• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 40
  • 10
  • 7
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 139
  • 139
  • 20
  • 16
  • 16
  • 15
  • 14
  • 14
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Probing protein adsorption modes onto poly(ethylene glycol) brushes by neutron reflection / Probing protein adsorption modes onto poly ethylene glycol brushes by neutron reflection

Schollier, Audrey 18 March 2011 (has links)
Adsorption of proteins at interfaces has an important role in biotechnological and pharmaceutical applications. Indeed, several undesirable processes are related to protein adsorption, as for example: fouling of contact lenses, clotting on blood contacting devices, triggering inflammation around artificial organs, diminished circulation time of therapeutic proteins and drug bearing liposomes. Neutral water soluble polymers, such as poly(ethylene glycol) (PEG), are used to repress protein adsorption: by coating the surface with a polymer brush, a "cushion" is created between the protein and the surface, that can reduce, or even completely repress the adsorption. Understanding the mechanism that inhibits the adsorption at interfaces is an active field of research, and could lead to relevant improvements in biomaterials performances and design.<p><p>A clear understanding of the mechanism of protein adsorption onto polymer brushes is still missing. The first models describing the interactions of a polymer brush with adsorbing particles predicted two adsorption modes: primary adsorption at the grafting surface, and secondary adsorption at the outer edge of the brush (occurring for large cylindrical proteins). Primary adsorption can be repressed by increasing the grafting density of the brush, and secondary adsorption by increasing its thickness, in agreement with the experiments reported in the literature. But experimental evidences (a maximum in the adsorbed amount observed for long brushes) suggested then the existence of a third mode: ternary adsorption within the brush itself, due to attractive interactions between the protein and the brush. Standard techniques can in general only probe the total adsorbed amount. The aim of this work was to separate primary and ternary adsorption isotherms, by using neutron reflectivity and deuterated proteins. As neutrons interact differently with hydrogen and deuterium atoms, the contrast between the hydrogenated brush and the deuterated protein is high enough to separate the two contributions.<p><p>We studied the adsorption of deuterated myoglobin on PEG brushes with different degrees of polymerisation (N = 56, 146 and 770), and as a function of the area per grafted chain. The contribution of primary and ternary adsorption was separated for the different systems, and the adsorbed amount was extracted and the adsorption isotherms compared to the theoretical predictions. The ability to distinguish between the different adsorption modes, and the quantification of their relative contribution to the overall amount of adsorbed proteins, represents a major advance in optimising surface properties. In particular, the occurrence of ternary adsorption onto PEG brushes affects their status as tool for repressing protein adsorption.<p><p><p>L’adsorption de protéines aux interfaces a un rôle important pour certaines applications pharmaceutiques ou biotechnologiques. En effet, plusieurs processus indésirables sont liés à l’adsorption de protéines, par exemple l’encrassement de lentilles de contact, la coagulation dans des appareils contenant du sang, l’inflammation d’organes artificiels ou encore la diminution du temps de circulation dans le corps de protéines ou liposomes thérapeutiques. Certains polymères, tels que le polyéthylène glycol (PEG), sont utilisés pour réprimer l’adsorption de protéines :en greffant une brosse de PEG sur la surface, une couche est créée entre la protéine et celle-ci qui diminue, voire même réprime complètement l’adsorption. Comprendre le mécanisme qui entrave l’adsorption aux interfaces est un sujet de recherche actif, qui pourrait mener à des améliorations significatives dans la conception de biomatériaux.<p><p>À ce jour, la compréhension du mécanisme d’adsorption de protéines sur des brosses de polymère n’est pas claire. Les premiers modèles décrivant les interactions entre brosses de polymères et particules adsorbantes prédisaient deux modes d’adsorption :l’adsorption primaire sur la surface de greffage, et l’adsorption secondaire à l’extérieur de la brosse (pour les grandes protéines cylindriques uniquement). L’adsorption primaire peut-être réprimée en augmentant la densité de greffage de la brosse, et l’adsorption secondaire en augmentant son épaisseur, en accord avec les expériences reportées dans la littérature. Mais d’autres évidences expérimentales (un maximum dans la quantité adsorbée observé pour les brosses longues) ont ensuite suggéré l’existence d’un troisième mode :l’adsorption ternaire à l’intérieur même de la brosse, due aux interactions attractives entre la protéine et la brosse.<p><p>Les techniques standards peuvent en général mesurer la quantité adsorbée totale. Le but de ce travail était de séparer les isothermes d’adsorption primaire et ternaire, en utilisant la réflectivité de neutrons et des protéines deutérées. Comme les neutrons interagissent différemment avec les atomes d’hydrogène ou de deutérium, le contraste entre la brosse hydrogénée et la protéine deutérée est ainsi suffisant pour séparer les deux contributions.<p><p>Nous avons étudié l’adsorption de myoglobine deutérée sur des brosses de PEG avec différents degrés de polymérisation (N = 56, 146 and 770), en fonction de l’aire par chaîne Σ. La contribution des adsorptions primaire et ternaire put être séparée pour les différents systèmes, et les quantités adsorbées extraites pour finalement comparer les isothermes d’adsorption aux prédictions théoriques. La possibilité de distinguer les différents modes d’adsorption, et la quantification de leur contribution relative à la quantité totale de protéines adsorbées représente une avancée majeure dans l’optimisation des propriétés des surfaces. L’adsorption ternaire dans les brosses de PEG en particulier remet en question leur utilisation pour réprimer l’adsorption de protéines. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
132

Towards designing composite membranes for CO2 separation : the inclusion of hybrid TiO2-PEG structures and study of their interfaces / Vers la conception de membranes composites pour la séparation du CO2 : Inclusion de structures hybrides TiO2-PEG et études de leurs interfaces

Cao, Edgar 26 October 2015 (has links)
Ce travail de thèse vise à concevoir de nouvelles membranes performantes pour la séparation de gaz (CO2) dans le procédé de post-combustion. La stratégie proposée repose sur la préparation de membranes hybrides organiques/inorganiques, combinant des supports poreux de dioxyde de titane (TiO2) intégrés dans une couche dense de polymère à base de poly-oxyde d'éthylène. L'un des points important de cette étude est l'ancrage de la phase organique sur le support inorganique. Deux agents de couplage : le propyl phosphonique acide 2-bromo-2-méthyl propanoate et le 3--propylamino triéthoxy silan ont été sélectionnés et greffés sur trois surface de TiO2 différentes : des nanoparticules, des surfaces denses et des surfaces poreuses. Pour chacune des deux molécules d'ancrage les meilleurs résultats ont été obtenus avec les nanoparticules. Les nanoparticules de TiO2 ainsi fonctionnalisées, ont dans une seconde étape, servi de semences pour l'élaboration de particules coeur-écorce. Deux voies de polymérisation ont été explorées avec succès : la si-ATRP et la si-ROMP. Dans le premier cas des greffons de poly-poly-éthylène glycol méthyl éther méthacrylate ont été introduits sur les nanoparticules de TiO2. Pour la si-ROMP les greffons incorporés sont à base de polynorbonène. Les résultats obtenus sur les nanoparticules de TiO2 ont été exploités afin de créer des couches polymères sur des supports poreux céramiques tubulaires commerciaux. Deux modes de conception ont été développés : la voie dite "coating onto" et celle dite "Grafting from". Les membranes composites obtenues par ces deux voies ont été testées en perméabilité des gaz afin de déterminer la qualité des couches polymères. Des essais préliminaires de séparation des gaz ont été également effectués. / This thesis work aims towards designing hybrid membranes for CO2 separation in the post-combustion process. The different methods of existing technologies are compared ans assessed for their merit, and the decision of using inorganic titanium dioxide supports integrated with a grown polymeric/PEG layer is made. First, the structure of the interfacing group is determined and narrowed down to phosphonic-based anchoring groups. The modification of various titanium oxide surfaces (i.e. particle, flat and porous) is performed with each group, and particles were found to yield the highest surface modification. Secondly, the functionalized particles of titania were then studied for their potential with si-ATRP and si-ROMP. in the case of phosphonic acid functionalized titania, the particles yielded a bromine terminus that could be used for si-ATPR. In the case of the silane grafted titania particles, further fonctionalization was required to ultimately yield a norbornenyl group that can be used for Si-ROMP. Both teechniques were shown to work, and were thus applied to longer ceramic tubes. Finally the development of two pathways ("Coating onto" and "Grafting from") were assessed for their ability to modify the tubular ceramic support and preliminary gas separation tests were performed.
133

Functionalization and Synthesis of Difunctional Folate-targeted Polymeric Conjugates for Potential Diagnostic Applications

Shrikhande, Gayatri January 2019 (has links)
No description available.
134

Development of Polymer Monoliths for the Analysis of Peptides and Proteins

Gu, Binghe 04 December 2006 (has links) (PDF)
Several novel polymer monoliths for the analysis of peptides and proteins were synthesized using polyethylene glycol diacrylate (PEGDA) as crosslinker. Photo-initiated copolymerization of polyethylene glycol methyl ether acrylate and PEGDA yielded an inert monolith that could be used for size exclusion liquid chromatography of peptides and proteins. This macroscopically uniform monolith did not shrink or swell in either water or tetrahydrofuran. More importantly, it was found to resist adsorption of both acidic and basic proteins in aqueous buffer without any organic solvent additives. A strong cation-exchange polymer monolith was synthesized by copolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and PEGDA. A ternary porogen (water, methanol and ethyl ether) was found suitable to prepare a flow-through monolith with moderate pressure drop in aqueous buffer. The resulting monolith showed excellent ion exchange capillary liquid chromatography of peptides using a simple salt gradient. Extremely narrow peaks were obtained for the analysis of synthetic peptides, natural peptides and a protein digest. A peak capacity of 179 was achieved. Although the poly(AMPS) monolith demonstrated extraordinary performance, one main drawback of this monolith was its relatively strong hydrophobicity. A decrease in hydrophobicity was achieved by using more hydrophilic monomers (e.g., sulfoethyl methacrylate or vinyl sulfonic acid). The most hydrophilic poly(vinyl sulfonic acid) monolith provided high resolution cation-exchange liquid chromatography of protein standards and lipoproteins. Use of the new PEGDA biocompatible crosslinker over the conventional ethylene glycol dimethacrylate crosslinker for the preparation of polymer monoliths was found to be advantageous for the analysis of biological compounds in several chromatography modes.
135

Protoplast fusion of Lolium perenne and Lotus corniculatus for gene introgression

Raikar, S. V. January 2007 (has links)
Lolium perenne is one of the most important forage crops globally and in New Zealand. Lotus corniculatus is a dicotyledonous forage that contains valuable traits such as high levels of condensed tannins, increased digestibility, and high nitrogen fixing abilities. However, conventional breeding between these two forage crops is impossible due to their markedly different taxonomic origin. Protoplast fusion (somatic hybridisation) provides an opportunity for gene introgression between these two species. This thesis describes the somatic hybridisation, the regeneration and the molecular analysis of the putative somatic hybrid plants obtained between L. perenne and L. corniculatus. Callus and cell suspensions of different cultivars of L. perenne were established from immature embryos and plants were regenerated from the callus. Of the 10 cultivars screened, cultivars Bronsyn and Canon had the highest percentage of callus induction at 36% each on 5 mg/L 2,4-D. Removal of the palea and lemma which form the seed coat was found to increase callus induction ability of the embryos. Plant regeneration from the callus was achieved when the callus was plated on LS medium supplemented with plant growth regulators at different concentrations. Variable responses to shoot regeneration was observed between the different cultivars with the cv Kingston having the lowest frequency of shoot formation (12%). Different factors affecting the protoplast isolation of L. perenne were investigated. The highest protoplast yield of 10×10⁶ g⁻¹FW was obtained when cell suspensions were used as the tissue source, with enzyme combination 'A' (Cellulase Onozuka RS 2%, Macerozyme R-10 1%, Driselase 0.5%, Pectolyase 0.2%), for 6 h incubation period in 0.6 M mannitol. Development of microcolonies was only achieved when protoplasts were plated on nitrocellulose membrane with a L. perenne feeder layer on PEL medium. All the shoots regenerated from the protoplast-derived calli were albino shoots. The highest protoplast yield (7×10⁶ g⁻¹FW) of L. corniculatus was achieved from cotyledons also with enzyme combination 'A' (Cellulase Onozuka RS 2%, Macerozyme R-10 1%, Driselase 0.5%, Pectolyase 0.2%), for 6 h incubation period in 0.6 M mannitol. The highest plating efficiency for L. corniculatus of 1.57 % was achieved when protoplasts were plated on nitrocellulose membrane with a L. perenne feeder layer on PEL medium. The highest frequency of shoot regeneration (46%) was achieved when calli were plated on LS medium with NAA (0.1 mg/L) and BA (0.1 mg/L). Protoplast fusion between L. perenne and L. corniculatus was performed using the asymmetric somatic hybridisation technique using PEG as the fusogen. L. perenne protoplasts were treated with 0.1 mM IOA for 15 min and L. corniculatus protoplasts were treated with UV at 0.15 J/cm² for 10 min. Various parameters affecting the fusion percentage were investigated. Successful fusions were obtained when the fusions were conducted on a plastic surface with 35% PEG (3350 MW) for 25 min duration, followed by 100 mM calcium chloride treatment for 25 min. A total of 14 putative fusion colonies were recovered. Shoots were regenerated from 8 fusion colonies. Unexpectedly, the regenerated putative hybrid plants resembled L. corniculatus plants. The flow cytometric profile of the putative somatic hybrids resembled that of L. corniculatus. Molecular analysis using SD-AFLP, SCARs and Lolium specific chloroplast microsatellite markers suggest that the putative somatic hybrids could be L. corniculatus escapes from the asymmetric protoplast fusion process. This thesis details a novel Whole Genome Amplification technique for plants using Strand Displacement Amplification technique.
136

Struktureigenschaften und molekulare Dynamik flüssiger Ethylenglykol-Oligomere und ihrer Mischungen mit Wasser / Structural properties and molecular dynamics of liquid ethylene glycol oligomers and their mixtures with water

Hanke, Elke 03 July 2007 (has links)
No description available.
137

Les effets des tannins condensés du sainfoin (Onobrychis viciifolia) sur sa digestion et sa valeur nutritive / The effects of condensed tannins in sainfoin (Onobrychis viciifolia) on its digestion and nutritive value

Theodoridou, Katerina 17 December 2010 (has links)
Résumé indisponible / Résumé indisponible
138

Tunable hydrogels for pancreatic tissue engineering

Raza, Asad 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Type I diabetes is an autoimmune disorder characterized by the loss of insulin producing islet cell mass. While daily insulin injection provides an easy means of glycemic control, it does not prevent long-term complications associated with diabetes. Islet transplantation has been suggested as a permanent cure for type 1 diabetes. However, the recurrence of host immunity and shortage of donor islets hinder the prevalence of islet transplantation. Biomaterial strategies provide an alternative route to solving the problems associated with host immune response and shortage of donor islets. One highly recognized platform for achieving these goals are hydrogels, which are hydrophilic crosslinked polymers with tissue-like elasticity and high permeability. Hydrogels prepared from poly(ethylene glycol) (PEG) derivatives are increasingly used for a variety of tissue engineering applications, including encapsulation of pancreatic islets and serving as a material platform for pseudo-islet differentiation. PEG hydrogels formed by mild and rapid thiol-ene photo-click reactions are particularly useful for studying cell behaviors in three-dimension (3D). Thiol-ene PEG-based hydrogels can be rendered biodegradable if appropriate macromer and cross-linker chemistry is employed. However, the influence of hydrogel matrix properties on the survival, growth, and morphogenesis of cells in 3D has not been fully evaluated. This thesis aims at using norbornene-functionalized PEG macromers to prepare thiol-ene hydrogels with various stiffness and degradability, from which to study the influence of hydrogel properties on pancreatic cell fate processes in 3D. Toward establishing an adaptable hydrogel platform for pancreatic tissue engineering, this thesis systematically studies the influence of hydrogel properties on encapsulated endocrine cells (e.g., MIN6 beta-cells) and exocrine cells (PANC-1 cells), as well as human mesenchymal stem cells (hMSC). It was found that thiol-ene photo-click hydrogels provide a cytocompatible environment for 3D culture of these cells. However, cell viability was negatively affected in hydrogels with higher cross-linking density. In contrast to a monolayer when cultured on a 2D surface, cells with epithelial characteristic formed clusters and cells with mesenchymal features retained single cell morphology in 3D. Although cells survived in all hydrogel formulations studied, the degree of proliferation, and the size and morphology of cell clusters formed in 3D were significantly influenced by hydrogel matrix compositions. For example: encapsulating cells in hydrogels formed by hydrolytically degradable macromer positively influenced cell survival indicated by increased proliferation. In addition, when cells were encapsulated in thiol-ene gels lacking cell-adhesive motifs, hydrolytic gel degradation promoted their survival and proliferation. Further, adjusting peptide crosslinker type and immobilized ECM-mimetic bioactive cues provide control over cell fate by determining whether observed cellular morphogenesis is cell-mediated or matrix-controlled. These fundamental studies have established PEG-peptide hydrogels formed by thiol-ene photo-click reaction as a suitable platform for pancreatic tissue engineering
139

Step-growth thiol-ene photopolymerization to form degradable, cytocompatible and multi-structural hydrogels

Shih, Han 17 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Hydrogels prepared from photopolymerization have been used for a variety of tissue engineering and controlled release applications. Polymeric biomaterials with high cytocompatibility, versatile degradation behaviors, and diverse material properties are particularly useful in studying cell fate processes. In recent years, step-growth thiol-ene photochemistry has been utilized to form cytocompatible hydrogels for tissue engineering applications. This radical-mediated gelation scheme utilizes norbornene functionalized multi-arm poly(ethylene glycol) (PEGNB) as the macromer and di-thiol containing molecules as the crosslinkers to form chemically crosslinked hydrogels. While the gelation mechanism was well-described in the literature, the network properties and degradation behaviors of these hydrogels have not been fully characterized. In addition, existing thiol-ene photopolymerizations often used type I photoinitiators in conjunction with an ultraviolet (UV) light source to initiate gelation. The use of cleavage type initiators and UV light often raises biosafety concerns. The first objective of this thesis was to understand the gelation and degradation properties of thiol-ene hydrogels. In this regard, two types of step-growth hydrogels were compared, namely thiol-ene hydrogels and Michael-type addition hydrogels. Between these two step-growth gel systems, it was found that thiol-ene click reactions formed hydrogels with higher crosslinking efficiency. However, thiol-ene hydrogels still contained significant network non-ideality, demonstrated by a high dependency of hydrogel swelling on macromer contents. In addition, the presence of ester bonds within the PEGNB macromer rendered thiol-ene hydrogels hydrolytically degradable. Through validating model predictions with experimental results, it was found that the hydrolytic degradation of thiol-ene hydrogels was not only governed by ester bond hydrolysis, but also affected by the degree of network crosslinking. In an attempt to manipulate network crosslinking and degradation rate of thiol-ene hydrogels, different macromer contents and peptide crosslinkers with different amino acid sequences were used. A chymotrypsin-sensitive peptide was also used as part of the hydrogel crosslinkers to render thiol-ene hydrogels enzymatically degradable. The second objective of this thesis was to develop a visible light-mediated thiol-ene hydrogelation scheme using a type II photoinitiator, eosin-Y, as the only photoinitiator. This approach eliminates the incorporation of potentially cytotoxic co-initiator and co-monomer that are typically used with a type II initiator. In addition to investigating the gelation kinetics and properties of thiol-ene hydrogels formed by this new gelation scheme, it was found that the visible light-mediated thiol-ene hydrogels were highly cytocompatible for human mesenchymal stem cells (hMSCs) and pancreatic MIN6 beta-cells. It was also found that eosin-Y could be repeatedly excited for preparing step-growth hydrogels with multilayer structures. This new gelation chemistry may have great utilities in controlled release of multiple sensitive growth factors and encapsulation of multiple cell types for tissue regeneration.

Page generated in 0.0493 seconds