Spelling suggestions: "subject:"corous silicon."" "subject:"chorous silicon.""
41 |
Fabrication de semiconducteurs poreux pour am??liorer l'isolation thermique des MEMSNewby, Pascal January 2014 (has links)
R??sum?? : L???isolation thermique est essentielle dans de nombreux types de MEMS (micro-syst??mes ??lectro-m??caniques). Elle permet de r??duire la consommation d?????nergie, am??liorer leurs performances, ou encore isoler la zone chaude du reste du dispositif, ce qui est essentiel dans les syst??mes sur puce. Il existe quelques mat??riaux et techniques d???isolation pour les MEMS, mais ils sont limit??s. En effet, soit ils ne proposent pas un niveau d???isolation suffisant, sont trop fragiles, ou imposent des contraintes trop importantes sur la conception du dispositif et sont difficiles ?? int??grer.
Une approche int??ressante pour l???isolation, d??montr??e dans la litt??rature, est de fabriquer des pores de taille nanom??trique dans le silicium par gravure ??lectrochimique. En nanostructurant le silicium ainsi, on peut diviser sa conductivit?? thermique par un facteur de 100 ?? 1000, le transformant en isolant thermique. Cette solution est id??ale pour l???int??gration dans les proc??d??s de fabrication existants des MEMS, car on garde le silicium qui est d??j?? utilis?? pour leur fabrication, mais en le nanostructurant localement, on le rend isolant l?? o?? on en a besoin. Par contre sa porosit?? cause des probl??mes : mauvaise r??sistance chimique, structure instable au-del?? de 400??C, et tenue m??canique r??duite. La facilit?? d???int??gration des semiconducteurs poreux est un atout majeur, nous visons donc de r??duire les d??savantages de ces mat??riaux afin de favoriser leur int??gration dans des dispositifs en silicium. Nous avons identifi?? deux approches
pour atteindre cet objectif : i) am??liorer le Si poreux ou ii) d??velopper un nouveau mat??riau.
La premi??re approche consiste ?? amorphiser le Si poreux en l???irradiant avec des ions ?? haute ??nergie (uranium, 110 MeV). Nous avons montr?? que l???amorphisation, m??me partielle, du Si poreux entra??ne une diminution de sa conductivit?? thermique, sans endommager sa structure poreuse. Cette technique r??duit sa conductivit?? thermique jusqu????? un facteur de trois, et peut ??tre combin??e avec une pr??-oxydation afin d???atteindre une r??duction d???un facteur cinq. Donc cette m??thode permet de r??duire la porosit?? du Si poreux, et d???att??nuer ainsi les probl??mes de fragilit?? m??canique caus??s par la porosit?? ??lev??e, tout en gardant un niveau d???isolation ??gal.
La seconde approche est de d??velopper un nouveau mat??riau. Nous avons choisi le SiC poreux : le SiC massif a des propri??t??s physiques sup??rieures ?? celles du Si, et donc ?? priori le SiC poreux devrait conserver cette sup??riorit??. La fabrication du SiC poreux a d??j?? ??t?? d??montr??e dans la litt??rature, mais avec peu d?????tudes d??taill??es du proc??d??. Sa conductivit?? thermique et tenue m??canique n???ont pas ??t?? caract??ris??es, et sa tenue en temp??rature que de fa??on incompl??te.
Nous avons men?? une ??tude syst??matique de la porosification du SiC en fonction de la concentration en HF et le courant. Nous avons impl??ment?? un banc de mesure de la conductivit?? thermique par la m??thode ?? 3 om??ga ?? et l???avons utilis?? pour mesurer la conductivit?? thermique du SiC poreux. Nous avons montr?? qu???elle est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montr?? que le SiC poreux est r??sistant ?? tous les produits chimiques typiquement utilis??s en microfabrication sur silicium. D???apr??s nos r??sultats il est stable jusqu????? au moins 1000??C et nous avons obtenu des r??sultats qualitatifs encourageants quant ?? sa tenue m??canique. Nos r??sultats signifient donc que le SiC poreux est compatible avec la microfabrication, et peut ??tre int??gr?? dans les MEMS comme isolant thermique. // Abstract : Thermal insulation is essential in several types of MEMS (micro electro-mechanical systems). It can help reduce power consumption, improve performance, and can also isolate the hot area from the rest of the device, which is essential in a system-on-chip. A few materials and techniques currently exist for thermal insulation in MEMS, but these are limited. Indeed, either they don???t have provide a sufficient level of insulation, are too fragile, or restrict design of the device and are difficult to integrate.
A potentially interesting technique for thermal insulation, which has been demonstrated in
the literature, is to make nanometer-scale pores in silicon by electrochemical etching. By
nanostructuring silicon in this way, its thermal conductivity is reduced by a factor of 100 to
1000, transforming it into a thermal insulator. This solution is ideal for integration in existing MEMS fabrication processes, as it is based on the silicon substrates which are already used for their fabrication. By locally nanostructuring these substrates, silicon is made insulating wherever necessary. However the porosity also causes problems : poor chemical resistance, an unstable structure above 400???C, and reduced mechanical properties. The ease of integration of porous semiconductors is a major advantage, so we aim to reduce the disadvantages of these materials in order to encourage their integration in silicon-based devices. We have pursued two approaches in order to reach this goal : i) improve porous Si, or ii) develop a new material.
The first approach uses irradiation with high energy ions (100 MeV uranium) to amorphise
porous Si. We have shown that amorphisation, even partial, of porous Si leads to a reduction of its thermal conductivity, without damaging its porous structure. This technique can reduce the thermal conductivity of porous Si by up to a factor of three, and can be combined with a pre-oxidation to achieve a five-fold reduction of thermal conductivity. Therefore, by using this method we can use porous Si layers with lower porosity, thus reducing the problems caused by the fragility of high-porosity layers, whilst keeping an equal level of thermal insulation.
The second approach is to develop a new material. We have chosen porous SiC: bulk SiC has exceptional physical properties and is superior to bulk Si, so porous SiC should be superior to porous Si. Fabrication of porous SiC has been demonstrated in the literature, but detailed studies of the process are lacking. Its thermal conductivity and mechanical properties have never been measured and its high-temperature behaviour has only been partially characterised.
We have carried out a systematic study of the effects of HF concentration and current on
the porosification process. We have implemented a thermal conductivity measurement setup using the ???3 omega??? method and used it to measure the thermal conductivity of porous SiC. We have shown that it is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is chemically inert in the most commonly used solutions for microfabrication. Our results show that porous SiC is stable up to at least 1000???C and we have obtained encouraging qualitative results regarding its mechanical properties. This means that porous SiC is compatible with microfabrication processes, and can be integrated in MEMS as a thermal insulation material.
|
42 |
Fabrication de semiconducteurs poreux pour am??liorer l'isolation thermique des MEMSNewby, Pascal January 2014 (has links)
R??sum?? : L???isolation thermique est essentielle dans de nombreux types de MEMS (micro-syst??mes ??lectro-m??caniques). Elle permet de r??duire la consommation d?????nergie, am??liorer leurs performances, ou encore isoler la zone chaude du reste du dispositif, ce qui est essentiel dans les syst??mes sur puce. Il existe quelques mat??riaux et techniques d???isolation pour les MEMS, mais ils sont limit??s. En effet, soit ils ne proposent pas un niveau d???isolation suffisant, sont trop fragiles, ou imposent des contraintes trop importantes sur la conception du dispositif et sont difficiles ?? int??grer.
Une approche int??ressante pour l???isolation, d??montr??e dans la litt??rature, est de fabriquer des pores de taille nanom??trique dans le silicium par gravure ??lectrochimique. En nanostructurant le silicium ainsi, on peut diviser sa conductivit?? thermique par un facteur de 100 ?? 1000, le transformant en isolant thermique. Cette solution est id??ale pour l???int??gration dans les proc??d??s de fabrication existants des MEMS, car on garde le silicium qui est d??j?? utilis?? pour leur fabrication, mais en le nanostructurant localement, on le rend isolant l?? o?? on en a besoin. Par contre sa porosit?? cause des probl??mes : mauvaise r??sistance chimique, structure instable au-del?? de 400??C, et tenue m??canique r??duite. La facilit?? d???int??gration des semiconducteurs poreux est un atout majeur, nous visons donc de r??duire les d??savantages de ces mat??riaux afin de favoriser leur int??gration dans des dispositifs en silicium. Nous avons identifi?? deux approches
pour atteindre cet objectif : i) am??liorer le Si poreux ou ii) d??velopper un nouveau mat??riau.
La premi??re approche consiste ?? amorphiser le Si poreux en l???irradiant avec des ions ?? haute ??nergie (uranium, 110 MeV). Nous avons montr?? que l???amorphisation, m??me partielle, du Si poreux entra??ne une diminution de sa conductivit?? thermique, sans endommager sa structure poreuse. Cette technique r??duit sa conductivit?? thermique jusqu????? un facteur de trois, et peut ??tre combin??e avec une pr??-oxydation afin d???atteindre une r??duction d???un facteur cinq. Donc cette m??thode permet de r??duire la porosit?? du Si poreux, et d???att??nuer ainsi les probl??mes de fragilit?? m??canique caus??s par la porosit?? ??lev??e, tout en gardant un niveau d???isolation ??gal.
La seconde approche est de d??velopper un nouveau mat??riau. Nous avons choisi le SiC poreux : le SiC massif a des propri??t??s physiques sup??rieures ?? celles du Si, et donc ?? priori le SiC poreux devrait conserver cette sup??riorit??. La fabrication du SiC poreux a d??j?? ??t?? d??montr??e dans la litt??rature, mais avec peu d?????tudes d??taill??es du proc??d??. Sa conductivit?? thermique et tenue m??canique n???ont pas ??t?? caract??ris??es, et sa tenue en temp??rature que de fa??on incompl??te.
Nous avons men?? une ??tude syst??matique de la porosification du SiC en fonction de la concentration en HF et le courant. Nous avons impl??ment?? un banc de mesure de la conductivit?? thermique par la m??thode ?? 3 om??ga ?? et l???avons utilis?? pour mesurer la conductivit?? thermique du SiC poreux. Nous avons montr?? qu???elle est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montr?? que le SiC poreux est r??sistant ?? tous les produits chimiques typiquement utilis??s en microfabrication sur silicium. D???apr??s nos r??sultats il est stable jusqu????? au moins 1000??C et nous avons obtenu des r??sultats qualitatifs encourageants quant ?? sa tenue m??canique. Nos r??sultats signifient donc que le SiC poreux est compatible avec la microfabrication, et peut ??tre int??gr?? dans les MEMS comme isolant thermique. // Abstract : Thermal insulation is essential in several types of MEMS (micro electro-mechanical systems). It can help reduce power consumption, improve performance, and can also isolate the hot area from the rest of the device, which is essential in a system-on-chip. A few materials and techniques currently exist for thermal insulation in MEMS, but these are limited. Indeed, either they don???t have provide a sufficient level of insulation, are too fragile, or restrict design of the device and are difficult to integrate.
A potentially interesting technique for thermal insulation, which has been demonstrated in
the literature, is to make nanometer-scale pores in silicon by electrochemical etching. By
nanostructuring silicon in this way, its thermal conductivity is reduced by a factor of 100 to
1000, transforming it into a thermal insulator. This solution is ideal for integration in existing MEMS fabrication processes, as it is based on the silicon substrates which are already used for their fabrication. By locally nanostructuring these substrates, silicon is made insulating wherever necessary. However the porosity also causes problems : poor chemical resistance, an unstable structure above 400???C, and reduced mechanical properties. The ease of integration of porous semiconductors is a major advantage, so we aim to reduce the disadvantages of these materials in order to encourage their integration in silicon-based devices. We have pursued two approaches in order to reach this goal : i) improve porous Si, or ii) develop a new material.
The first approach uses irradiation with high energy ions (100 MeV uranium) to amorphise
porous Si. We have shown that amorphisation, even partial, of porous Si leads to a reduction of its thermal conductivity, without damaging its porous structure. This technique can reduce the thermal conductivity of porous Si by up to a factor of three, and can be combined with a pre-oxidation to achieve a five-fold reduction of thermal conductivity. Therefore, by using this method we can use porous Si layers with lower porosity, thus reducing the problems caused by the fragility of high-porosity layers, whilst keeping an equal level of thermal insulation.
The second approach is to develop a new material. We have chosen porous SiC: bulk SiC has exceptional physical properties and is superior to bulk Si, so porous SiC should be superior to porous Si. Fabrication of porous SiC has been demonstrated in the literature, but detailed studies of the process are lacking. Its thermal conductivity and mechanical properties have never been measured and its high-temperature behaviour has only been partially characterised.
We have carried out a systematic study of the effects of HF concentration and current on
the porosification process. We have implemented a thermal conductivity measurement setup using the ???3 omega??? method and used it to measure the thermal conductivity of porous SiC. We have shown that it is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is chemically inert in the most commonly used solutions for microfabrication. Our results show that porous SiC is stable up to at least 1000???C and we have obtained encouraging qualitative results regarding its mechanical properties. This means that porous SiC is compatible with microfabrication processes, and can be integrated in MEMS as a thermal insulation material.
|
43 |
Otimização da técnica HI-OS para obtenção de dispositivos integrados de emissão de elétrons por efeito de campoSilva, Débora Ariana Corrêa da January 2016 (has links)
Orientador: Prof. Dr. Michel Oliveira da Silva Dantas / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Elétrica, 2016. / Sensores de vacuo sao amplamente utilizados tanto no ambito industrial como no da pesquisa cientifica, pois possuem aplicacoes em diversas tecnicas de fabricacao e de analise, como a microscopia eletronica de varredura (MEV), a litografia por feixe de eletrons, e a espectrometria de massa, entre outras. Dentre os diversos tipos de sensores de vacuo destacam-se os baseados em efeito de campo (FE - Field Emission Device), que sao dispositivos que emitem eletrons em vacuo na presenca de um elevado campo eletrico. A literatura destaca diversas vantagens destes dispositivos: operacao em temperatura ambiente, reducao de consumo de potencia e tensao de operacao, obtencao de altas densidades de correntes em areas reduzidas, e rapido tempo de resposta. Existem diversas tecnicas de microfabricacao que podem ser utilizadas para obtencao de dispositivos FE, destacando-se a tecnica HI-PS (gHydrogen Implantation . Porous Siliconh), que proporciona baixa complexidade e custo. No entanto, para obtencao de FEs com sistema anodo-catodo integrado, a tecnica HI-PS apresenta algumas limitacoes, como o elevado numero
de etapas de processo, a necessidade de elevada temperatura e tempo de oxidacao, e
principalmente a isolacao eletrica deficiente entre as estruturas do anodo e do catodo,
propiciando a existencia de correntes de fuga pelo gcorpoh do dispositivo. Frente a estes
problemas, este trabalho apresenta estrategias estudadas para aprimorar a tecnica HI-PS de
microfabricacao de dispositivos de emissao de campo integrados. Visando a reducao do numero de etapas de processo e a eliminacao de defeitos, inicialmente, foi estudada a utilizacao de fotorresiste como mascara a implantacao ionica de hidrogenio. Esta estrategia se mostrou viavel, resultando na formacao seletiva de silicio poroso e na obtencao de micropontas (catodos) com altura em torno de 10 ¿Êm e diametro dos apices em torno de dezenas de nanometro, dimensoes estas atestadas por MEV. Tambem foi pesquisada a utilizacao de fotorresiste como camada dieletrica, que se mostrou inviavel para a aplicacao proposta devido aos valores de correntes de fuga relativamente elevados. Para melhorar a isolacao eletrica entre as estruturas do anodo e do catodo, a estrategia pesquisada foi a utilizacao de oxido de silicio poroso (Ox-PS) como camada dieletrica entre as referidas estruturas. Para obtencao do Ox-PS, foram estudados diferentes parametros de oxidacao, como temperatura, tempo de processo, gradiente de temperatura de oxidacao (pre-oxidacao), e processo de recozimento termico pos-oxidacao em ambiente Forming Gas. Para as caracterizacoes morfologicas do Ox-PS, foram analisados, por meio de microscopia
otica, parametros como espessura, estabilidade estrutural, taxa de corrosao e oxidacao total da camada PS, sendo este ultimo realizado atraves da tecnica Fourier Transform Infrared
Spectroscopy (FTIR). Para a caracterizacao eletrica da corrente de fuga, foram confeccionados
dispositivos MOS, caracterizados eletricamente por aparato constituido por um analisador de
parametros semicondutores. O Ox-PS obtido com T = 1000 ¿C, t = 1 h, e com recozimento
termico pos-oxidacao em ambiente Forming Gas apresentou significativa reducao da corrente de fuga (de 30 nA para 0,125 nA), comprovando, deste modo, sua potencialidade para a aplicacao proposta. Ja na fabricacao do FE integrado, o Ox-PS obtido nestas condicoes apresentou elevada instabilidade estrutural, gerando a necessidade de implementar processos de pre-oxidacao para obtencao da estrutura anodo-catodo integrada. Atraves dos parametros adequados, foi finalmente comprovada a viabilidade da otimizacao da tecnica HI-PS atraves das estrategias estudadas, possibilitando a fabricacao do dispositivo FE integrado contendo micropontas de alturas de aproximadamente 10 micrometros e apices da ordem de dezenas de nanometros circundadas pela estrutura do anodo com distancias de separacao de aproximadamente 20 micrometros. Com a otimizacao dos processos de fabricacao, almeja-se futuramente implementar o dispositivo FE integrado obtido por HI-PS no desenvolvimento de sensores compactos e de baixo custo e complexidade de fabricacao. / Vacuum sensors are widely used in industry and in scientific research, because they can be
applied in several fabrication and analysis techniques, such as Scanning Electron Microscopy
(SEM), electron beam lithography and mass spectrometry, for example. Among the large number of vacuum sensors, we can highlight the Field Emission Devices (FE), which are devices that emit electrons in vacuum environment when submitted to a high electric field. The literature reports several advantages of these devices: operation at room temperature, low power consumption, high current densities in small areas, and fast response times. Several microfabrication techniques allow obtaining FE devices, including the HI-PS (Hydrogen Implantation ¿ Porous Silicon) technique, which is remarkable due to its low complexity and cost. However, HI-PS presents some limitations when applied to obtain FE with integrated anode-cathode system: high number of process steps, high temperature and oxidation times, and mainly the poor electrical insulation between anode-cathode structures, which results in leakage currents through the bulk of these devices. In this context, this work shows strategies to improve the HI-PS technique for microfabrication of integrated FE devices. First, we use photoresist as mask for hydrogen ion implantation aiming at defects elimination and reduction of process steps.
This strategy resulted in the selective formation of porous silicon and in obtaining microtips
(cathodes) with 10 ìm height and apex around tens of nanometers, as verified by Scanning
Electron Microscopy (SEM). In addition, photoresist was tested as dielectric between anodecathode structures, but the high leakage current measured hindered the use of this material for the proposed application. The main strategy researched to improve the electrical insulation between anode-cathode structures was the use of oxidized porous silicon (Ox-PS) as dielectric.
To obtain Ox-PS, we studied oxidation parameters such as temperature, time, pre-oxidation, and post-oxidation annealing. Optical Microscopy and Fourier Transform Infrared Spectroscopy (FTIR) were applied to analyze morphological aspects such as thickness, stability, etch rates and full oxidation of PS layers. A semiconductor parameter analyzer was used to characterize the leakage current from fabricated MOS devices. The Ox-PS obtained with T = 1000 °C, t = 1 h, and post-oxidation annealing in Forming Gas environment showed remarkable decrease of leakage current in comparison to the other oxidation conditions (from 30 nA to 0,125 nA), which demonstrates potentiality for the proposed application. Additionally, a pre-oxidation process was introduced to improve structural stability of Ox-PS layers. After this implementation, the optimization viability of HI-PS technique was finally proved, allowing obtaining an integrated FE device with microtips with 10 micrometers height and apex about tens of nanometers surrounded by the anode structure. The separation distance between anode-cathode structures was about 20 micrometers. With the optimization of fabrication process, we intend to implement hereafter the integrated FE device obtained by HI-PS technique in the development of compact sensors with low cost and low fabrication complexity.
|
44 |
Studium morfologie a chemického složení povrchu porézního křemíku v závislosti na podmínkách přípravy / Morfology and surface chemical composition of porous silicon prepared at various conditionsKonečný, Martin January 2013 (has links)
Title: Morfology and surface chemical composition of porous silicon prepared at various conditions Author: Bc. Martin KONEČNÝ Author's e-mail: konecmar@seznam.cz Department: Department of Chemical Physics and Optics Supervisor: Doc. RNDr. Juraj Dian, CSc. Supervisor's e-mail: Juraj.Dian@mff.cuni.cz Abstract: Porous silicon is a silicon-based material prepared mainly by anodic etching of crystalline silicon in hydrofluoric acid. Physical and chemical properties of porous silicon are governed by structures with sizes of the order of ones to tens of nanometers. Properties of nanostructure material are affected - as compared to macroscopic counterparts - by quantum confinement effect and enormous internal surface. According to type of silicon substrate (type of dopant, conductivity, crystallographic orientation) and technological conditions a material with different mean size of pores (macro-, meso- and nanoporous silicon) and surface chemical composition (different ratio of Si-O and Si-H bond) can be prepared. Morphology and surface chemical composition predestinated application potential of porous silicon for sensors of chemical species by taking advantage of strong sensitivity of physical properties of silicon nanocrystals - especially of photoluminescence - on the chemical state of a surface. Detection of...
|
45 |
Síntese e caracterização de nanopartículas de silício para uso como veiculadores de oligopeptídeos ciclo-RGDfV para tratamento de câncer / Synthesis and characterization of silicon nanoparticles as cyclo-RGDfV oligopeptide carriers for cancer treatmentAcosta, Aldo Aparicio 07 April 2015 (has links)
Nanopartículas luminescentes de silício poroso (NPSi) foram projetadas e preparadas por métodos de corrosão eletroquímica seguidas de ultrasonicação, em substratos de silício tipo-p, dopados com boro e com resistividades que variam de 10-20 e 1-10 ômega cm em soluções eletrolíticas compostas por ácido fluorídrico (HF) em etanol absoluto (C^2H^5OH). As condições de processamento envolvem a variação da densidade de corrente \"J\" tempo de anodização \"t\" e o controle da concentração do HF. Técnicas de microscopia eletrônica de varredura (MEV), espectroscopia de absorção UV-Vis, espectroscopia de fluorescência, difração de raios-X e medidas de potencial zeta e tamanho de partícula foram usados para investigar as propriedades morfológicas e ópticas do material resultante. Nanopartículas com diâmetros de até 150 nm foram obtidas após filtragem através de filtros de membrana. A oxidação química em soluções de peróxido de hidrogénio e ácido sulfúrico permitiu a obtenção de Nanoparticulas com emissão de fluorescência na região verde (532 nm), vermelho (630 e 650 nm) e infravermelho próximo (862 e 980 nm) do espectro eletromagnético. A associação de NPSi com RGDfV foi estudada por espectroscopia de ressonância magnética nuclear de próton (H-RMN). Um aumento na distribuição do tamanho e a intensidade de fluorescência foi observado após a funcionalização com RGDfV. Os efeitos citotóxicos do RGDfV e NPSi foram confirmados por ensaios de viabilidade celular pelo método MTT usando células de melanoma murino B16-F10 como modelo biológico. Estudos iniciais de internalização de PcCIAI por eletroporação foram realizados para futuros estudos de transfecção de moléculas de interferência (siRNA). / Luminescent porous silicon nanoparticles (NPSi) were synthesized by electrochemical etching followed by ultra-sonication of 1-10 and 10-20 ohm.cm resistive p-type silicon wafers in electrolytic solutions composed by hydrofluoric acid (HF) in absolute ethanol (C2H5OH), by changing current density (J), etching time (t) and HF concentration. Scanning electron microscopy (SEM), X-ray diffraction, dynamic ligth scattering (DLS), zetasize measurement, UV-Vis absorption spectroscopy and fluorescence spectroscopy were used to investigate the morphological and optical properties of the resulting material. Nanoparticles with diameter up to 150 nm were obtained after filtered through filtration membrane. The chemical oxidation in oxidizing solutions composed by hydrogen peroxide in sulfuric acid allowed the isolation of nanoparticles with fluorescence properties as expected, with emission in green (532 nm), red (630 and 650 nm) and near infrared (862 and 980 nm) region of the electromagnetic spectrum. The association of NPSi with RGDfV was studied by nuclear magnetic resonance spectroscopy (H-NMR). The increase on size distribution and fluorescence intensity was observed after functionalization with RGDfV. The citotoxicity effects of RGDfV and NPSi was confirmed by MTT assays using B16-F10 melanoma murine cells, as a biological model. Initial studies of internalization PcClAl by electroporation were performed for future studies of transfection of interfering molecules (siRNA).
|
46 |
Contribuição ao desenvolvimento de dispositivos sensores de gás baseados em moléculas organo-metálicas de ftalocianina. / Contribution to the development of gas sensor devices based on phthalocyanine metallorganic molecules.Adriana Barboza Stelet 30 March 2007 (has links)
O objetivo deste trabalho foi contribuir para o desenvolvimento de um dispositivo elétrico baseado em moléculas organometálicas sobre substratos de silício poroso visando a sua aplicação no desenvolvimento de sensores de gás. Foi proposto um procedimento de deposição de monocamadas de moléculas de Ftalocianina sobre a superfície da estrutura de silício poroso aproveitando sua elevada superfície específica. As moléculas de Ftalocianina adsorvidas sobre o filme de silício poroso oxidado termicamente não apresentaram processos de reação química preservando suas características elétricas e ópticas. Foi fabricado um dispositivo com eletrodo de Ouro baseado no filme de moléculas de Ftalocianina depositado sobre silício poroso oxidado. A partir das curvas características I x V foi identificado o mecanismo de transporte de portadores através do filme de Ftalocianina e o tipo de junção na região de eletrodo-Ftalocinina. O mecanismo é baseado na corrente limitada por cargas armadilhadas nos níveis altamente localizados no interior da banda proibida entre os níveis HOMO e LUMO das moléculas de Ftalocianina. A resposta I x V do dispositivo mostrou-se sensível à exposição a gases orgânicos mostrando maior sensibilidade para o gás (Metanol) com maior constante dielétrica, sugerindo uma importante contribuição do efeito de blindagem sobre os níveis de armadilha, e como conseqüência a diminuição da profundidade destes níveis. / The aim of this work was to contribute for the development of an electrical device based on organometallic molecules onto porous silicon bulks for the application in the development of gas sensor devices. It was proposed a procedure of deposition of monolayer of Phthalocyanine molecules onto the surface of the porous silicon structure taking advantage of its high specific surface. The Phthalocyanine molecules adsorbed on the porous silicon film thermally oxidized did not show any chemical reaction process preserving their electrical and optical characteristics. A device was fabricated with Gold electrodes based on the Phthalocyanine molecules film deposited onto oxidized porous silicon. From the (I x V) characteristic curves, the carrier transport mechanism through the Phthalocyanine film and the junction type in the Phthalocyanine-electrode region were identified. The mechanism is based on the current limited by the trapped charges in the highly localized levels inside the band gap between the HOMO and LUMO levels of the Phthalocyanine molecules. The I x V response of the device showed to be sensitive to organic gases exposition showing higher sensibility to (Methanol) gas with higher dielectric constant, suggesting an important contribution of the shield effect on the trap levels and as a result decreasing the depth of these levels.
|
47 |
Contribuição ao desenvolvimento de dispositivos sensores de gás baseados em moléculas organo-metálicas de ftalocianina. / Contribution to the development of gas sensor devices based on phthalocyanine metallorganic molecules.Stelet, Adriana Barboza 30 March 2007 (has links)
O objetivo deste trabalho foi contribuir para o desenvolvimento de um dispositivo elétrico baseado em moléculas organometálicas sobre substratos de silício poroso visando a sua aplicação no desenvolvimento de sensores de gás. Foi proposto um procedimento de deposição de monocamadas de moléculas de Ftalocianina sobre a superfície da estrutura de silício poroso aproveitando sua elevada superfície específica. As moléculas de Ftalocianina adsorvidas sobre o filme de silício poroso oxidado termicamente não apresentaram processos de reação química preservando suas características elétricas e ópticas. Foi fabricado um dispositivo com eletrodo de Ouro baseado no filme de moléculas de Ftalocianina depositado sobre silício poroso oxidado. A partir das curvas características I x V foi identificado o mecanismo de transporte de portadores através do filme de Ftalocianina e o tipo de junção na região de eletrodo-Ftalocinina. O mecanismo é baseado na corrente limitada por cargas armadilhadas nos níveis altamente localizados no interior da banda proibida entre os níveis HOMO e LUMO das moléculas de Ftalocianina. A resposta I x V do dispositivo mostrou-se sensível à exposição a gases orgânicos mostrando maior sensibilidade para o gás (Metanol) com maior constante dielétrica, sugerindo uma importante contribuição do efeito de blindagem sobre os níveis de armadilha, e como conseqüência a diminuição da profundidade destes níveis. / The aim of this work was to contribute for the development of an electrical device based on organometallic molecules onto porous silicon bulks for the application in the development of gas sensor devices. It was proposed a procedure of deposition of monolayer of Phthalocyanine molecules onto the surface of the porous silicon structure taking advantage of its high specific surface. The Phthalocyanine molecules adsorbed on the porous silicon film thermally oxidized did not show any chemical reaction process preserving their electrical and optical characteristics. A device was fabricated with Gold electrodes based on the Phthalocyanine molecules film deposited onto oxidized porous silicon. From the (I x V) characteristic curves, the carrier transport mechanism through the Phthalocyanine film and the junction type in the Phthalocyanine-electrode region were identified. The mechanism is based on the current limited by the trapped charges in the highly localized levels inside the band gap between the HOMO and LUMO levels of the Phthalocyanine molecules. The I x V response of the device showed to be sensitive to organic gases exposition showing higher sensibility to (Methanol) gas with higher dielectric constant, suggesting an important contribution of the shield effect on the trap levels and as a result decreasing the depth of these levels.
|
48 |
Desenvolvimento de dispositivos de emissão por efeito de campo elétrico fabricados pela técnica HI-PS. / Development of field emission devices fabricated by HI-PS technique.Dantas, Michel Oliveira da Silva 02 July 2008 (has links)
Um novo processo de fabricação de dispositivos de emissão de campo (FE) em silício (Si) é apresentado nesta tese, baseado na potencialidade de utilização da técnica de microusinagem denominada HI-PS (Hydrogen Ion Porous Silicon), que trata da combinação entre processos de implantação de hidrogênio e silício poroso. Por meio do procedimento proposto, foram obtidos dispositivos com 2500 emissores (micropontas de Si) integrados e não integrados ao anodo e contidos em uma área de 2,8 x 2,8 mm² (3,2.10\'POT.4\' pontas/cm²). As micropontas de Si fabricadas apresentaram altura de 10 µm, com diâmetro do ápice em torno de 150 nm. A separação entre os emissores (50 µm), na configuração não integrada dos dispositivos, foi limitada pela resolução da máscara litográfica utilizada. Foram propostas etapas de otimização estrutural das micropontas após sua formação, e aplicadas tanto na configuração do sistema anodo-catodo integrado como não integrado. Como resultado destas etapas, constatou-se a redução do ápice das microestruturas para dimensões inferiores a 100 nm. Os dispositivos FE integrados foram obtidos com uma distância de separação entre o anodo e o catodo de aproximadamente 12 µm, distância definida pelas dimensões da máscara litográfica, porém não limitada pelo processo aplicado. Destacam-se, entre as vantagens da utilização da técnica HI-PS em relação às tecnologias usuais de manufatura dos dispositivos FE, a baixa complexidade do processo proposto e a utilização de apenas uma etapa litográfica para obtenção do sistema anodo-catodo integrado e auto alinhado. Para efetuar as caracterizações dos dispositivos, foram implementados uma câmara de vácuo específica, que permite alterar a distância entre as estruturas do anodo e do catodo não integradas, sem a necessidade de se retirar a amostra da câmara, e três sistemas para ensaios elétricos, sendo um destes sistemas desenvolvido especificamente para caracterização elétrica de dispositivos FE. As caracterizações elétricas foram efetuadas por meio de curvas I-V, I-t e V-d, sendo esta última utilizada para extrair o campo elétrico macroscópico E, que foi utilizado como parâmetro de comparação entre amostras submetidas a diferentes processos de otimização estrutural e de recobrimento superficial dos emissores por Al. Todas as amostras caracterizadas apresentaram variação de corrente exponencial com o potencial aplicado, de acordo com o esperado pela teoria proposta por Fowler-Nordheim (F-N). Dispositivos com otimização estrutural ou deposição de Al apresentaram melhores características de emissão (menor valor de E), de acordo com o aprimoramento do modelo de F-N sugerido na literatura para superfícies otimizadas. Constatou-se, pelos gráficos de F-N, o comportamento diferenciado dos emissores de Si tipo p em comparação com outros materiais, estabelecendo uma relação entre as variações da inclinação da curva traçada às distintas fontes de elétrons do Si. Frente aos resultados obtidos, conclui-se que a técnica Hi-PS é altamente promissora para fabricação de emissores microusinados em Si para aplicações em dispositivos FE. / This thesis presents a new silicon (Si) field emission devices (FE) fabrication process based on the potential of the HI-PS (Hydrogen Ion Porous Silicon) micromachining technique, which is a combination of hydrogen implantation and porous silicon. Devices with 2500 emitters (Si microtips), integrated and non-integrated to the anode, enclosed in an area of 2.8 x 2.8 mm² (3.2 x 10\'POT.4\' tips/cm²), were obtained from the proposed technique. The fabricated Si microtips show 10 µm in height, with apex diameter of about 150 nm. The separation distance between emitters (50 µm), considering the non-integrated devices design, was limited by the resolution of the lithographic mask applied. Microtips structural improvement process steps were proposed and applied in both anode-cathode design (integrated and non-integrated). As a result, a reduction in tip apex diameter to dimensions lower than 100 nm was verified. The integrated FE devices were obtained with an anode-cathode separation of about 12 µm, which distance was defined by lithographic mask dimensions, but not limited by the process applied. The outstanding advantages of the HI-PS technique in comparison with usual technologies for FE devices fabrication are the low complexity of the process proposed and the use of a single lithographic step to obtain a selfaligned and integrated anode-cathode system. A dedicated vacuum chamber, which allows the changing of the separation distance between non-integrated anodecathode structures without the need of removing the sample out the chamber, and three systems for electrical test, being one of them developed specifically for FE devices electrical characterization, were implemented. The electrical characterizations were performed by means of I-V, I-t and V-d curves, being the last one used to extract the macroscopic electrical field E, which was applied as comparison parameter between samples obtained from distinct structural improvement process and samples with emitters surface coated with Al. All samples characterized showed exponential-like behavior of current with the potential applied, as expected from theory proposed by Fowler-Nordheim (F-N). Devices with structural improvement or Al coating showed better emission characteristics (lower E value), according with the modified F-N model suggested in the literature for optimized surfaces. From the F-N plots, the distinct behavior of p type Si emitters was verified in comparison with different materials, establishing a relationship between the slope variations of the curve obtained and the electrons source of the Si. Based on the results obtained, the HI-PS technique is very promising to fabricate Si micromachined emitters for use in FE devices.
|
49 |
Investigation of Geometrical Effects on Microneedle Geometry for Transdermal ApplicationsShetty, Smitha 19 July 2005 (has links)
Hollow biocompatible microneedle arrays were designed and fabricated using two different bulk micromachining techniques-Deep Reactive Ion Etching and Coherent Porous Silicon technology to investigate their reliability for transdermal applications. An in-house experimental setup was developed for microneedle fracture and split thickness penetration force measurements. Out of plane needle array configurations (100and#956;m needle length) with intra array geometric variations including needle shape, diameter, intra-array pitch and density (1a 625) were characterized on cadaver skin to predict skin barrier penetration without fracture. Use of microneedle array as transdermal patch necessitates reliable penetration and not just pushing against stratum corneum like a bed of nails. Critical in plane fracture tests were conducted on single microneedle columns with different geometry to validate the failure mechanism with force quantification relations. Preliminary penetration characterization was performed on skin like polymer followed by direct testing on cryogen preserved cadaver skin. Compressive and indentation test were performed on both excised skin and polymer to analyze their mechanical behavior on loading and establish a mechanical correlation. Finite element modeling using ANSYS was done to examine the effect of shear loading on the needles due to lack of experimental verification.
|
50 |
High Voltage Conversion For Mems Applications Using Micromachined CapacitorsKhanna, Puneet 14 November 2004 (has links)
This thesis explores high voltage converter circuits for MEMS applications using micromachined devices. A novel MEMS based tunable DC-DC converter has been developed. Conventional high voltage converters based on charge pumps are unable to convert voltages to higher than few tens of volts due to power handling limitations of the CMOS components. In order to overcome this limitation a high voltage circuit has been proposed, which when integrated with micromachined switches will generate output voltages in the range of 100 Volts. The converter is based on a two phase switched capacitor circuit, and allows regulation of voltage conversion ratio. Three prototype circuits have been built for proof of concept. A test program has been written for synchronized CPLD based control of the switched capacitors.
Individual capacitor fabrication technology is explored using two methods - Porous Silicon and DRIE processing. A micromachined capacitor bank has also been fabricated in silicon using a novel process sequence which provides for critical real estate savings and integration benefits. It enables on-chip integration of numerous microcapacitors, without losing customized configurability of the capacitor bank. The technique utilizes polyimide to facilitate lithography on a highly contoured surface. Plain capacitors have been fabricated on silicon with oxide-nitride-oxide stack being used as the dielectric to provide a building block for further fabrication of a variety of capacitors.
|
Page generated in 0.0582 seconds