• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 116
  • 21
  • 15
  • 8
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 321
  • 105
  • 63
  • 50
  • 45
  • 43
  • 37
  • 32
  • 31
  • 29
  • 29
  • 27
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Electrochemical ochratoxin a immunosensors based on polyaniline nanocomposites templated with amine- and sulphate-functionalised polystyrene latex beads

Muchindu, Munkombwe January 2010 (has links)
Philosophiae Doctor - PhD / Polyaniline nanocomposites doped with poly(vinylsulphonate) (PV-SO3) and nanostructured polystyrene (PSNP) latex beads functionalized with amine (PSNP-NH2) and sulphate ((PSNP-OSO3) were prepared and characterised for use as nitrite electro-catalytic chemosensors and ochratoxin A immunosensors. The resultant polyaniline electrocatalytic chemosensors (PANI, PANI|PSNP-NH2 or PANI|PSNP-OSO3 −) were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectroscopy and scanning electron microscopy (SEM). Brown-Anson analysis of the multi-scan rate CV responses of the various PANI films gave surface concentrations in the order of 10−8 mol/cm. UV-vis spectra of the PANI films dissolved in dimethyl sulphoxide showed typical strong absorbance maxima at 480 and 740 nm associated with benzenoid p-p* transition and quinoid excitons of polyaniline, respectively. The SEM images of the PANI nanocomposite films showed cauliflower-like structures that were <100 nm in diameter. When applied as electrochemical nitrite sensors, sensitivity values of 60, 40 and 30 μA/mM with corresponding limits of detection of 7.4, 9.2 and 38.2 μM NO2 −, were obtained for electrodes, PANI|PSNP-NH2, PANI and PANI|PSNP-SO3 −; respectively. Immobilisation of ochratoxin A antibody onto PANI|PSNP-NH2, PANI and PANI|PSNPSO3 - resulted in the fabrication of immunosensors. / South Africa
272

Estudo das propriedades eletrônicas e ópticas de filmes e dispositivos poliméricos. / Study of electronic and optical properties of polimeric films and polimeric devices.

Bianchi, Rodrigo Fernando 28 January 2002 (has links)
Nesse trabalho apresentamos o estudo das propriedades ópticas e elétricas de filmes e dispositivos eletrônicos de polímeros luminescentes, poli(p-fenilenovinilenos) - PPVs, semicondutores, polianilinas - PANI, e derivados desses dois polímeros. São apresentadas todas as etapas de preparação e caracterização dos dispositivos, desde as rotas de síntese dos polímeros, até a modelagem de dispositivos eletroluminescentes e de transistores de efeito de campo. Os filmes luminescentes foram caracterizados por propriedades de absorção e emissão ópticas, e função pseudo-dielétrica, mostrando dependência com a presença de grupos laterais. Filmes de PANI, por sua vez, foram caracterizados através de medidas de condutividade complexa, e os resultados obtidos mostram-se típicos de sistemas sólidos desordenados. Para interpretá-las, foi utilizado o modelo de distribuição aleatória de barreiras de energia livre (random free energy barrier model - RFEB) aplicado como ajuste aos resultados experimentais. Outra característica importante dos PPVs, estudada nessa tese, foi à degradação em condições ambientais sob iluminação. Esse efeito foi acompanhado por medidas de absorção óptica e de elipsometria, mostrando que a combinação dos efeitos do oxigênio e da luz é a principal responsável pela degradação desse material. Para explicar tal efeito, elaboramos um modelo baseado nas propriedades individuais dos cromóforos do polímero e na substituição de ligações vinílicas C=C por ligações carbonilas C=O, cuja comparação com os resultados experimentais forneceu uma estimativa para a fração degradada do polímero como função do tempo de iluminação. Foram caracterizados dispositivos emissores de luz de PPVs através de medidas corrente vs. tensão e de condutividade complexa, que através do ajuste por modelos de circuitos equivalentes e pelo modelo RFEB forneceu grandezas fundamentais como a resistividade e a constante dielétrica da camada polimérica. Finalizando, transistores de efeito de campo de poli(o-metoxianilina) - POMA (um derivado da PANI) apresentaram modulação pela tensão de porta, e um modelo baseado nas propriedades de condução da POMA levando-se em conta gradientes de mobilidade e de densidade de portadores ortogonais à superfície do polímero foi elaborado e se ajustou muito bem aos resultados experimentais. / In this thesis we report the electrical and optical characterization of polymeric thin-film and luminescent and electronic devices. The studied materials were the luminescent poly(p-phenylenevinylenes) - PPVs, semiconducting polyanilines - PANI and their derivatives. All the steps in the material preparation are described: the synthesis and the film preparation. Also, the technological details of the fabrication of the devices, light-emitting diodes (LEDs) and field-effect transistor (FETs), are presented. Luminescent films were studied by optical absorption and emission and by ellipsometry measurements, giving emphasis on the influence of lateral groups. The PANI films were electrically investigated by the analysis of the complex conductivity, whose results were adjusted by the random free energy barrier model used for disordered solids. Another important investigation was related to the photodegradation of the luminescent polymers, a deleterious effect owing to a concomitant action of oxygen and light. To explain such effect we proposed a model based on the properties of individual cromophores of the molecules, and in the incorporation of ketone groups (C=O), cleaving the vinyl C=C bonds. The luminescent devices were electrically and optically characterized. The current density vs. voltage and complex impedance were fit by macroscopic models taking into account a hopping process, and an equivalent circuit was also used to study ITO/polymer/metal structures. Finally, the field-effect transistor made by poly(o-methoxyaniline) were experimentally studied and a model that assumes gradients of carrier density and mobility orthogonal to the film surface fit with good agreement the ISD vs. VSD for different gate voltages, VG.
273

Frequency and Voltage-Modulated electrochemical Aflatoxin B1 immunosensor systems prepared on electroactive organic polymer platforms.

Owino, Joseph Hasael Odero. January 2008 (has links)
<p>In the presented work, immunosensors for detection of Aflatoxin B1 based on different immobilization platforms were studied. Synthesis of an electroactive hydrogel was also carried out. Aflatoxins are a group of mycotoxins that have deleterious effects on humans and are produced during fungal infection of plants or plant products. Electrochemical immunosensor for the determination of Aflatoxin B1 (AFB1) was developed with anti-aflatoxin B1 antibody immobilized on Pt electrodes modified with polyaniline (PANi) and polystyrene sulphonic acid (PSSA). Impedimetric analysis shows that the electron transfer resistances of Pt/PANi-PSSA electrode, Pt/PANi-PSSA/AFB1-Ab immunosensor and Pt/PANi-PSSA/AFB1-Ab incubated in BSA were 0.458, 720 and 1066 k&Omega / , respectively. These results indicate that electrochemical impedance spectroscopy (EIS) is a suitable method for monitoring the change in electron-transfer resistance associated with the immobilization of the antibody. Modelling of EIS data gave equivalent circuits which showed that the electron transfer resistance increased from 0.458 k&Omega / for Pt/PANi-PSSA electrode to 1066 k&Omega / for Pt/PANi-PSSA/AFB1-Ab immunosensor, indicating that immobilization of the antibody and incubation in BSA introduced an electron transfer barrier. The AFB1 immunosensor had a detection limit of 0.1 mg/L and a sensitivity of 869.6 k &Omega / L/mg.</p>
274

Electrochemical characterization of nanostructured SnO2 and TiO2 forpotential application as dielectric materials in sulfonated-polyaniline based supercapacitors

Ngqongwa, Lundi Vincent January 2010 (has links)
<p>In this research project, nanostructured composites based on Tin dioxide (SnO2) and Titanium dioxide (TiO2) with poly-4-styrene sulfonic acid (PSSA) doped polyaniline (PANI) conducting polymer has been investigated based on their structural, electrical and electrochemical properties. The synthesis of conducting polymers and their metal oxide or composites have been carried out chemically or electrochemically according to methods modified from the literature. Layer-by-layer construction of nano-Metal Oxide/PSSA doped polyaniline composites were successfully constructed by electroanalytical methods on the surface of a glassy carbon working electrode (GCE).</p>
275

Electrochemical ochratoxin a immunosensors based on polyaniline nanocomposites templated with amine- and sulphate-functionalised polystyrene latex beads

Muchindu, Munkombwe January 2010 (has links)
<p>Polyaniline nanocomposites doped with poly(vinylsulphonate) (PV-SO3 &minus / ) and nanostructured polystyrene (PSNP) latex beads functionalized with amine (PSNP-NH2) and sulphate (PSNP-OSO3 &minus / ) were prepared and characterised for use as nitrite electro-catalytic chemosensors and ochratoxin A immunosensors. The resultant polyaniline electrocatalytic chemosensors (PANI, PANI|PSNP-NH2 or PANI|PSNP-OSO3 &minus / ) were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectroscopy and scanning electron microscopy (SEM). Brown-Anson analysis of the multi-scan rate CV responses of the various PANI films gave surface concentrations in the order of 10&minus / 8 mol/cm. UV-vis spectra of the PANI films dissolved in dimethyl sulphoxide showed typical strong absorbance maxima at 480 and 740 nm associated with benzenoid p-p* transition and quinoid excitons of polyaniline, respectively. The SEM images of the PANI nanocomposite films showed cauliflower-like structures that were &lt / 100 nm in diameter. When applied as electrochemical nitrite sensors, sensitivity values of 60, 40 and 30 &mu / A/mM with corresponding limits of detection of 7.4, 9.2 and 38.2 &mu / M NO2 &minus / , were obtained for electrodes, PANI|PSNP-NH2, PANI and PANI|PSNP-SO3 &minus / , respectively. Immobilisation of ochratoxin A antibody onto PANI|PSNP-NH2, PANI and PANI|PSNPSO3 - resulted in the fabrication of immunosensors.</p>
276

Chemistry Of Molybdenum Xanthate [Mo02(Et2NCS2)] : Applications In Organic Synthesis

Maddani, Mahagundappa R 11 1900 (has links)
The thesis entitled ‘Chemistry of molybdenum xanthate (MoO2[Et2NCS2]2): Applications in organic synthesis’ is presented in 4 chapters. Molybdenum (IV and VI) oxo-complexes are the subject of significant interest due to their functional and structural similarities with several molybdo-enzymes.1 Literature survey suggests that, molybdenum (VI as well as IV) xanthate2 1 resembles the active sites of various molybdo-enzymes. Therefore, in the present thesis, we are presenting our attempts directed towards exploiting molybdenum xanthate 1 in developing various useful methodologies. Figure 1: Molybdenum xanthate Chapter 1 discloses the utility of molybdenum xanthate (1) in catalytic, aerobic oxidation of organic azides and alcohols as presented in part A and B. Part A: A mild molybdenum xanthate catalyzed, chemoselective oxidation of benzylic azides to the corresponding aldehydes3 under aerobic condition is described. This oxidation turned out to be a general method and a variety of benzylic azides were oxidized to the corresponding aldehydes. This oxidation protocol tolerates a variety of functional groups including alcohols, esters, ketones, halides and olefins. More importantly, the oxidation of azides stops at corresponding aldehyde stage without further oxidation to the corresponding carboxylic acids. A few examples are presented in scheme 1. Part B: As our attempts to oxidize alcohols with molybdenum xanthate 1 were unsuccessful (Chapter 1, Part A), we have attempted supporting the reagent 1 and investigated its utility in the oxidation of alcohols. As a consequence, polyaniline supported molybdenum xanthate (MoO2[Et2NCS2]2) is designed and used in an aerobic and mild chemoselective oxidation of alcohols4 to the corresponding aldehydes and ketones. The scheme to use polyaniline as the support for molybdenum xanthate was derived from the fact that polyaniline is known to increase the redox activity of various metal complexes by coordinating to the metal centre.5 The present oxidation strategy tolerates a variety of functional groups such as olefin, ketones, sulfides, tertiary amines, propargyl group etc. This oxidation strategy also works very well for the oxidation of secondary benzylic alcohols. Interestingly, the supported catalyst can be filtered after the reaction and reused for further oxidation without loss of its activity. Some representative examples are presented in Scheme 2. Chapter 2 describes the chemoselective and efficient reduction of azides to the corresponding amines. In this chapter, we have shown that a catalytic amount of molybdenum xanthate (1, MoO2[S2CNEt2]2) with PhSiH3 is an effective catalyst for the reduction of azides to the corresponding amines.6 This reduction of azides by 1, was inspired by the reductive silylation of aldehydes through the activation of silanes.7 This reduction tolerates a variety of reducible functional groups such as olefin, aldehydes, ketones, esters, amides and ethers, acetals etc. This strategy was also extended to various aliphatic azides to synthesize amine and their N-Boc derivatives in good yields. Scheme 3 illustrates few examples. Chapter 3 discloses convenient methods for the synthesis of substituted thiourea derivatives as presented in part A and B. Part A: A convenient method for the synthesis of tri-substituted thiourea derivatives by the reaction of primary amines with molybdenum dialkyl dithiocarbamates is presented in Part A.8 Primary amines on reaction with molybdenum xanthate produce corresponding thioureas in moderate to good yields. Similar reactions with propargylamine and 2-aminoethanol produce cyclic thiaoxazolidine and oxazolidine derivatives respectively. This methodology has been successfully adopted for the synthesis of amino acids derived chiral thioureas. Some examples are presented in Scheme 4. Scheme 4: Molybdenum xanthate mediated synthesis of thioureas Part B: An efficient method for the synthesis of symmetrical and unsymmetrical substituted thiourea9 derivatives by simple condensation of amine and carbon disulfide in aqueous medium is extensively studied. Present method describes the involvement of amino dithiol moiety as an intermediate. Though this method is not successful with secondary amines and aryl amines, it works smoothly with aliphatic primary amines to afford various di- and tri-substituted thiourea derivatives. The present method is also useful in synthesizing various substituted 2-mercapto imidazole heterocycles in moderate yields. A few examples are seen in Scheme 5. Scheme 5: Synthesis of thiourea derivatives in aqueous medium Chapter 4 describes a chemoselective deprotection10 of terminal acetonides (isopropylidines) by using aqueous TBHP (70%). A variety of acetonide derivatives on reaction with aq. TBHP in water:t-BuOH (1:1) as solvent mixtures furnish the corresponding acetonide deprotected diol products in good yields. This unprecedented deprotection strategy, tolerates a variety of acid sensitive functional groups such as silyl ether, trityl, olefin, propargyl, methoxymethyl ether, N-Boc, lactones, esters etc. A few examples are documented in Scheme 6. Scheme 6: Chemoselective deprotection of acetonides (For structural formula pl see the pdf file)
277

Polyaniline: Synthesis, Characterization, Solution Properties, And Composites

Yilmaz, Faris Sad 01 July 2007 (has links) (PDF)
Polyaniline was chemically synthesized at three different temperatures of 25, 0, and -25oC, by oxidative polymerization with ammonium peroxidisulfate at equimolar of aniline to oxidant ratio and 1M HCl. The resulted polyaniline was in a powder form which was characterized by several techniques such as: electrical conductivity, elemental analysis, thermal analysis, wide-angle X-Ray diffraction, and scanning electron microscope. The solution properties of the reduced polymer were studied by viscometry, static and dynamic light scattering. It was found that as the polymerization temperature decreased, the molecular weight, crystallinity, and thermal stability of polyaniline increased, while the electrical conductivity was independent of the polymerization temperature. Moreover, the morphology of the polymer was changed from granular to tubular with reducing polymerization temperature. Viscometry and static light scattering showed that polyaniline has a flexible random coil conformation when dissolved in N-methyl-2-pyrrolidinone which proved to be a good solvent for this polymer. Dynamic light scattering indicated that the polymer solution is a polyelectrolyte with high hydrodynamic radius at low polymer concentrations. All mechanical features except Young&#039 / s modulus of polyaniline-filled low density polyethylene composites became poorer as polyaniline content increased. Moreover, a sudden increase in the electrical conductivity with increasing polyaniline contents was also observed. The conductivity of the tubular composites of multi wall nanotubes (MWNTs)-filled polyaniline increased with increasing MWNTs loading, and became weakly temperature dependent. The morphological analysis indicated that the MWNTs were well dispersed and isolated, and the tubes became crowded proportionally to MWNTs weight percent used in the composites.
278

Frequency and Voltage-Modulated electrochemical Aflatoxin B1 immunosensor systems prepared on electroactive organic polymer platforms.

Owino, Joseph Hasael Odero. January 2008 (has links)
<p>In the presented work, immunosensors for detection of Aflatoxin B1 based on different immobilization platforms were studied. Synthesis of an electroactive hydrogel was also carried out. Aflatoxins are a group of mycotoxins that have deleterious effects on humans and are produced during fungal infection of plants or plant products. Electrochemical immunosensor for the determination of Aflatoxin B1 (AFB1) was developed with anti-aflatoxin B1 antibody immobilized on Pt electrodes modified with polyaniline (PANi) and polystyrene sulphonic acid (PSSA). Impedimetric analysis shows that the electron transfer resistances of Pt/PANi-PSSA electrode, Pt/PANi-PSSA/AFB1-Ab immunosensor and Pt/PANi-PSSA/AFB1-Ab incubated in BSA were 0.458, 720 and 1066 k&Omega / , respectively. These results indicate that electrochemical impedance spectroscopy (EIS) is a suitable method for monitoring the change in electron-transfer resistance associated with the immobilization of the antibody. Modelling of EIS data gave equivalent circuits which showed that the electron transfer resistance increased from 0.458 k&Omega / for Pt/PANi-PSSA electrode to 1066 k&Omega / for Pt/PANi-PSSA/AFB1-Ab immunosensor, indicating that immobilization of the antibody and incubation in BSA introduced an electron transfer barrier. The AFB1 immunosensor had a detection limit of 0.1 mg/L and a sensitivity of 869.6 k &Omega / L/mg.</p>
279

Electrochemical characterization of nanostructured SnO2 and TiO2 forpotential application as dielectric materials in sulfonated-polyaniline based supercapacitors

Ngqongwa, Lundi Vincent January 2010 (has links)
<p>In this research project, nanostructured composites based on Tin dioxide (SnO2) and Titanium dioxide (TiO2) with poly-4-styrene sulfonic acid (PSSA) doped polyaniline (PANI) conducting polymer has been investigated based on their structural, electrical and electrochemical properties. The synthesis of conducting polymers and their metal oxide or composites have been carried out chemically or electrochemically according to methods modified from the literature. Layer-by-layer construction of nano-Metal Oxide/PSSA doped polyaniline composites were successfully constructed by electroanalytical methods on the surface of a glassy carbon working electrode (GCE).</p>
280

Electrochemical ochratoxin a immunosensors based on polyaniline nanocomposites templated with amine- and sulphate-functionalised polystyrene latex beads

Muchindu, Munkombwe January 2010 (has links)
<p>Polyaniline nanocomposites doped with poly(vinylsulphonate) (PV-SO3 &minus / ) and nanostructured polystyrene (PSNP) latex beads functionalized with amine (PSNP-NH2) and sulphate (PSNP-OSO3 &minus / ) were prepared and characterised for use as nitrite electro-catalytic chemosensors and ochratoxin A immunosensors. The resultant polyaniline electrocatalytic chemosensors (PANI, PANI|PSNP-NH2 or PANI|PSNP-OSO3 &minus / ) were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectroscopy and scanning electron microscopy (SEM). Brown-Anson analysis of the multi-scan rate CV responses of the various PANI films gave surface concentrations in the order of 10&minus / 8 mol/cm. UV-vis spectra of the PANI films dissolved in dimethyl sulphoxide showed typical strong absorbance maxima at 480 and 740 nm associated with benzenoid p-p* transition and quinoid excitons of polyaniline, respectively. The SEM images of the PANI nanocomposite films showed cauliflower-like structures that were &lt / 100 nm in diameter. When applied as electrochemical nitrite sensors, sensitivity values of 60, 40 and 30 &mu / A/mM with corresponding limits of detection of 7.4, 9.2 and 38.2 &mu / M NO2 &minus / , were obtained for electrodes, PANI|PSNP-NH2, PANI and PANI|PSNP-SO3 &minus / , respectively. Immobilisation of ochratoxin A antibody onto PANI|PSNP-NH2, PANI and PANI|PSNPSO3 - resulted in the fabrication of immunosensors.</p>

Page generated in 0.0649 seconds