• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 116
  • 21
  • 15
  • 8
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 322
  • 105
  • 63
  • 50
  • 45
  • 44
  • 38
  • 32
  • 31
  • 29
  • 29
  • 27
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Organicko-anorganické polymery - syntéza a charakterizace hybridních polymerů a nanokompozitů / Organic-inorganic polymers - synthesis and characterization of hybrid polymers and nanocomposites

Depa, Katarzyna January 2017 (has links)
In the first part of this work, silica nanoparticles and alternative or additional filler phases were incorporated into hydrogels based on the temperature-sensitive poly(N- isopropylacrylamide) (PNIPAm). Nano-SiO2-filled porous PNIPAm hydrogels with an enhanced force response (up to 100 g) to temperature stimuli were obtained by increasing several times the pore wall thickness, which was achieved via reducing the solvent (porogen) content during the gels' cryo-synthesis. A similar optimization of the force response was also carried out for analogous gels reinforced by nano-TiO2, in which the reinforcing effect of the filler is weaker. Partial intercalation of amylopectin starch into divinyl-crosslinked bulk as well as porous PNIPAm gels several times improved their extensibility. In case of starch-rich bulk gels, a very fast and extensive one-way deswelling in response to increased temperature was achieved (re-swelling upon cooling is much slower), which is attributed to specific properties of the starch-PNIPAm interface. In doubly-filled bulk PNIPAm/nano-SiO2/starch gels, a very strong synergic reinforcing effect of both fillers is observed, due to specific hydrogen bridging between the three phases. Highly porous cryogels based on PNIPAm/nano- SiO2/starch displayed a highly improved extensibility...
302

The adsorption of Cu(II) ions by polyaniline grafted chitosan beads.

Igberase, Ephraim 06 November 2013 (has links)
M. Tech. (Department of Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / This work investigates the possible use of chitosan beads and polyaniline grafted chitosan beads (PGCB) for the adsorption of copper ions from copper contaminated water. For this purpose chitosan flakes were converted to chitosan beads. However, a variable from a number of reaction variables (aniline concentration, chitosan concentration, temperature, acid concentration, reaction time and initiator concentration) was varied while others was kept constant, in an attempt to determine the best conditions for grafting of polyaniline onto chitosan beads. Percentage (%) grafting and % efficiency were key parameters used to determine such conditions. The chitosan beads and PGCB were characterized using physical techniques such as Fourier transformed infra red (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). The beads were used as an adsorbent for copper ions removal. The effect of pH on the removal rate of copper (II) by PGCB was investigated on by varying the pH values from pH 3 to 8 at an initial concentration of 40 mg/l. The effect of contact time, initial concentration and temperature was also investigated. The Langmuir and Freundlich model were used to describe adsorption isotherms for chitosan beads and PGCB, with correlation coefficient (R2) as the determining factor of best fit model. The thermodynamics of adsorption of copper (II) onto PGCB was described by parameters such as standard Gibb’s free energy change (ΔGo), standard enthalpy change (ΔHo), and standard entropy change (ΔSo) while the pseudo first-order and pseudo second-order kinetic model was used to describe kinetic data for the PGCB, with R2 and chi- square test (  2) as the determinant factor of best fit model. From the desorption studies, the effect of eluants (HCl and HNO3) and contact time on percentage desorption of PGCB loaded copper (II) ion was investigated upon. In determining the reusability of the PGCB loaded copper (II) ion, three cycles of adsorption/desorption studies was carried out. The results obtained from determining the best conditions for grafting polyaniline onto chitosan beads revealed the following grafting conditions; [Aniline] 0.1 g/l, [temperature] 35oC, [chitosan] 0.45 g/l, [HCl] 0.4 g/l, [(NH4)2S2O8] 0.35 g/l, and [time] 1 h. These conditions were applied in the grafting of polyaniline onto chitosan beads. FTIR analysis showed increase intensity in the grafted beads which provided evidence of grafting, XRD measurement showed a decrease in crystallinity in the PGCB as against the partial crystalline nature of chitosan. In SEM analysis, evidence of grafting was revealed by the closed gap between the polysaccharide particles in the PGCB. From the investigation carried out on the effect of pH on the percentage removal of Cu(II) ions by PGCB, the optimal pH value was found to be pH 5 with a percentage removal of 100% and this value was used for all adsorption experiment. Also from the investigation performed on the effect of contact time and initial concentration, it was observed that there was a sharp increase in the amount of Cu(II) ions adsorbed by PGCB up until contact time of 30 min and thereafter, it increases gradually. From the experiment carried out on the effect of temperature on adsorption capacity, there was an increase in adsorption capacity with increase in temperature. Moreover, at temperatures of 25oC, 35 oC and 45oC the Langmuir model gave the best fit for the chitosan beads having R2 values that are equal and greater than 0.942 in contrast to Freundlich having R2 values that is equal and greater than 0.932. The maximum adsorption capacity (Qm) from Langmuir model at these temperatures were 30.3 mg/g, 47.6 mg/g and 52.6 mg/g respectively. Also, the Langmuir model gave the best fit for the PGCB having R2 values that are equal and greater than 0.956 in contrast to Freundlich model with R2 values that is equal and greater than 0.935. The Qm from Langmuir model at these temperatures were 80.3 mg/g, 90.9 mg/g and 100 mg/g respectively. The values of Qm for PGCB appears to be significantly higher when compared to that of chitosan beads and this makes PGCB a better adsorbent than chitosan beads. From the thermodynamic studies carried out on PGCB, the values of ΔGo were negative and this denotes that the adsorption of copper ions onto PGCB is favorable and spontaneous, the positive value of ΔHo shows the adsorption process is endothermic and the positive value of ΔSo illustrate increased randomness at the solid-liquid interface during the adsorption process. Also, from the kinetic studies carried out on the PGCB, the pseudo second-order kinetic model best described the kinetic data having R2 values that are equal and greater than 0.994 in contrast to the pseudo first-order kinetic model with R2 values that is equal and greater than 0.913. The  2 values for the pseudo first-order and pseudo second-order kinetic model were similar; however, there was a large difference for qe between the calculated (qeCal) values of the first-order kinetic model and experimental (qeExp) values. In the case of the pseudo second-order model, the calculated qe values agree very well with the experimental data. Desorption of the metal ions from PGCB was efficient. 0.5 M HCl was successfully used in desorbing the beads loaded with copper ions and a percentage desorption of 97.1% was achieved at contact time of 180 min. PGCB were successfully re-used for adsorption/desorption studies were a Qm of 83.3 mg/g, 83.3 mg/g and 76.9 mg/g was achieved in the first, second and third cycle respectively.
303

Development of Nanocomposites Based Sensors Using Molecular/Polymer/Nano-Additive Routes

Liu, Chang 30 May 2019 (has links)
No description available.
304

Photochemistry of Vanadium Clusters and Applications For Responsive Materials

Edirisinghe, E.A. Kalani D. 29 August 2022 (has links)
No description available.
305

Polyaniline and Its Derivatives for Environmental Analysis.

Abia, Atogho Jude 15 August 2006 (has links) (PDF)
Electrooxidation has been used to deposit thin film polyaniline as well as its derivative - thin film poly (ortho-phenylenediamine) (POPD) and poly (meta-phenylenediamine) (PMPD) on carbon electrodes, which are subsequently used to monitor the environmental heavy metal ions (Hg2+, Pb2+ ,Cd2+) through a rather unusual "blocking" of anodic stripping for these metals. Using Hg2+ as a model, its cyclic voltammogram for a modified glassy carbon electrode with the resultant polymer shows an enhanced cathodic peak that increases linearly with the analyte ion concentration. POPD also exhibits unique selective detection for organic species. Acetaminophen and uric acid can be preferentially detected over ascorbic acid from a mixture of these three compounds. In addition, the effect of carbon nanotubes incorporated in polyaniline (PAN) film is observed to have enhanced electrochemical catalytic activities on the remedy of environmental dichromate.
306

Prussian White In Sodium- Ion Batteries : An evaluation of organic and inorganic coatings on active material particles

Jansson, Philip January 2021 (has links)
Emerging markets in electrochemical energy storage, such as stationary grid storage, coupled with future concerns over the availability of lithium, places sodium-ion battery (SIB) technologies at a unique position to enter the market as a commercially viable alternative. Current shortcomings in the performance of cathode materials in SIBs would necessarily need to be addressed if this technology is to compete with existing commercial lithium-ion battery counterparts. Prussian White (PW), a promising cathode material currently being produced by Altris AB in Uppsala, Sweden, has been shown in many regards to be a promising candidate as a cathode material. In efforts to improve the lifetime, thermal stability, and rate capability of the material, both zinc oxide (ZnO) and polyaniline (PANI) coatings were applied to the active material powder.  Scanning electron microscopy (SEM) images of the ZnO coated PW showed that the ZnO was concentrated to certain regions, resulting in a rough and compromised coating. Furthermore, the notable presence of iron 2p orbital peaks in XPS spectra for ZnO and PANI coated samples, together with the SEM images, suggests that no method resulted in a conformal coating. Crystallographic information obtained using a capillary X-ray diffractometer showed that the PANI coating process had caused the PW to transition from a monoclinic to a cubic structure. This phase transition, based on subsequent thermogravimetric analysis, is attributed to an increase in both interstitial and lattice water content.  A comparative analysis of particle size and morphology, before and after slurry homogenization, showed that the ball milling technique used resulted in a reduction in size. Moreover, the ball milling process affected the uncoated PW more than the ZnO coated PW.  Findings, based on galvanostatic cycling of both full and half cells, indicate that the ZnO coating method on average results in a 12 mAh g1 loss in discharge capacity. The PANI coated PW showed a drop in capacity of approximately half that of the uncoated reference samples. No significant differences were observed in capacity retention, coulombic efficiency, and thermal stability between ZnO coated and uncoated PW. The better rate capability of the uncoated PW is suggested to be a result of the smaller particle size. Explanations for the observed similarities in electrochemical performance include (i) the breaking up of particles and agglomerates during the ball milling process (exposing uncoated faces), and (ii) the compromised coating. / Framväxande marknader inom elektrokemisk energilagring, såsom stationär nätlagring, i kombination med framtida oro över tillgängligheten av litium, placerar natriumjonbatteriteknik (SIB) i en unik position för att komma in på marknaden som ett kommersiellt lönsamt alternativ. Nuvarande brister i prestanda av katodmaterial i SIB måste nödvändigtvis åtgärdas om denna teknik ska konkurrera med befintliga kommersiella litiumjonbatterier. Prussian White (PW), ett lovande katodmaterial som produceras av Altris AB i Uppsala, Sverige, har i många avseenden visat sig vara en lovande kandidat som katodmaterial. I försök att förbättra materialets livslängd, termiska stabilitet och cyklingshastighetsförmåga applicerades både zinkoxid (ZnO) och polyanilin (PANI) -beläggningar på PW.  Svepelektronmikroskopi (SEM) -bilder av den ZnO-belagda PW visade att ZnO koncentrerades till vissa regioner, vilket resulterade i en grov och komprimerad beläggning. Vidare antyder närvaron av järn 2p orbitaltoppar i XPS-spektra för ZnO- och PANI-belagda prover, tillsammans med SEM-bilderna, att ingen metod resulterade i en lyckad beläggning. Kristallografisk information erhållen med användning av en kapillär röntgendiffraktometer visade att PANI-beläggningsprocessen hade orsakat en fasomvandling från en monoklinisk till en kubisk struktur. Denna fasomvandling, baserad på efterföljande termogravimetrisk analys, tillskrivs en ökning av både interstitiellt och gittervatteninnehåll.  En jämförande analys av partikelstorlek och morfologi före och efter homogenisering visade att den använda kulkvarnstekniken resulterade i en minskning i storlek. Dessutom påverkade kulkvarnsprocessen den obelagda PW mer än den ZnO-belagda PW.  Resultat, baserade på galvanostatisk cykling av både hel- och halvceller, indikerar att ZnO-beläggningsmetoden i genomsnitt resulterar i en 12 mAh g-1-förlust i urladdningskapacitet. Den PANI-belagda PW uppvisade en minskning i kapacitet på ungefär hälften av de obelagda referensproverna. Inga signifikanta skillnader observerades i kapacitetsretention, coulombisk effektivitet och termisk stabilitet mellan ZnO-belagd och obelagd PW. Den bättre hastighetsförmågan hos obelagd PW föreslås vara ett resultat av den mindre partikelstorleken. Förklaringar för de observerade likheterna i elektrokemisk prestanda innefattar (i) uppbrytning av partiklar och agglomerat under kulfräsningsprocessen (exponering av obelagda ytor) och (ii) ofullständig beläggning.
307

<i>IN SITU</i> PREPARATION AND STRUCTURE - PROPERTY STUDIES OF FILLER PARTICLES IN POLY(DIMETHYLSILOXANE) ELASTOMERS

MURUGESAN, SURESH 04 September 2003 (has links)
No description available.
308

Conducting Polymers / Polyimide-Clay Nanocomposite Coatings for Corrosion Protection of AA-2024 Alloy

Shah, Kunal G. 02 July 2004 (has links)
No description available.
309

Magneto-Transport and Optical Control of Magnetization in Organic Systems: From Polymers to Molecule-based Magnets

Bozdag, Kadriye Deniz 30 September 2009 (has links)
No description available.
310

Shunt Passivation Process for CdTe Solar Cell - New Post Deposition Technique

Tessema, Misle Mesfin 25 September 2009 (has links)
No description available.

Page generated in 0.0459 seconds