• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 150
  • 25
  • 18
  • 15
  • 7
  • 5
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 269
  • 39
  • 38
  • 33
  • 31
  • 30
  • 27
  • 27
  • 27
  • 26
  • 26
  • 25
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Multi-component protein films by layer-by-layer : assembly and electron transfer

Dronov, Roman January 2007 (has links)
Electron transfer phenomena in proteins represent one of the most common types of biochemical reactions. They play a central role in energy conversion pathways in living cells, and are crucial components in respiration and photosynthesis. These complex biochemical reaction cascades consist of a series of proteins and protein complexes that couple a charge transfer to different forms of chemical energy. The efficiency and sophisticated optimisation of signal transfer in these natural redox chains has inspired engineering of artificial architectures mimicking essential properties of their natural analogues. Implementation of direct electron transfer (DET) in protein assemblies was a breakthrough in bioelectronics, providing a simple and efficient way for coupling biological recognition events to a signal transducer. DET avoids the use of redox mediators, reducing potential interferences and side reactions, as well as being more compatible with in vivo conditions. However, only a few haem proteins, including the redox protein cytochrome c (cyt.c), and blue copper enzymes show efficient DET on different kinds of electrodes. Previous investigations with cyt.c have mainly focused on heterogeneous electron transfer of monolayers of this protein on gold. An important advance was the fabrication of cyt.c multilayers by electrostatic layer-by-layer self-assembly. The ease of fabrication, the stability, and the controllable permeability of polyelectrolyte multilayers have made them particularly attractive for electroanalytical applications. With cyt.c and sulfonated polyaniline it was for the first time possible that fully electro-active multilayers of the redox protein could be prepared. This approach was extended to design an analytical signal chain based on multilayers of cyt.c and xanthine oxidase (XOD). The system does not need an external mediator but relies on an in situ generation of a mediating radical and thus allows a signal transfer from hypoxanthine via the substrate converting enzyme and cyt.c to the electrode. Another kind of a signal chain is based on assembling proteins in complexes on electrodes in such a way that a direct protein-protein electron transfer becomes feasible. This design does not need a redox mediator in analogy to natural protein communication. For this purpose, cyt.c and the enzyme bilirubin oxidase (BOD, EC 1.3.3.5) are co-immobilized in a self-assembled polyelectrolyte multilayer on gold electrodes. Although these two proteins are not natural reaction partners, the protein architecture facilitates an electron transfer from the electrode via multiple protein layers to molecular oxygen resulting in a significant catalytic reduction current. Finally, we describe a novel strategy for multi-protein layer-by-layer self-assembly combining cyt.c with an enzyme sulfite oxidase (SOx) without use of any additional polymer. Electrostatic interactions between these two proteins with rather separated pI values during the assembly process from a low ionic strength buffer were found sufficient for the layer-by-layer deposition of the both biomolecules. It is anticipated that the concepts described in this work will stimulate further progress in multilayer design of even more complex biomimetic signal cascades taking advantage of direct communication between proteins. / Elektronentransferphänomene in Proteinen stellen den häufigsten Typ biochemischer Reaktionen dar. Sie spielen eine zentrale Rolle bei der Energieumwandlung in der Zelle und sind entscheidende Komponenten in der Atmung und Photosynthese. Diese komplexen Kaskaden biochemischer Reaktionen setzen sich aus einer Reihe von Proteinen und Proteinkomplexen zusammen, die den Energietransfer an verschiedene Formen chemischer Energie koppeln. Die große Effektivität und Selektivität des Signaltransfers in diesen natürlichen Redoxketten war Vorbild für die Entwicklung künstlicher Architekturen, die die wesentlichen Eigenschaften ihrer natürlichen Analoga nachahmen. Die Implementierung des direkten Elektronentransfers (DET) von Proteinen mit Elektroden war ein Durchbruch im Bereich der Bioelektronik. Sie lieferte einen einfachen und effizienten Weg für das Koppeln biologischer Erkennungsereignisse an einen Signalumwandler. Durch den DET können Redoxmediatoren vermieden und damit potentielle Grenzflächen und Nebenreaktionen reduziert werden. Ebenso wird damit die Kompatibilität für in vivo Bedingungen erhöht. Jedoch zeigen nur einige Hämproteine wie das Redoxprotein Cytochrom c (Cyt c) und blaue Kupferproteine einen effizienten DET auf verschiedenen Elektrodentypen. Bisherige Untersuchungen mit Cyt c konzentrierten sich hauptsächlich auf den heterogenen Elektronentransfer von Monoschichten dieses Proteins auf Gold. Ein wichtiger Fortschritt war die Herstellung von Cyt c Multischichten durch die elektrostatische Layer-by-Layer-Technik. Die einfache Herstellung, die Stabilität sowie die kontrollierbaren Permeationseigenschaften von Polyelektrolyt-Multischichten machte sie besonders attraktiv für elektroanalytische Anwendungen. So gelang es auch zum ersten Mal vollständig elektroaktive Multischichten aus Cyt c und Polyanilinsulfonsäure zu präparieren. Dieser Ansatz wurde hier erweitert, um eine analytische Signalkette auf der Basis von Multischichten aus Cyt c und Xanthinoxidase zu entwerfen. Das System bedarf keinen externen Mediator, es hängt jedoch von der in situ Generierung eines vermittelnden Radikals ab und erlaubt daher einen Signaltransfer von Hypoxanthin über ein substratumwandelndes Enzym und Cyt c zur Elektrode. Eine andere Art von Signalketten basiert auf der Assemblierung von Proteinen in Komplexen auf Elektroden in solcher Art und Weise, daß ein direkter Protein-Protein-Elektronentransfer möglich wird. Dieser Ansatz benötigt keinen Redoxmediator in Analogie zu Beispielen aus dem biologischen Signaltransfer. Zu diesem Zweck werden Cyt c und das Enzym Bilirubinoxidase mit einem selbst-assemblierenden Polyelektrolyten auf einer Goldelektrode koimmobilisiert. Obwohl diese zwei Proteine keine natürlichen Reaktionspartner sind, unterstützt die Protein-Architektur einen Elektronentransfer von der Elektrode über mehrere Proteinschichten zu molekularem Sauerstoff und ergibt einen signifikanten katalytischen Reduktionsstrom. Schließlich wird eine neue Strategie beschrieben für eine Selbstassemblierung von Proteinen ohne zusätzlichen Polyelektrolyten - am Beispiel der Kombination von Cyt c mit Sulfitoxidase. Es stellte sich heraus, daß die elektrostatische Wechselwirkung zwischen diesen zwei Proteinen mit ziemlich weit voneinander entfernt liegenden pI-Werten während des Assemblierungsprozesses durch einen Puffer mit geringer Ionenstärke ausreicht um die beiden Biomoleküle nach dem Layer-by-Layer-Prinzip auf einer Elektrode abzuscheiden. Es wird erwartet, daß das entwickelte Konzept von Multiprotein-Assemblaten auf Elektroden weitere Fortschritte bei dem Entwurf von Multischichten und sogar noch komplexeren biomimetischen Signalkaskaden anregen wird und dabei der Vorteil der direkten Kommunikation zwischen Proteinen genutzt wird.
82

Integration of freestanding polyelectrolyte multilayer membranes in larger scale structures

Nolte, Marc January 2006 (has links)
Ultrathin, semi-permeable membranes are not only essential in natural systems (membranes of cells or organelles) but they are also important for applications (separation, filtering) in miniaturized devices. <br> Membranes, integrated as diffusion barriers or filters in micron scale devices need to fulfill equivalent requirements as the natural systems, in particular mechanical stability and functionality (e.g. permeability), while being only tens of nm in thickness to allow fast diffusion times. Promising candidates for such membranes are polyelectrolyte multilayers, which were found to be mechanically stable, and variable in functionality.<br> In this thesis two concepts to integrate such membranes in larger scale structures were developed. The first is based on the directed adhesion of polyelectrolyte hollow microcapsules. As a result, arrays of capsules were created. These can be useful for combinatorial chemistry or sensing. This concept was expanded to couple encapsulated living cells to the surface. The second concept is the transfer of flat freestanding multilayer membranes to structured surfaces. We have developed a method that allows us to couple mm2 areas of defect free film with thicknesses down to 50 nm to structured surfaces and to avoid crumpling of the membrane. We could again use this technique to produce arrays of micron size. The freestanding membrane is a diffusion barrier for high molecular weight molecules, while small molecules can pass through the membrane and thus allows us to sense solution properties. We have shown also that osmotic pressures lead to membrane deflection. That could be described quantitatively. / Die Entwicklung von “Labors auf einem Chip” hat in den vergangenen Jahren großes Interesse hervorgerufen. Diese Chips ermöglichen schnelle vor Ort Analytik, wie sie beispielsweise in Arztpraxen oder bei der Schadstoff Überwachung wünschenswert wäre. Die Entwicklung solcher Systeme stellt große Herausforderungen an Forscher verschiedenster Disziplinen. <br> Ein großer Vorteil solcher Systeme sind die verkürzten Reaktionszeiten durch die Verkleinerung der Dimensionen. Membranen, die als Diffusionsbarrieren oder Filter in solche Systeme integriert werden sollen, müssen den Ansprüchen an mechanische Stabilität, Funktionalität (z.B. Permeabilität) bei einer Dicke von einigen 10 nm genügen. Die Reduktion der Membrandicke ist erforderlich um die Diffusionszeiten durch die Membran zu minimieren. Polyelektrolyte sind vielversprechende Kandidaten für solche Membranen, da sie sowohl mechanisch stabil sind, als auch variabel in ihrer Funktionalität In dieser Arbeit werden zwei Konzepte zur Integration solcher Membranen vorgestellt. Das erste Konzept basiert auf der selektiven Adhäsion von Polyelektrolytkapseln auf strukturierten Oberflächen. Für das gewählte Kapselsystem konnte bereits eine große Stabilität und eine breite Funktionalität gezeigt werden. Die Strukturierung wird durch Mikrokontaktdrucken erzielt und führt. zu attraktiven und repulsiven Bereichen auf der Oberfläche. Die Kapesladhäsion findet auf den attraktiven Bereichen statt. Auf diese Weise werden die Kapseln 2-dimensional auf der Oberfläche angeordnet. Die definierte laterale Position der Kapseln ermöglicht Anwendungen in der kombinatorischen Chemie oder der Sensorik.<br> Der makroskopische Transfer von bis zu 50 nm dünnen Polyelektrolytmembranen auf microstrukturierte Substrate ist das zweite präsentierte Konzept zur Integration freistehender Membranen. Dabei entsteht ein großflächiger Bereich (mm2) von Millionen von Hohlräumen mit einem Volumen in der Größe von pL (10-12l). Diese Holräume können mit Reagenzien gefüllt werden. Diese reagieren durch die Membran auf Änderungen in der umgebenden Flüssigkeit. Von besonderem Interesse ist der Aspekt, daß nicht nur eingekapselte Reagenzien als Sensormaterial fungieren können, sondern auch durch die Deformation der Membran Änderungen im osmotischen Druck der Umgebung quantitativ erfaßt werden können.
83

Environmental Response, Mechanisms, and Orientation of Diffusing Molecular Ions in Polyelectrolyte Thin Films

January 2011 (has links)
New electrochemical storage and conversion materials hold promise as important additions to the world's energy supply, and the growing ability to control both sequestration and transfer of charge and matter via functionally responsive materials promises to transform the field. Already, new understanding of the role played by nano-scale morphology of materials in transport function has contributed to considerable material improvements, with functional polymers possessing specific chemistry and morphology playing a key role in the future of electrochemical material applications. However, many challenges to optimizing properties still exist due to incomplete descriptions of transport. In this work, fluorescence spectroscopy and single molecule spectroscopy experimental techniques and analysis are developed and employed to reveal details of the mechanisms underpinning ion transport in structurally ordered polyelectrolyte polymer-brush membranes. The studies reveal the existence and nature of heterogeneous transport mechanisms in these polymer films, and provide a description of the dynamic association of molecular ions with the brush. It is also shown that it is possible to tune charged ion transport characteristics in the thin films by controlling the solvent pH, with an effective switching of ion transport rates in these brushes past a threshold pH value. Additionally, Monte Carlo models designed to model molecular scale interactions that give rise to experimental observables are developed to provide additional insight into the physical nature of transport processes in these materials. These models provide additional support for the conclusions of the experimental work.
84

Polyelectrolyte Building Blocks for Nanotechnology: Atomic Force Microscopy Investigations of Polyelectrolyte-Lipid Interactions, Polyelectrolyte Brushes and Viral Cages

Cuéllar Camacho, José Luis 26 July 2013 (has links) (PDF)
The work presented here has a multidisciplinary character, having as a common factor the characterization of self-assembled nanostructures through force spectroscopy. Exploring AFM as a tool for characterizing self-assembly and interaction forces in soft matter nanostructures, three different Bio and nonbiological systems where investigated, all of them share the common characteristic of being soft matter molecular structures at the nanoscale. The studied systems in question are: a) Polyelectrolyte – lipid nanocomposites. Single polyelectrolyte adsorption-desorption from supported lipid bilayers, b) Polyelectrolyte brushes and c) Virus-Like particles (VLPs). The scientific interest and industrial applications for each of these different nanostructures is broad, and their potential uses in the near future ranges from smart nanocontainers for drug and gene delivery, surface platforms for molecular recognition to the development of new nanodevices with ultrasensitive external stimuli responsiveness. These nano-structures are constructed following assembly of smaller subunits and belong to representative examples of soft matter in modern nanotechnology. The stability, behavior, properties and long term durability of these self-organized structures depends strongly on the environmental conditions to which they are exposed since their building mechanism is a balance between attractive noncovalent interactions and momentum transmitted collisions due Brownian motion of the solvent molecules. For example a set of long chain molecules firmly attached to one end to a surface will alter their conformation as the space between them is reduced or the environmental conditions are modified (i.e. ionic strength, pH or temperature). For a highly packed condition, this fuzzy surface known as a polyelectrolyte brush will then behave as a responsive material with tunable responsiveness. Thus the objective in the present case was to investigate the change in morphology and the mechanical response of a polyelectrolyte brush to external forces by application of AFM nanoindentations under different ionic strength conditions. The degree of penetration of the AFM tip through the brush will provide insights into the forces exerted by the brush against the tip. Compressions on the brush should aid to characterize its changes in compressibility for different salt concentrations. For the second chosen system, the interaction between two assembled interfaces was investigated at the single molecular level. A multilayered film formed by the consecutive assembly of oppositely charged polyelectrolytes and subsequently coated with a lipid membrane represents a fascinating soft composite material resembling more than a few structural components emerging in living organisms. The fluid bilayer, thus provide a biocompatible interface where additional functionalities can further be integrated (fusion peptides for instance). The smooth polymer cushion confers not only structural flexibility but also adaptability of the chosen substrate properties to be coated. This type of interface could be useful in the development of novel molecular biosensors with single molecule recognition capacities or in the fabrication of assays against pathogenic agents. The aim of this project was to study the molecular binding mechanism between the last polyelectrolyte layer and the lipid head group of the lower lipid leaflet. Understanding this adsorption mechanism between both interfaces, should likewise contribute to improve the fabrication of lipid coated polymeric nano/micro capsules with targeting properties. For example this could be critical in the field of nonviral gene therapy, where the improvement in the design of condensates of nucleic acids and other polymers with lipids (lipoplexes) are of main interest for its posterior use as delivery vectors. Finally, viral capsids were investigated. These naturally occurring assembled nanocontainers within living organisms stand for a remarkable example of nature’s morphological designs. These structures self-assemble from a small number of different proteins occurring in identical copies. The capsid as a self-assembled structure carries multiple functions: compaction of the genome, protection against external chemical threats, target recognition, structural support and finally facilitating the release of the genome into the host cell. It is highly interesting how these different functions are organized within the capsid which consists, for example, in the case of the norovirus of 180 identical copies of one single protein. Therefore, the mechanical stability and elastic properties of virus-like particles of Rubella and Norovirus were investigated by external application of loading forces with an AFM tip. The measurements were performed under conditions relevant for the virus infection mechanism. The applied compressions on these protein shells at pH values mimicking the virus life cycle will aid to learn about possible internal transitions among proteins which may be important for switching between the various functions of the capsid. The choice of two unrelated viral systems with different entry pathways into the cell and with different morphological architectures is expected to reveal crucial information about the stability and mechanical resistance to deformation of these empty membrane-coated and bare viral capsids. This last might provide clues on the stage of particle disassembly and cargo release during the final step of the infection process.
85

Polyelectrolyte-Based Capacitors and Transistors

Larsson, Oscar January 2011 (has links)
Polymers are very attractive materials that can be tailored for specific needs and functionalities. Based on their chemical structure, they can for instance be made electrically insulating or semiconducting with specific mechanical properties. Polymers are often processable from a solution, which enables the use of conventional low-cost and high-volume manufacturing techniques to print electronic devices onto flexible substrates. A multitude of polymer-based electronic and electrochemical devices and sensors have been developed, of which some already has reached the consumer market. This thesis focuses on polarization characteristics in polyelectrolyte-based capacitor structures and their role in sensors, transistors and supercapacitors. The fate of the ions in these capacitor structures, within the polyelectrolyte and at the interfaces between the polyelectrolyte and various electronic conductors (a metal, a semiconducting polymer or a network of carbon nanotubes), is of outermost importance for the device function. The humidity-dependent polarization characteristics in a polyelectrolyte capacitor are used as the sensing probe for wireless readout of a passively operated humidity sensor circuit. This sensor circuit can be integrated into a printable low-cost passive sensor label. By varying the humidity level, limitations and possibilities are identified for polyelectrolyte-gated organic field-effect transistors. Further, the effect of the ionic conductivity is investigated for polyelectrolyte-based supercapacitors. Finally, by using an ordinary electrolyte instead of a polyelectrolyte and a high-surface area (supercapacitor) gate electrode, the device mechanisms proposed for electrolyte-gated organic transistors are unified.
86

DNA chips with conjugated polyelectrolytes as fluorophore in fluorescence amplification mode

Magnusson, Karin January 2008 (has links)
The aim of this diploma work is to improve selectivity and sensitivity in DNA-chips by utilizing fluorescence resonance energy transfer (FRET) between conjugated polyelectrolytes (CPEs) and fluorophores. Leclerc and co-workers have presented successful results from studies of super FRET between fluorophore tagged DNA and a CPE during hybridisation of the double strand. Orwar and co-workers have constructed a DNA-chip using standard photo lithography creating a pattern of the hydrophobic photoresist SU-8 and cholesterol tagged DNA (chol-DNA). This diploma work will combine and modify these two ideas to fabricate a improved DNA-chip. Immobilizing of DNA onto surface has been done by using soft lithography. Hydrophobic pattern arises from the poly(dimethylsiloxane) (PDMS) stamp. The hydrophobic pattern will attract chol-DNA that is adsorbed to the chip. Different sets of fluorophores are covalently bound to the DNA and adding CPEs to the complex will make FRET occur between CPE and bound fluorophore. We will here show that the specificity in DNA hybridization by using PDMS patterning was high. FRET clearly occurred, especially with the CPEs as donor to the fluorophore Cy5. The intensity of FRET was higher when the fluorophore and the CPE were conjugated to the same DNA strand. The largest difference in FRET intensity between double stranded and single stranded complexes was observed with the CPE tPOMT. Super FRET has been observed but not yet fully proved. The FRET efficiency was lower with the fluorophore Alexa350 as donor compared to the Cy5/CPE complex. Most of the energy transferred from Alexa350 was extinguished by quenching.
87

Chemical Synthesis and Ionic Conductivity of Water-Soluble Rigid-Rod Solid Polyelectrolytes with Aspect Ratio and Pendant Modifications

Tsay, Pei-yun 06 September 2005 (has links)
Polycondensation reaction was carried out for synthesizing rigid-rod polymer hPBI. Various molar ratios (50:1, 25:1, and 15:1) of 2-hydroterephthalic acid and 5-hydroisophthalic acid were also introduced in the synthesis for articulated rigid-rod polymer a-hPBI. The polymers were further derivatized with 1,3-propanesulton for pendants of lithium ionomer to become water soluble polyelectrolytes hPBI-PS(Li+) and a-hPBI-PS(Li+), respectively. Lithium salt doped cast film of the rigid-rod polyelectrolyte hPBI-PS(Li+) showed a room-temperature DC conductivity parallel to film surface as high as 4.02¡Ñ10-3 S/cm. Molecular weight of the rigid-rod polyelectrolyte was low indicating a small molecular aspect ratio. In cast film, the molecules were randomly distributed and highly isotropic facilitated Li cations mobility for a high film conductivity. The conductivity was also insensitive to the anion of lithium salt. No apparent layered structure was revealed by scanning electron microscope suggesting that the cast films had near three-dimensionally isotropic structure and conductivity.
88

Separation Of Chromate And Borate Anions By Polymer Enhanced Ultrafiltration From Aqueous Solutions Employing Specifically Tailored Polymers

Oktar Doganay, Ceren 01 December 2007 (has links) (PDF)
In this study two polychelatogens for borate and a polyelectrolyte for chromate retention (R) were designed for investigating the effect of pH and loading (g metal /g polymer) on the separation performances of the synthesized polymers using continuous polymer enhanced ultrafiltration. Increase in pH increased the retention of borate for all of the synthesized polymers. Decrease in the loading resulted in an enhancement in boron retention with PNSM and PNSL. When COP was utilized, retentions remained almost constant after a certain loading, probably due to possible adverse effects of high polymer concentrations on polymer conformation in aqueous solutions. Decrease in loading caused an increase in the retention of chromate until a loading of 0.01. After that a slight decrease was observed. Maximum Cr (VI) retention was obtained as 0.70 for a loading of 0.01 and a pH of 4. Effect of crowding on Cr(VI) retention was also investigated. It was observed that retention does not only depend on the loading but also on the concentrations of both Cr (VI) and PDAM. Effect of the presence of competing anions such as chloride and sulfate on the retention of chromate was investigated to see the effect of competing anion charge to the selectivity of the synthesized polyelectrolyte. Addition of both anions decreased the retention of Cr(VI) . Divalent sulfate decreased the retention more than monovalent chloride indicating that charge of the anion may be the predominant variable in the retention of chromate using PDAM. Finally, dynamic and static light scattering measurements were performed to investigate the conformational changes in the structure of the synthesized polymers at different pH values as well as in the presence of boron in the solution. In this study, it is shown that PEUF can be successfully applied to for boron and Cr (VI) retention with the synthesized polymers. Satisfactory retention values were obtained both for boron and Cr (VI). Even if the retention of Cr (VI) decreased with the addition of high amount of competing anions, significant Cr (VI) retentions could be obtained.
89

Free Standing Layer-by-layer Films Of Polyethyleneimine And Poly(l-lysine) For Potential Use In Corneal Stroma Engineering

Altay, Gizem 01 February 2011 (has links) (PDF)
In this study we fabricated free standing multilayer films of polyelectrolyte complexes for potential use in tissue engineering of corneal stroma by using the layer-by-layer (LbL) approach. In the formation of these LbL films negatively charged, photocrosslinkable (methacrylated) hyaluronic acid (MA-HA) was used along with polycations polyethyleneimine (PEI) and poly(L-lysine) (PLL). Type I collagen (Col) was blended in with PLL for improving the water absorption and cell attachment properties of the films. It was shown that the LbL films could be easily peeled off from glass substrates due to the photocrosslinking of one of the LbL components, the hyaluronic acid. Film growth and composition were monitored with FTIR-ATR. Heights of peaks at 3383 cm-1, and 2958 cm-1increased along with the bilayer number confirming the polymer build-up. Film integrity and thickness were investigated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Films thicker than 5 bilayers (BLs) were found to be uniform in appearance and 10 BL (PEI/MeHA) films were calculated to be ca. 6 &mu / m thick. Atomic force microscopy (AFM) revealed that as the number of BLs increased, surface roughness decreased. Activity of methacrylated hyaluronic acid was shown by the increased resistance of photocrosslinked multilayer films against hydrolysis by hyaluronidase. Patterns could be created on the films by photocrosslinking further proving that the crosslinking step is successful. Since the ultimate goal was to construct a corneal stroma PEI/MA-HA films were tested with corneal stroma cells, keratocytes. Cell proliferation on PEI/MA-HA films was quite poor in comparison to TCPS. In order to improve the cell adhesion the tests were repeated with PLL/MA-HA. Collagen was added to decrease the hydrophilicity and introduce cell adhesion sequences (Arg-Gly-Asp, RGD) to improve cell proliferation on the films and thus PLL+Col/MA-HA films were also tested. Introduction of collagen to the PLL/MA-HA films was found to decrease water retention of the multilayer films and improve cell viability and proliferation. Col+PLL/MA-HA LbL thus appear to be a promising platform for tissue engineering, especially of corneal stroma.
90

Chemical Synthesis and Ionic Conductivity of Water-Soluble Rigid-Rod Polyelectrolyte

Chen, Yun-Sheng 15 February 2001 (has links)
Poly(p-phenylenebenzobisimidazole), PBI, is a rigid-rod polymer with a fully conjugated backbone having superior mechanical properties, thermo-oxi- dative and solvent stabilities. The stabilities cause processing difficulties and in terms limit its applications in critical technologies, such as conducting polymers, nonlinear optics, and solid polyelectrolytes. In this study, a chemical derivative of PBI, poly[1,7-dihydrobenzo[1,2- d:4,5-d¡¦]diimidazo-2,6-diyl[2-(2-sulfo)-p-phenylene]], sPBI, was synthesized by polycondensation reaction of 1,2,4,5-tetraaminobenzene tetrahydrochloride with 2-sulfoterephthalic acid in poly(phosphoric acid). Isolated sPBI was measured in 30oC methanesulfonic acid for an intrinsic viscosity as high as 10.5 dL/g. sPBI polymer was then reacted with 1,3-propanesultone in dimethylsulfoxide containing sodium hydride for water-soluble rigid-rod polyelectrolyte, poly[1,7- dipropylsulfobenzo-[1,2-d:4,5-d¡¦]diimidazo-2,6-diyl-[2,(2-sulfo)-p-phenylene]], sPBI-PS(Na+). sPBI-PS(Na+) was further converted to sPBI-PS(Li+) with hydrochloride and followed with lithium hydroxide. Various analyses were applied to ascertain chemical structure, purities and thermal properties of synthesized monomers and polymers. sPBI-PS(Li+) aqueous solutions were doped individually with lithium salts of LiI, LiBF4, and LiCF3SO3 at concentrations up to 1.7¡Ñ10-5 wt./wt., which were cast into freestanding films of 10-25 £gm in thickness. Direct-current conductivity measured at room- temperature parallel to the film surface was as large as 9.74¡Ñ10-5 S/cm. The ionic nature of the conductivity was revealed by constant-voltage depletion measurements. X-ray scattering results suggested that the cast film was in-plane isotropic but out-of-the plane anisotropic with the rigid-rod backbone lying in the plane of the film.

Page generated in 0.1845 seconds