dois parafusos de interferência bioabsorvíveis implantados em ovinos. Foram utilizados 22 ovinos, misto de Santa Inês, adultos, fêmeas, com massa corpórea média de 42,3 kg. Em todos os animais, o membro pélvico direito recebeu o parafuso de PDLLA (70% de L-lactídeo e 30% de DL-lactídeo) e o membro pélvico esquerdo recebeu parafuso de PDLLA 70/30 + β-TCP (30% de beta fostato tricálcico), os quais foram aplicados na região metafisária distal do fêmur por acesso lateral. Os animais foram submetidos à eutanásia, de acordo com o tempo de observação e permanência dos implantes, como segue: 1 mês (n=6), 4 meses (n=5), 7 meses e meio (n=6), 18 meses (n=5). Pelo exame radiográfico, o local de inserção do parafuso PDLLA mostrava-se inicialmente como área radiolucente circular, que progressivamente apresentou-se menos definido e com presença de radiopacidade central. Pela tomografia computadorizada (TC) havia área de hipodensidade no período inicial, que com o passar do tempo apresentou aumento da densidade no eixo central. No último tempo de avaliação, a microTC mostrou acentuado aumento da densidade do parafuso, principalmente nas regiões corticais. Na avaliação histologia o parafuso estava degradado, com áreas de formação óssea discretas e outras mais evidentes. O parafuso de PDLLA/β-TCP foi facilmente identificado nas avaliações iniciais pelos exames de imagem, sendo tanto radiopaco como h... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This study aimed to compare two bioabsorbable interference screws implanted in sheep. Twenty-two Santa Inês mixed sheep, adults, females, mean body mass of 42.3 kg were used. In all sheep, the right hind limb received PDLLA screw (70% L-lactide and 30% D,L-lactide) and the left hind limb received PDLLA70/30 + β-TCP (30% beta-tricalcium phosphate) screw, which were applied in the distal metaphyseal region of the femur by lateral access. The animals were submitted to euthanasia, according to observation time and permanence of the implants, as follows: 1 month (n = 6), 4 months (n = 5), 7.½ months (n = 6), 18 months (n = 5). On radiographs, the PDLLA screw insertion site was initially visibilized as a circular radiolucent area, which progressively was less defined and had central radiopacity. Computed tomography (CT) showed an area of hypodensity in the early period, and over time showed increased density in the central axis. At the last evaluation time, the microCT showed a marked increase in screw density, especially in the cortical regions. In the histology, the screw was degraded, with discrete bone formation areas and others more evident. The PDLLA/β-TCP screw was easily identified in the initial evaluations by imaging exams, being radiopaque and hyperdense, with progressive loss of definition by radiographic examination and density change on CT. In the last evaluation, the screw remained hypodense and surrounded by discrete bone tissue on microCT. Histologically, its centr... (Complete abstract click electronic access below) / Doutor
14

Studies on Biofilm Growth, Attachment and Biokinetic Performance in Biofilters Packed with Macroporous Media

Goncalves Rodrigues, Juan Jose January 2007 (has links)
No description available.
15

Mise au point de nanoparticules polymères pour l'administration parentérale d'agents anticancéreux hydrophobes

Gaucher, Geneviève 08 1900 (has links)
Plusieurs agents anticancéreux très puissants sont caractérisés par une solubilité aqueuse limitée et une toxicité systémique importante. Cette dernière serait liée d’une part à la solubilisation des agents anticancéreux à l’aide de surfactifs de bas poids moléculaire, connus pour leur toxicité intrinsèque, et d’autre part, par le manque de spécificité tissulaire des anticancéreux. Les vecteurs colloïdaux à base de polymères permettraient de résoudre certains défis liés à la formulation d’agents anticancéreux hydrophobes. D’abord, les polymères peuvent être sélectionnés afin de répondre à des critères précis de compatibilité, de dégradation et d’affinité pour le médicament à formuler. Ensuite, le fait d’encapsuler l’agent anticancéreux dans un vecteur peut améliorer son efficacité thérapeutique en favorisant son accumulation au niveau du tissu cible, i.e. la tumeur, et ainsi limiter sa distribution au niveau des tissus sains. Des travaux antérieurs menés au sein de notre laboratoire ont mené à la mise au point de micelles à base de poly(N-vinyl-pyrrolidone)-bloc-poly(D,L-lactide) (PVP-b-PDLLA) capables de solubiliser des agents anticancéreux faiblement hydrosolubles dont le PTX. Ce dernier est commercialisé sous le nom de Taxol® et formulé à l’aide du Crémophor EL (CrEL), un surfactif de bas poids moléculaire pouvant provoquer, entre autres, des réactions d’hypersensibilité sévères. Bien que les micelles de PVP-b-PDLLA chargées de PTX aient démontré une meilleure tolérance comparée au Taxol®, leur potentiel de ciblage tumoral et leur efficacité thérapeutique étaient similaires à la forme commerciale à doses égales. Ceci était possiblement dû au fait que les micelles étaient rapidement déstabilisées et ne pouvaient retenir leur cargo suite à leur administration intraveineuse. Nous avons donc décidé de poursuivre les travaux avec un autre type de vecteur, soit des nanoparticules, qui possèdent une stabilité intrinsèque supérieure aux micelles. L’objectif principal de cette thèse de doctorat était donc de mettre au point des nanoparticules polymères pour l’administration parentérale d’agents anticancéreux faiblement solubles dans l’eau. Les nanoparticules devaient permettre d’encapsuler des agents anticancéreux hydrophobes et de les libérer de manière contrôlée sur plusieurs jours. De plus, elles devaient démontrer un temps de circulation plasmatique prolongée afin de favoriser l’accumulation passive du médicament encapsulé au niveau de la tumeur. La première partie du travail visait à employer pour la première fois le copolymère amphiphile PVP-b-PDLLA comme émulsifiant dans la préparation de nanoparticules polymères. Ainsi, une méthode de fabrication des nanoparticules par émulsion huile-dans-eau a été appliquée afin de produire des nanoparticules à base de PDLLA de taille inférieure à 250 nm. Grâce aux propriétés lyoprotectrices de la couronne de PVP présente à la surface des nanoparticules, celles-ci pouvaient retrouver leur distribution de taille initiale après lyophilisation et redispersion en milieu aqueux. Deux anticancéreux hydrophobes, soit le PTX et l’étoposide (ETO), ont été encapsulés dans les nanoparticules et libérés de ces dernières de façon contrôlée sur plusieurs jours in vitro. Une procédure de « salting-out » a été appliquée afin d’améliorer le taux d’incorporation de l’ETO initialement faible étant donnée sa solubilité aqueuse légèrement supérieure à celle du PTX. Le second volet des travaux visait à comparer le PVP comme polymère de surface des nanoparticules au PEG, le polymère le plus fréquemment employé à cette fin en vectorisation. Par le biais d’études d’adsorption de protéines, de capture par les macrophages et de biodistribution chez le rat, nous avons établi une corrélation in vitro/in vivo démontrant que le PVP n’était pas un agent de surface aussi efficace que le PEG. Ainsi, malgré la présence du PVP à la surface des nanoparticules de PDLLA, ces dernières étaient rapidement éliminées de la circulation sanguine suite à leur capture par le système des phagocytes mononucléés. Par conséquent, dans le troisième volet de cette thèse, le PEG a été retenu comme agent de surface, tandis que différents polymères biodégradables de la famille des polyesters, certains synthétiques (PDLLA et copolymères d’acide lactique/acide glycolique), d’autres de source naturelle (poly(hydroxyalkanoates)(PHAs)), ont été investiguées comme matériaux formant le cœur des nanoparticules. Il en est ressorti que les propriétés physicochimiques des polyesters avaient un impact majeur sur l’efficacité d’encapsulation du PTX et son profil de libération des nanoparticules in vitro. Contrairement aux PHAs, les polymères synthétiques ont démontré des taux d’incorporation élevés ainsi qu’une libération contrôlée de leur cargo. Des études de pharmacocinétique et de biodistribution ont démontré que les nanoparticules de PDLLA dotées d’une couronne de PEG conféraient un temps de circulation plasmatique prolongé au PTX et favorisaient son accumulation tumorale. Les nanoparticules polymères représentent donc une alternative intéressante au Taxol®. / Many highly potent anticancer drugs are characterized by poor aqueous solubility and can impart significant systemic toxicity. This toxicity can be attributed in part to the solubilisation of these anticancer agents with low molecular weight surfactants that are known to cause serious biological side effects on their own. Moreover, following their intravenous (IV) injection, the anticancer agents distribute throughout the body, causing deleterious effects in healthy organs and tissues. Colloidal polymeric drug carriers have been investigated as a means to circumvent these drawbacks. First, polymeric materials can be tailored to meet specific requirements in terms of biocompatibility, biodegradability and affinity for the cargo molecule. Second, associating a drug to a carrier system can drastically alter its distribution throughout the body, enhancing its deposition at the target site, e.g. the tumour, while sparing healthy tissues, thus minimizing systemic toxicity. Previous work in our group has led to the design of block copolymer micelles based on poly(N-vinyl-pyrrolidone)-block-poly(D,L-lactide) (PVP-b-PDLLA) that were shown to solubilise hydrophobic anticancer agents such as paclitaxel (PTX). PTX is commercially available as Taxol®, a Cremophor EL (CrEL)-based formulation. CrEL is a low molecular weight surfactant that has been linked to severe side effects including life-threatening hypersensitivity reactions. Although PTX-loaded PVP-b-PDLLA micelles have demonstrated much improved tolerability compared to Taxol®, they did not increase PTX tumoral concentrations and exhibited anticancer efficacy similar to Taxol® at equivalent dosage. This was attributed to rapid destabilisation of the micelles and release of their cargo following IV administration. We chose to pursue our work with a colloidal drug carrier that exhibits greater stability compared to block copolymer micelles, i.e. polymeric nanoparticles. The main objective of this project was to develop polymeric nanoparticles for the parenteral delivery of hydrophobic anticancer drugs. The nanoparticles had to meet certain requirements such as be able to encapsulate hydrophobic anticancer drugs and release them in a controlled fashion over several days. Furthermore, the nanoparticles should confer prolonged plasma residence times to the encapsulated drug and favour its passive accumulation at its intended site of action, i.e. the tumour. The first part of this work focussed on applying PVP-b-PDLLA for the first time as polymeric emulsifier for the preparation of PDLLA nanoparticles with appropriate mean diameters (250 nm) using an oil-in-water emulsion method. Two hydrophobic anticancer drugs, PTX and etoposide (ETO), were successfully incorporated into the nanoparticles. A salting-out method was applied to enhance the loading efficiency of ETO, which was initially low given its slightly higher aqueous solubility compared to PTX. Both drugs were released in a controlled fashion from the PDLLA nanoparticles in vitro. Because of the lyoprotective effect of PVP, the polymer corona allowed for the particles to be easily redispersed in aqueous media following lyophilisation. The second part of the thesis aimed at evaluating whether the PVP coating could confer “stealth” properties to the PDLLA nanoparticles. Our study provided direct comparison between PVP and PEG, the most widely employed surface agent in drug delivery. In vitro protein adsorption and phagocytosis studies corroborated the in vivo findings, which showed that PVP-coated nanoparticles were rapidly cleared from circulation following their uptake by the mononuclear phagocyte system. Hence, our results indicated that PVP as coating materiel is not as efficient as PEG in conferring “stealth” properties to polymeric nanoparticles. Consequently, in the last section of this thesis, PEG was selected as coating agent while various biodegradable polymers were investigated as core-forming materials. Both synthetic (PDLLA and lactide/glycolide copolymers) and natural (polyhydroxyalkanoates (PHAs)) polyesters were tested. Our results demonstrated that the physicochemical properties of the polyesters significantly influenced the loading efficiency and release kinetics of PTX. While nanoparticles based on synthetic polyesters exhibited high encapsulation levels and controlled PTX release in vitro, PHA-based nanoparticles exhibited immediate unloading of their cargo. Pharmacokinetic and biodistribution studies in rodents revealed that encapsulating PTX in PEG-coated PDLLA-based nanoparticles led to enhanced plasma residence time and tumour deposition of the drug compared to Taxol®. Polymeric nanoparticles thus represent an appealing alternative to Taxol®.
16

Mise au point de nanoparticules polymères pour l'administration parentérale d'agents anticancéreux hydrophobes

Gaucher, Geneviève 08 1900 (has links)
Plusieurs agents anticancéreux très puissants sont caractérisés par une solubilité aqueuse limitée et une toxicité systémique importante. Cette dernière serait liée d’une part à la solubilisation des agents anticancéreux à l’aide de surfactifs de bas poids moléculaire, connus pour leur toxicité intrinsèque, et d’autre part, par le manque de spécificité tissulaire des anticancéreux. Les vecteurs colloïdaux à base de polymères permettraient de résoudre certains défis liés à la formulation d’agents anticancéreux hydrophobes. D’abord, les polymères peuvent être sélectionnés afin de répondre à des critères précis de compatibilité, de dégradation et d’affinité pour le médicament à formuler. Ensuite, le fait d’encapsuler l’agent anticancéreux dans un vecteur peut améliorer son efficacité thérapeutique en favorisant son accumulation au niveau du tissu cible, i.e. la tumeur, et ainsi limiter sa distribution au niveau des tissus sains. Des travaux antérieurs menés au sein de notre laboratoire ont mené à la mise au point de micelles à base de poly(N-vinyl-pyrrolidone)-bloc-poly(D,L-lactide) (PVP-b-PDLLA) capables de solubiliser des agents anticancéreux faiblement hydrosolubles dont le PTX. Ce dernier est commercialisé sous le nom de Taxol® et formulé à l’aide du Crémophor EL (CrEL), un surfactif de bas poids moléculaire pouvant provoquer, entre autres, des réactions d’hypersensibilité sévères. Bien que les micelles de PVP-b-PDLLA chargées de PTX aient démontré une meilleure tolérance comparée au Taxol®, leur potentiel de ciblage tumoral et leur efficacité thérapeutique étaient similaires à la forme commerciale à doses égales. Ceci était possiblement dû au fait que les micelles étaient rapidement déstabilisées et ne pouvaient retenir leur cargo suite à leur administration intraveineuse. Nous avons donc décidé de poursuivre les travaux avec un autre type de vecteur, soit des nanoparticules, qui possèdent une stabilité intrinsèque supérieure aux micelles. L’objectif principal de cette thèse de doctorat était donc de mettre au point des nanoparticules polymères pour l’administration parentérale d’agents anticancéreux faiblement solubles dans l’eau. Les nanoparticules devaient permettre d’encapsuler des agents anticancéreux hydrophobes et de les libérer de manière contrôlée sur plusieurs jours. De plus, elles devaient démontrer un temps de circulation plasmatique prolongée afin de favoriser l’accumulation passive du médicament encapsulé au niveau de la tumeur. La première partie du travail visait à employer pour la première fois le copolymère amphiphile PVP-b-PDLLA comme émulsifiant dans la préparation de nanoparticules polymères. Ainsi, une méthode de fabrication des nanoparticules par émulsion huile-dans-eau a été appliquée afin de produire des nanoparticules à base de PDLLA de taille inférieure à 250 nm. Grâce aux propriétés lyoprotectrices de la couronne de PVP présente à la surface des nanoparticules, celles-ci pouvaient retrouver leur distribution de taille initiale après lyophilisation et redispersion en milieu aqueux. Deux anticancéreux hydrophobes, soit le PTX et l’étoposide (ETO), ont été encapsulés dans les nanoparticules et libérés de ces dernières de façon contrôlée sur plusieurs jours in vitro. Une procédure de « salting-out » a été appliquée afin d’améliorer le taux d’incorporation de l’ETO initialement faible étant donnée sa solubilité aqueuse légèrement supérieure à celle du PTX. Le second volet des travaux visait à comparer le PVP comme polymère de surface des nanoparticules au PEG, le polymère le plus fréquemment employé à cette fin en vectorisation. Par le biais d’études d’adsorption de protéines, de capture par les macrophages et de biodistribution chez le rat, nous avons établi une corrélation in vitro/in vivo démontrant que le PVP n’était pas un agent de surface aussi efficace que le PEG. Ainsi, malgré la présence du PVP à la surface des nanoparticules de PDLLA, ces dernières étaient rapidement éliminées de la circulation sanguine suite à leur capture par le système des phagocytes mononucléés. Par conséquent, dans le troisième volet de cette thèse, le PEG a été retenu comme agent de surface, tandis que différents polymères biodégradables de la famille des polyesters, certains synthétiques (PDLLA et copolymères d’acide lactique/acide glycolique), d’autres de source naturelle (poly(hydroxyalkanoates)(PHAs)), ont été investiguées comme matériaux formant le cœur des nanoparticules. Il en est ressorti que les propriétés physicochimiques des polyesters avaient un impact majeur sur l’efficacité d’encapsulation du PTX et son profil de libération des nanoparticules in vitro. Contrairement aux PHAs, les polymères synthétiques ont démontré des taux d’incorporation élevés ainsi qu’une libération contrôlée de leur cargo. Des études de pharmacocinétique et de biodistribution ont démontré que les nanoparticules de PDLLA dotées d’une couronne de PEG conféraient un temps de circulation plasmatique prolongé au PTX et favorisaient son accumulation tumorale. Les nanoparticules polymères représentent donc une alternative intéressante au Taxol®. / Many highly potent anticancer drugs are characterized by poor aqueous solubility and can impart significant systemic toxicity. This toxicity can be attributed in part to the solubilisation of these anticancer agents with low molecular weight surfactants that are known to cause serious biological side effects on their own. Moreover, following their intravenous (IV) injection, the anticancer agents distribute throughout the body, causing deleterious effects in healthy organs and tissues. Colloidal polymeric drug carriers have been investigated as a means to circumvent these drawbacks. First, polymeric materials can be tailored to meet specific requirements in terms of biocompatibility, biodegradability and affinity for the cargo molecule. Second, associating a drug to a carrier system can drastically alter its distribution throughout the body, enhancing its deposition at the target site, e.g. the tumour, while sparing healthy tissues, thus minimizing systemic toxicity. Previous work in our group has led to the design of block copolymer micelles based on poly(N-vinyl-pyrrolidone)-block-poly(D,L-lactide) (PVP-b-PDLLA) that were shown to solubilise hydrophobic anticancer agents such as paclitaxel (PTX). PTX is commercially available as Taxol®, a Cremophor EL (CrEL)-based formulation. CrEL is a low molecular weight surfactant that has been linked to severe side effects including life-threatening hypersensitivity reactions. Although PTX-loaded PVP-b-PDLLA micelles have demonstrated much improved tolerability compared to Taxol®, they did not increase PTX tumoral concentrations and exhibited anticancer efficacy similar to Taxol® at equivalent dosage. This was attributed to rapid destabilisation of the micelles and release of their cargo following IV administration. We chose to pursue our work with a colloidal drug carrier that exhibits greater stability compared to block copolymer micelles, i.e. polymeric nanoparticles. The main objective of this project was to develop polymeric nanoparticles for the parenteral delivery of hydrophobic anticancer drugs. The nanoparticles had to meet certain requirements such as be able to encapsulate hydrophobic anticancer drugs and release them in a controlled fashion over several days. Furthermore, the nanoparticles should confer prolonged plasma residence times to the encapsulated drug and favour its passive accumulation at its intended site of action, i.e. the tumour. The first part of this work focussed on applying PVP-b-PDLLA for the first time as polymeric emulsifier for the preparation of PDLLA nanoparticles with appropriate mean diameters (250 nm) using an oil-in-water emulsion method. Two hydrophobic anticancer drugs, PTX and etoposide (ETO), were successfully incorporated into the nanoparticles. A salting-out method was applied to enhance the loading efficiency of ETO, which was initially low given its slightly higher aqueous solubility compared to PTX. Both drugs were released in a controlled fashion from the PDLLA nanoparticles in vitro. Because of the lyoprotective effect of PVP, the polymer corona allowed for the particles to be easily redispersed in aqueous media following lyophilisation. The second part of the thesis aimed at evaluating whether the PVP coating could confer “stealth” properties to the PDLLA nanoparticles. Our study provided direct comparison between PVP and PEG, the most widely employed surface agent in drug delivery. In vitro protein adsorption and phagocytosis studies corroborated the in vivo findings, which showed that PVP-coated nanoparticles were rapidly cleared from circulation following their uptake by the mononuclear phagocyte system. Hence, our results indicated that PVP as coating materiel is not as efficient as PEG in conferring “stealth” properties to polymeric nanoparticles. Consequently, in the last section of this thesis, PEG was selected as coating agent while various biodegradable polymers were investigated as core-forming materials. Both synthetic (PDLLA and lactide/glycolide copolymers) and natural (polyhydroxyalkanoates (PHAs)) polyesters were tested. Our results demonstrated that the physicochemical properties of the polyesters significantly influenced the loading efficiency and release kinetics of PTX. While nanoparticles based on synthetic polyesters exhibited high encapsulation levels and controlled PTX release in vitro, PHA-based nanoparticles exhibited immediate unloading of their cargo. Pharmacokinetic and biodistribution studies in rodents revealed that encapsulating PTX in PEG-coated PDLLA-based nanoparticles led to enhanced plasma residence time and tumour deposition of the drug compared to Taxol®. Polymeric nanoparticles thus represent an appealing alternative to Taxol®.
17

Quantificação de fármacos antituberculose em nanofibras por eletroforese capilar / Determination of anti-tuberculosis drugs in nanofibers by capillary electrophoresis.

Yataco Lazaro, Lourdes Marcela 20 October 2017 (has links)
Apesar de ser uma das doenças infecciosas mais antigas e bem conhecidas, a tuberculose (TB) permanece como a segunda maior causa de morte após a síndrome da imunodeficiência adquirida. A TB é uma doença infecciosa e transmissível, causada pela bactéria Mycobacterium tuberculosis (Mtb), que afeta prioritariamente os pulmões, embora possa acometer outros órgãos e sistemas. O presente trabalho teve como objetivo desenvolver nanofibras e nanoesferas de poli (D,L-láctico co-glicólico) (PLGA) contendo os Insumos Farmacêuticos Ativos (IFAs), rifampicina e isoniazida; caracterizá-las físico quimicamente e determinar a eficiência de encapsulação destes IFAs pelos métodos de eletroforese capilar (CE) e cromatografia líquida de alta eficiência (HPLC). O método de CE para a determinação simultânea dos IFAs antituberculose (isoniazida, rifampicina, pirazinamida e etambutol) foi otimizado por meio de um delineamento de experimentos de mistura com uma abordagem de vértices extremos usando o Software estatístico Minitab 17. Para o desenvolvimento das nanofibras se utilizou a técnica de electrospinning e para as nanoesferas se utilizou a técnica de emulsão/evaporação de solvente. As nanofibras foram caraterizadas por microscopia eletrônica de varredura (SEM), microscopia eletrônica de transmissão (TEM), espectrofotometria de absorção na região do infravermelho (FTIR), calorimetria exploratória diferencial (DSC) e termogravimetria/termogravimetria derivada (TGA) e as nanoesferas foram caracterizadas pelas técnicas de espalhamento dinâmico de luz (DLS), potencial zeta, índice de polidispersão, pH, SEM, TEM, FTIR e DSC. A eficiência de encapsulação dos IFAs nas nanofibras e nas nanoesferas foram realizadas através de duas técnicas analíticas, HPLC e CE, previamente validadas. A eficiência de encapsulação de isoniazida e rifampicina nas nanofibras foi 12,16 % e 5,90 %, respectivamente usando a técnica de HPLC e através da técnica de CE a eficiência de encapsulação foi de 12,30 % e 6,36 %, para isoniazida e rifampicina, respectivamente. A eficiência de encapsulação para a melhor formulação das nanoesferas foi de 2,33 % e 14,75 % para a isoniazida e rifampicina, respectivamente através da técnica de HPLC e uma eficiência de encapsulação de 2,26 % para a isoniazida e 14,22 % para a rifampicina através da técnica de CE. O método por CE teve a vantagem de apresentar um menor tempo de analise, menos de 6 min, com uma adequada resolução entre os picos dos IFAs. O tempo de analise por HPLC foi de 10 min. O método de CE foi menos lesivo ao meio ambiente, devido à pouca quantidade de solventes orgânicos, tornando assim a CE em um método alternativo à HPLC. / Despite being one of the oldest and most well-known infectious diseases, tuberculosis (TB) remains the second leading cause of death after acquired immunodeficiency syndrome. TB is an infectious and transmissible disease caused by Mycobacterium tuberculosis (Mtb) bacteria, which primarily affects the lungs, although it can affect other organs and systems. The present work aimed to develop nanofibers and nanospheres of poly (D, L-lactic co-glycolic) (PLGA) containing Active Pharmaceutical Ingredients (IPAs), rifampicin and isoniazid; characterize them physical-chemically and determine the encapsulation efficiency of these drugs by capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) methods. A CE method for determination of IPAs (isoniazid, rifampicin, pyrazinamide and ethambutol) was optimized through a design of mixing experiments with an extreme vertex approach using the Minitab 17 statistical Software. For the development of nanofibers and nanospheres the electrospinning and the emulsion/solvent evaporation techniques, respectively were used. Nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA). Nanospheres were characterized by dynamic light scattering (DLS), zeta potential, polydispersity index, pH, SEM, TEM, FTIR and DSC. The encapsulation efficiency of the IPAs in nanofibres and nanospheres was performed using two analytical techniques, HPLC and EC, previously validated. For nanofibers, the encapsulation efficiency were 12.16 % and 5.90 % for isoniazid and rifampicin, respectivey by using HPLC method and 12,30 % for isoniazid and 6,36 % for rifampicin by CE method. The encapsulation efficiency for the best formulation of nanospheres was 2,33 % and 14,75 % for rifampicin and isoniazid, respectively by using HPLC method and 2,26 % for isoniazid and 14,22 % for rifampicin by EC method. It was shown that CE method presented a shorter analysis time (< 6min) and also and adequate resolution between the IPAs peaks. The time of analysis for the HPLC method was 10 min.CE method was less aggressive to the environment because it uses smaller amount of organic solvents. Therefore the CE is an alternative method to HPLC.
18

Quantificação de fármacos antituberculose em nanofibras por eletroforese capilar / Determination of anti-tuberculosis drugs in nanofibers by capillary electrophoresis.

Lourdes Marcela Yataco Lazaro 20 October 2017 (has links)
Apesar de ser uma das doenças infecciosas mais antigas e bem conhecidas, a tuberculose (TB) permanece como a segunda maior causa de morte após a síndrome da imunodeficiência adquirida. A TB é uma doença infecciosa e transmissível, causada pela bactéria Mycobacterium tuberculosis (Mtb), que afeta prioritariamente os pulmões, embora possa acometer outros órgãos e sistemas. O presente trabalho teve como objetivo desenvolver nanofibras e nanoesferas de poli (D,L-láctico co-glicólico) (PLGA) contendo os Insumos Farmacêuticos Ativos (IFAs), rifampicina e isoniazida; caracterizá-las físico quimicamente e determinar a eficiência de encapsulação destes IFAs pelos métodos de eletroforese capilar (CE) e cromatografia líquida de alta eficiência (HPLC). O método de CE para a determinação simultânea dos IFAs antituberculose (isoniazida, rifampicina, pirazinamida e etambutol) foi otimizado por meio de um delineamento de experimentos de mistura com uma abordagem de vértices extremos usando o Software estatístico Minitab 17. Para o desenvolvimento das nanofibras se utilizou a técnica de electrospinning e para as nanoesferas se utilizou a técnica de emulsão/evaporação de solvente. As nanofibras foram caraterizadas por microscopia eletrônica de varredura (SEM), microscopia eletrônica de transmissão (TEM), espectrofotometria de absorção na região do infravermelho (FTIR), calorimetria exploratória diferencial (DSC) e termogravimetria/termogravimetria derivada (TGA) e as nanoesferas foram caracterizadas pelas técnicas de espalhamento dinâmico de luz (DLS), potencial zeta, índice de polidispersão, pH, SEM, TEM, FTIR e DSC. A eficiência de encapsulação dos IFAs nas nanofibras e nas nanoesferas foram realizadas através de duas técnicas analíticas, HPLC e CE, previamente validadas. A eficiência de encapsulação de isoniazida e rifampicina nas nanofibras foi 12,16 % e 5,90 %, respectivamente usando a técnica de HPLC e através da técnica de CE a eficiência de encapsulação foi de 12,30 % e 6,36 %, para isoniazida e rifampicina, respectivamente. A eficiência de encapsulação para a melhor formulação das nanoesferas foi de 2,33 % e 14,75 % para a isoniazida e rifampicina, respectivamente através da técnica de HPLC e uma eficiência de encapsulação de 2,26 % para a isoniazida e 14,22 % para a rifampicina através da técnica de CE. O método por CE teve a vantagem de apresentar um menor tempo de analise, menos de 6 min, com uma adequada resolução entre os picos dos IFAs. O tempo de analise por HPLC foi de 10 min. O método de CE foi menos lesivo ao meio ambiente, devido à pouca quantidade de solventes orgânicos, tornando assim a CE em um método alternativo à HPLC. / Despite being one of the oldest and most well-known infectious diseases, tuberculosis (TB) remains the second leading cause of death after acquired immunodeficiency syndrome. TB is an infectious and transmissible disease caused by Mycobacterium tuberculosis (Mtb) bacteria, which primarily affects the lungs, although it can affect other organs and systems. The present work aimed to develop nanofibers and nanospheres of poly (D, L-lactic co-glycolic) (PLGA) containing Active Pharmaceutical Ingredients (IPAs), rifampicin and isoniazid; characterize them physical-chemically and determine the encapsulation efficiency of these drugs by capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) methods. A CE method for determination of IPAs (isoniazid, rifampicin, pyrazinamide and ethambutol) was optimized through a design of mixing experiments with an extreme vertex approach using the Minitab 17 statistical Software. For the development of nanofibers and nanospheres the electrospinning and the emulsion/solvent evaporation techniques, respectively were used. Nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA). Nanospheres were characterized by dynamic light scattering (DLS), zeta potential, polydispersity index, pH, SEM, TEM, FTIR and DSC. The encapsulation efficiency of the IPAs in nanofibres and nanospheres was performed using two analytical techniques, HPLC and EC, previously validated. For nanofibers, the encapsulation efficiency were 12.16 % and 5.90 % for isoniazid and rifampicin, respectivey by using HPLC method and 12,30 % for isoniazid and 6,36 % for rifampicin by CE method. The encapsulation efficiency for the best formulation of nanospheres was 2,33 % and 14,75 % for rifampicin and isoniazid, respectively by using HPLC method and 2,26 % for isoniazid and 14,22 % for rifampicin by EC method. It was shown that CE method presented a shorter analysis time (< 6min) and also and adequate resolution between the IPAs peaks. The time of analysis for the HPLC method was 10 min.CE method was less aggressive to the environment because it uses smaller amount of organic solvents. Therefore the CE is an alternative method to HPLC.
19

Phytochemical Modification of Biodegradable/Biocompatible Polymer Blends with Improved Immunological Responses

Buddhiranon, Sasiwimon 06 December 2012 (has links)
No description available.
20

La formation de synapses par les neurones périphériques sur des surfaces synthétiques

Ma, Xiya 08 1900 (has links)
No description available.

Page generated in 0.0472 seconds