Spelling suggestions: "subject:"processus dde lévy"" "subject:"processus dde révy""
31 |
Fonctionnelles de processus de Lévy et diffusions en milieux aléatoires / Functionals of Lévy processes and diffusions in random mediaVéchambre, Grégoire 30 November 2016 (has links)
Pour V un processus aléatoire càd-làg, on appelle diffusion dans le milieu aléatoire V la solution formelle de l’équation différentielle stochastique \[ dX_t = - \frac1{2} V'(X_t) dt + dB_t, \] où B est un mouvement brownien indépendant de V . Le temps local au temps t et à la position x dela diffusion, noté LX(t, x), donne une mesure de la quantité de temps passé par la diffusion au point x, avant l’instant t. Dans cette thèse nous considérons le cas où le milieu V est un processus de Lévyspectralement négatif convergeant presque sûrement vers −∞, et nous nous intéressons au comportementasymptotique lorsque t tend vers l’infini de $\mathcal{L}_X^*(t) := \sup_{\mathbb{R}} \mathcal{L}_X(t, .)$ le supremum du temps local de ladiffusion, ainsi qu’à la localisation du point le plus visité par la diffusion. Nous déterminons notammentla convergence en loi et le comportement presque sûr du supremum du temps local. Cette étude révèleque le comportement asymptotique du supremum du temps local est fortement lié aux propriétés desfonctionnelles exponentielles des processus de Lévy conditionnés à rester positifs et cela nous amène àétudier ces dernières. Si V est un processus de Lévy, V ↑ désigne le processus V conditionné à rester positif.La fonctionnelle exponentielle de V ↑ est la variable aléatoire $\int_0^{+ \infty} e^{- V^{\uparrow} (t)}dt$ . Nous étudions en particulier sa finitude, son auto-décomposabilité, l’existence de moments exponentiels, sa queue en 0, l’existence et larégularité de sa densité. / For V a random càd-làg process, we call diffusion in the random medium V the formal solution of thestochastic differential equation \[ dX_t = - \frac1{2} V'(X_t) dt + dB_t, \] where B is a brownian motion independent of V . The local time at time t and at the position x of thediffusion, denoted by LX(t, x), gives a measure of the amount of time spent by the diffusion at point x,before instant t. In this thesis we consider the case where the medium V is a spectrally negative Lévyprocess converging almost surely toward −∞, and we are interested in the asymptotic behavior, whent goes to infinity, of $\mathcal{L}_X^*(t) := \sup_{\mathbb{R}} \mathcal{L}_X(t, .)$ the supremum of the local time of the diffusion. We arealso interested in the localization of the point most visited by the diffusion. We notably establish theconvergence in distribution and the almost sure behavior of the supremum of the local time. This studyreveals that the asymptotic behavior of the supremum of the local time is deeply linked to the propertiesof the exponential functionals of Lévy processes conditioned to stay positive and this brings us to studythem. If V is a Lévy process, V ↑ denotes the process V conditioned to stay positive. The exponentialfunctional of V ↑ is the random variable $\int_0^{+ \infty} e^{- V^{\uparrow} (t)}dt$ . For this object, we study in particular finiteness,
|
32 |
Contributions à l'étude de l'instant de défaut d'un processus de Lévy en observation complète et incomplète / Contributions to the study of default time of a Lévy process in complete observation and in incomplete ObservationNgom, Waly 06 July 2016 (has links)
Dans nos travaux, nous avons considéré un processus de Lévy X avec une composante brownienne non nulle et dont la partie à sauts est un processus de Poisson composé. Nous avons supposé que la valeur d'une entreprise est modélisée par un processus stochastique de la forme V = Vo exp X et que cette entreprise est mise à défaut dès lors que sa valeur passe sous un certain seuil b déterminé de façon exogène et qui donc, est une donnée du problème. L'instant de défaut T est alors de la forme Tx pour x= ln(Vo) ln((b) où x> 0, Tx = inf{t 2:0: X, 2:x}. Dans un premier temps, nous supposons que des agents observant la valeur V des actifs de la firme souhaitent connaître le comportement de l'instant de défaut. Dans ce modèle, au chapitre 2, nous avons étudié d'une part la régularité de la densité de la loi de l'instant de défaut. D'autre part, nous avons étudié la loi conjointe de l'instant de défaut, de l'overshoot et de l'undershoot. Au chapitre 3, nous avons obtenu une équation à valeurs mesures dont le quadriplet formé par la variable aléatoire X,, le su premum du processus X à l'instant t, le supremum du processus X au dernier instant de saut avant l'instant t et le dernier instant de saut à l'instant t est solution au seris faible, puis une équation dont ce quadriplet est une solution forte. Dans un second temps, au chapitre 4, nous avons supposé que des investisseurs souhaitant détenir une part de cette entreprise ne disposent pas de l'information complète. Ils n'observent pas la valeur des actifs de la firme V, mais sa valeur bruitée. Leur information est modélisée par la filtration Ç = (Ç,, t 2: 0) engendrée par cette observation. Dans ce modèle, nous avons montré que la loi conditionnelle de l'instant de défaut sachant la tribu Ç, admet une densité par rapport à la mesure de Lebesgue et obtenu une équation de Volttera dont cette densité est solution. Cette connaissance permet aux investisseurs de prévoir au vu de leur information, quand est-ce que l'instant de défaut va intervenir après l'instant t. Nous avons complété ce travail par des simulations numériques. / In this Ph.D thesis, we consider a jump-diffusion process which the diffusion part is a drifted Brownian motion and the jump part is a compound Poisson process. We assume that a firm value is modelling by a stochastic process V = V0 exp-X. This firm goes to default whenever its value is below a specified tlrreshold b which is exo genously determined. For x = ln(Vo) - ln(b) > 0, the default time is of the form Tx = inf{t 2:0: X, 2: x}. First, we suppose that agents observe perfectly the firm value. In this mode, we sho wed in chapter 2 that the density of the default time is continuons, then study the joint law of the default time, overshoot an undershoot. We obtained in chapter 3 a valued measure differentia equation which the solution is the quadruplet formed by the random variable X,, the running supremum x; of X at time t, the supremum of X at the last jump time before t and the last jump time before t. Secondly, we assume that investors wishing detain a part of the firm can not observe the firm value. They observe a noisy value of the firm and their information is madel ling by the filtration g = (9,,t 2: 0) generated by their observation. In this mode, we have shown that the conditional density of Tx with respect to Ç has a density which is solution of one stochastic integral-differentia equation The knowledge of this density allows investors to predict the default time after time t. This second part is the chapter 4.
|
33 |
Investigating non commutative structures - quantum groups and dual groups in the context of quantum probability / Étude des structures non-commutatives : le cas des groupes quantiques et des groupes duaux dans le contexte des probabilités quantiquesUlrich, Michael 21 June 2016 (has links)
Les Mathématiques non-commutatives sont un domaine en plein essor. L'idée de base consiste à remarquer qu'au lieu de décrire un espace donné comme étant un ensemble de points, on peut de manière équivalente le décrire par l'algèbre des fonctions définies sur cet espace. Cette algèbre est commutative. On remplace alors cette algèbre par une algèbre qui n'est plus forcément commutative et que l'on cherche à interpréter comme une algèbre de fonctions sur un « espace non-commutatif ». Les groupes quantiques sont un exemple de généralisation non-commutative de la notion de groupe. Il s'agit d'une C*-algèbre munie d'une comultiplication à valeur dans le produit tensoriel de l'algèbre avec elle-même. Les groupes quantiques ont été bien étudiés. Les groupes duaux sont similaires aux groupes quantiques, mais la comultiplication est cette fois-ci à valeur dans le produit libre, et non plus dans le produit tensoriel. Bien qu'ils aient été introduits dans les années 80, ils n'ont pas encore été vraiment étudiés. Le but de cette thèse est d'explorer les propriétés des groupes duaux, en se concentrant sur l'un d'entre eux – le groupe dual unitaire – et ce en utilisant les méthodes des probabilités non-commutatives (ou probabilités quantiques) / Noncommutative Mathematics are a very active domain. The idea underlying it is that instead of describing a space as a set of points, it is equivalent to describe it with the algebra of functions defined on said space. This algebra is commutative. Now we replace this algebra with an algebra that is not necessarily commutative any more and we want to interpret it as the algebra of functions defined on a « noncommutative space ». Quantum groups are an example of such a noncommutative generalization of the notion of group. They are C*-algebras equipped with a comultiplication that takes its values in the tensor product of the algebra with itself. Quantum groups are well-known and well studied. Nevertheless we can also define dual groups, which are similar to quantum groups, but the comultiplication takes now its values in the free product of the algebra with itself, instead of the tensor product. Though dual groups have been introduced in the 80s, they have not been much studied so far. The goal of this thesis is to study their properties, especially in the case of one particular dual group called the unitary dual group, by using methods from noncommutative probability (or quantum probability).
|
34 |
Champs d'holonomies et matrices aléatoires : symétries de tressage et de permutation / Holonomy fields and random matrices : invariance by braids and permutationsGabriel, Franck 30 June 2016 (has links)
Cette thèse porte sur plusieurs questions liées aux mesures de Yang-Mills planaires et aux champs markoviens d'holonomies planaires. Les problèmes sont de deux sortes : étude des champs markoviens d'holonomies planaires pour un groupe de structure donné et l'étude asymptotique des mesures de Yang-Mills lorsque la dimension du groupe tend vers l'infini. On définit la notion de champs markoviens d'holonomies planaires qui axiomatise la notion de mesures de Yang-Mills planaires. En utilisant une nouvelle symétrie en théorie des probabilités, l'invariance par tresse, on construit, caractérise et classifie les champs markoviens d'holonomies planaires. Nous montrons que tout champ markovien d'holonomies planaire est associé à un processus de Lévy qui satisfait une condition de symétrie et vice-versa. Ceci nous permet de caractériser, pour les surfaces sphériques, les champs markoviens d'holonomies tels que définis précédemment par Thierry Lévy. Lorsque le groupe de structure est le groupe symétrique, on peut construire le champ markovien d'holonomies planaire associé grâce à un modèle de revêtements aléatoires. On prouve la convergence des monodromies de ce revêtement aléatoire en s'appuyant sur l'étude, développée dans cette thèse, de l'asymptotique des matrices aléatoires invariantes par conjugaison par le groupe symétrique. / This thesis focuses on planar Yang-Mills measures and planar Markovian holonomy fields. We consider two different questions : the study of planar Markovian holonomy fields with fixed structure group and the asymptotic study of the planar Yang-Mills measures when the dimension of the structure group grows. We define the notion of planar Markovian holonomy fields which generalizes the concept of planar Yang-Mills measures. We construct, characterize and classify the planar Markovian holonomy fields by introducing a new symmetry : the invariance under the action of braids. We show that there is a bijection between planar Markovian holonomy fields and some equivalent classes of Lévy processes. We use these results in order to characterize Markovian holonomy fields on spherical surfaces. The Markovian holonomy fields with the symmetric group as structure group can be constructed using random ramified coverings. We prove that the monodromies of these models of random ramified coverings converge as the number of sheets of the covering goes to infinity. To prove this, we develop general tools in order to study the limits of families of random matrices invariant by the symmetric group. This allows us to generalize ideas, developped by Thierry Lévy in order to study the planar Yang-Mills measure with the unitary structure group, to the setting where the structure group is the symmetric group.
|
35 |
On temporal coherency of probabilistic models for audio-to-score alignment / Modèles probabilistes temporellement cohérents pour l'alignement audio-sur-partitionCuvillier, Philippe 15 December 2016 (has links)
Cette thèse porte sur l'alignement automatique d'un enregistrement audio avec la partition de musique correspondante. Nous adoptons une approche probabiliste et proposons une démarche théorique pour la modélisation algorithmique de ce problème d'alignement automatique. La question est de modéliser l'évolution temporelle des événements par des processus stochastiques. Notre démarche part d'une spécificité de l'alignement musical : une partition attribue à chaque événement une durée nominale, qui est une information a priori sur la durée probable d'occurrence de l'événement. La problématique qui nous occupe est celle de la modélisation probabiliste de cette information de durée. Nous définissons la notion de cohérence temporelle à travers plusieurs critères de cohérence que devrait respecter tout algorithme d'alignement musical. Ensuite, nous menons une démarche axiomatique autour du cas des modèles de semi-Markov cachés. Nous démontrons que ces critères sont respectés lorsque des conditions mathématiques particulières sont vérifiées par les lois a priori du modèle probabiliste de la partition. Ces conditions proviennent de deux domaines mathématiques jusqu'ici étrangers à la question de l'alignement : les processus de Lévy et la totale positivité d'ordre deux. De nouveaux résultats théoriques sont démontrés sur l'interrelation entre ces deux notions. En outre, les bienfaits pratiques de ces résultats théoriques sont démontrés expérimentalement sur des algorithmes d'alignement en temps réel. / This thesis deals with automatic alignment of audio recordings with corresponding music scores. We study algorithmic solutions for this problem in the framework of probabilistic models which represent hidden evolution on the music score as stochastic process. We begin this work by investigating theoretical foundations of the design of such models. To do so, we undertake an axiomatic approach which is based on an application peculiarity: music scores provide nominal duration for each event, which is a hint for the actual and unknown duration. Thus, modeling this specific temporal structure through stochastic processes is our main problematic. We define temporal coherency as compliance with such prior information and refine this abstract notion by stating two criteria of coherency. Focusing on hidden semi-Markov models, we demonstrate that coherency is guaranteed by specific mathematical conditions on the probabilistic design and that fulfilling these prescriptions significantly improves precision of alignment algorithms. Such conditions are derived by combining two fields of mathematics, Lévy processes and total positivity of order 2. This is why the second part of this work is a theoretical investigation which extends existing results in the related literature.
|
36 |
Pièges et vieillissement pour les marches aléatoires sur des environnements aléatoires hautement irréguliers : phénoménologie et étude de casDavignon, Élise 11 1900 (has links)
Nous présentons d’abord une introduction au sujet des marches aléatoires en milieux aléatoires. Nous nous penchons en particulier sur les phénomènes de ralentissement, et plus précisément sur la propriété de vieillissement qu’exhibent plusieurs de ces systèmes lorsque les paramètres sont tels qu’ils conduisent l’environnement aléatoire à produire fréquemment des « pièges », soient des structures qui retiennent la marche aléatoire dans la même région de l’environnement pour de longues durées de temps. Nous illustrons ces notions à l’aide de résultats connus pour deux modèles. Nous présentons par la suite une preuve pour une propriété de vieillissement dans le cas
de la marche aléatoire biaisée sur les conductances aléatoires à queues lourdes dans la grille
infinie hyper-cubique à d dimensions, qui est le sujet d’un article en attente de publication. / We first present an introduction to the topic of random walks on random environments (RWRE). In particular, we look at slow-down phenomena and, more specifically, ageing properties exhibited by multiple such systems when parameters are chosen such that the random environment frequently produces large “traps”: structures that hold up the progress of the random walk by keeping it in the same region of the environment for long periods of time. We illustrate these behaviours by presenting known results for two such models. We then present a proof for an ageing property in the case of the biased random walk on heavy-tailed random conductances in the infinite hyper-cubic lattice in d dimensions; this is the subject of a research article pending publication.
|
37 |
Étude empirique de distributions associées à la Fonction de Pénalité EscomptéeIbrahim, Rabï 03 1900 (has links)
On présente une nouvelle approche de simulation pour la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine, pour des modèles de risque déterminés par des subordinateurs de Lévy. Cette approche s'inspire de la décomposition "Ladder height" pour la probabilité de ruine dans le Modèle Classique. Ce modèle, déterminé par un processus de Poisson composé, est un cas particulier du modèle plus général déterminé par un subordinateur, pour lequel la décomposition "Ladder height" de la probabilité de ruine s'applique aussi.
La Fonction de Pénalité Escomptée, encore appelée Fonction Gerber-Shiu (Fonction GS), a apporté une approche unificatrice dans l'étude des quantités liées à l'événement de la ruine été introduite. La probabilité de ruine et la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine sont des cas particuliers de la Fonction GS. On retrouve, dans la littérature, des expressions pour exprimer ces deux quantités, mais elles sont difficilement exploitables de par leurs formes de séries infinies de convolutions sans formes analytiques fermées. Cependant, puisqu'elles sont dérivées de la Fonction GS, les expressions pour les deux quantités partagent une certaine ressemblance qui nous permet de nous inspirer de la décomposition "Ladder height" de la probabilité de ruine pour dériver une approche de simulation pour cette fonction de densité conjointe.
On présente une introduction détaillée des modèles de risque que nous étudions dans ce mémoire et pour lesquels il est possible de réaliser la simulation. Afin de motiver ce travail, on introduit brièvement le vaste domaine des mesures de risque, afin d'en calculer quelques unes pour ces modèles de risque.
Ce travail contribue à une meilleure compréhension du comportement des modèles de risques déterminés par des subordinateurs face à l'éventualité de la ruine, puisqu'il apporte un point de vue numérique absent de la littérature. / We discuss a simulation approach for the joint density function of the surplus prior to ruin and deficit at ruin for risk models driven by Lévy subordinators. This approach is inspired by the Ladder Height decomposition for the probability of ruin of such models. The Classical Risk Model driven by a Compound Poisson process is a particular case of this more generalized one.
The Expected Discounted Penalty Function, also referred to as the Gerber-Shiu Function (GS Function), was introduced as a unifying approach to deal with different quantities related to the event of ruin. The probability of ruin and the joint density function of surplus prior to ruin and deficit at ruin are particular cases of this function. Expressions for those two quantities have been derived from the GS Function, but those are not easily evaluated nor handled as they are infinite series of convolutions with no analytical closed form. However they share a similar structure, thus allowing to use the Ladder Height decomposition of the Probability of Ruin as a guiding method to generate simulated values for this joint density function.
We present an introduction to risk models driven by subordinators, and describe those models for which it is possible to process the simulation. To motivate this work, we also present an application for this distribution, in order to calculate different risk measures for those risk models. An brief introduction to the vast field of Risk Measures is conducted where we present selected measures calculated in this empirical study.
This work contributes to better understanding the behavior of subordinators driven risk models, as it offers a numerical point of view, which is absent in the literature.
|
38 |
Conditionnement de grands arbres aléatoires et configurations planes non-croisées / Large conditioned Galton-Watson trees and plane noncrossing configurationsKortchemski, Igor 17 December 2012 (has links)
Les limites d’échelle de grands arbres aléatoires jouent un rôle central dans cette thèse.Nous nous intéressons plus spécifiquement au comportement asymptotique de plusieurs fonctions codant des arbres de Galton-Watson conditionnés. Nous envisageons plusieurs types de conditionnements faisant intervenir différentes quantités telles que le nombre total de sommets ou le nombre total de feuilles, avec des lois de reproductions différentes.Lorsque la loi de reproduction est critique et appartient au domaine d’attraction d’uneloi stable, un phénomène d’universalité se produit : ces arbres ressemblent à un même arbre aléatoire continu, l’arbre de Lévy stable. En revanche, lorsque la criticalité est brisée, la communauté de physique théorique a remarqué que des phénomènes de condensation peuvent survenir, ce qui signifie qu’avec grande probabilité, un sommet de l’arbre a un degré macroscopique comparable à la taille totale de l’arbre. Une partie de cette thèse consiste à mieux comprendre ce phénomène de condensation. Finalement, nous étudions des configurations non croisées aléatoires, obtenues à partir d’un polygône régulier en traçant des diagonales qui ne s’intersectent pas intérieurement, et remarquons qu’elles sont étroitement reliées à des arbres de Galton-Watson conditionnés à avoir un nombre de feuilles fixé. En particulier, ce lien jette un nouveau pont entre les dissections uniformes et les arbres de Galton-Watson, ce qui permet d’obtenir d’intéressantes conséquences de nature combinatoire. / Scaling limits of large random trees play an important role in this thesis. We are more precisely interested in the asymptotic behavior of several functions coding conditioned Galton-Watson trees. We consider several types of conditioning, involving different quantities such as the total number of vertices or leaves, as well as several types of offspring distributions. When the offspring distribution is critical and belongs to the domainof attraction of a stable law, a universality phenomenon occurs: these trees look like the samecontinuous random tree, the so-called stable Lévy tree. However, when the offspring distributionis not critical, the theoretical physics community has noticed that condensation phenomenamay occur, meaning that with high probability there exists a unique vertex with macroscopicdegree comparable to the total size of the tree. The goal of one of our contributions is to graspa better understanding of this phenomenon. Last but not least, we study random non-crossingconfigurations consisting of diagonals of regular polygons, and notice that they are intimatelyrelated to Galton-Watson trees conditioned on having a fixed number of leaves. In particular,this link sheds new light on uniform dissections and allows us to obtain some interesting resultsof a combinatorial flavor.
|
39 |
Les classes réciproques des processus de Markov : une approche avec des formules de dualité / Reciprocal classes of Markov processes : an approach with duality formulaeMurr, Rüdiger 12 October 2012 (has links)
Ce travail est centré sur la charactérisation de certaines classes de processus aléatoires par des formules de dualité. En particulier on considérera des processus réciproques à sauts, un cas jusqu'à présent négligé dans la littérature.Dans la première partie nous formulons de façon innovante une charactérisation des processus à accroissements indépendants. Celle-ci est basée sur une formule de dualité pour des processus infiniment divisibles, déjà connue dans le cadre du calcul de Malliavin. On va présenter deux nouvelles méthodes pour prouver cette formule, qui n'utilisent pas la décomposition en chaos de l'espace des fonctionnelles de carré intégrable. Une méthode s'appuie sur une formule d'intégration par parties satisfaite par des vecteurs aléatoires infiniment divisibles. Sous cet angle, notre charactérisation est une généralization du lemme de Stein dans le cas Gaussien et du lemme de Chen dans le cas Poissonien. La généralité de notre approche nous permet de plus, de présenter une charactérisation des mesures aléatoires infiniment divisibles.Dans la deuxième partie de notre travail nous nous concentrons sur l'étude des classes réciproques de processus de Markov avec ou sans sauts, et sur leur charactérisation. On commence avec un résumé des résultats déjà existants concernant les classes réciproques de diffusions browniennes comme solutions d'une formule de dualité. Nous obtenons notamment une nouvelle interprétation des classes réciproques comme les solutions d'une équation de Newton. Cela nous permet de relier nos résultats à la mécanique stochastique d'une part et à la théorie du contrôle optimale, d'autre part. La formule de dualité nous permet aussi de prouver une propriété d'invariance par retournement du temps de la classe réciproque d'une diffusion brownienne.En outre nous obtenons une série de nouveaux résultats concernant les processus de sauts purs. Nous décrivons d'abord la classe réciproque associée à un processus markovien de comptage, c'est-à-dire un processus de sauts de taille un, puis en présentons une charactérisation par une formule de dualité. Cette formule contient une dérivée stochastique, une intégrale stochastique compensée, et une fonctionnelle qui est une grandeur invariante de la classe réciproque. De plus nous livrons une interprétation de la classe réciproque comme ensemble des solutions d'un problème de contrôle optimal. Enfin, par une utilisation appropriée de la formule de dualité, nous montrons que la classe réciproque d'un processus markovien de comptage est invariante par retournement du temps.Quelques-uns de ces résultats restent valables pour des processus de sauts purs dont les sauts sont de taille variée. En particulier nous montrons que certaines fonctionnelles dites invariants réciproques permettent de distinguer différentes classes réciproques. Notre dernier résultat est la charactérisation de la classe réciproque d'un processus de Poisson composé dès lors que les (tailles des) différents sauts sont incommensurables. / This work is concerned with the characterization of certain classes of stochastic processes via duality formulae. In particular we consider reciprocal processes with jumps, a subject up to now neglected in the literature. In the first part we introduce a new formulation of a characterization of processes with independent increments. This characterization is based on a duality formula satisfied by processes with infinitely divisible increments, in particular Lévy processes, which is well known in Malliavin calculus. We obtain two new methods to prove this duality formula, which are not based on the chaos decomposition of the space of square-integrable functionals. One of these methods uses a formula of partial integration that characterizes infinitely divisible random vectors. In this context, our characterization is a generalization of Stein's lemma for Gaussian random variables and Chen's lemma for Poisson random variables. The generality of our approach permits us to derive a characterization of infinitely divisible random measures.The second part of this work focuses on the study of the reciprocal classes of Markov processes with and without jumps and their characterization. We start with a resume of already existing results concerning the reciprocal classes of Brownian diffusions as solutions of duality formulae. As a new contribution, we show that the duality formula satisfied by elements of the reciprocal class of a Brownian diffusion has a physical interpretation as a stochastic Newton equation of motion. Thus we are able to connect the results of characterizations via duality formulae with the theory of stochastic mechanics by our interpretation, and to stochastic optimal control theory by the mathematical approach. As an application we are able to prove an invariance property of the reciprocal class of a Brownian diffusion under time reversal.In the context of pure jump processes we derive the following new results. We describe the reciprocal classes of Markov counting processes, also called unit jump processes, and obtain a characterization of the associated reciprocal class via a duality formula. This formula contains as key terms a stochastic derivative, a compensated stochastic integral and an invariant of the reciprocal class. Moreover we present an interpretation of the characterization of a reciprocal class in the context of stochastic optimal control of unit jump processes. As a further application we show that the reciprocal class of a Markov counting process has an invariance property under time reversal. Some of these results are extendable to the setting of pure jump processes, that is, we admit different jump-sizes. In particular, we show that the reciprocal classes of Markov jump processes can be compared using reciprocal invariants. A characterization of the reciprocal class of compound Poisson processes via a duality formula is possible under the assumption that the jump-sizes of the process are incommensurable.
|
40 |
Quelques contributions à l'étude de modèles bivariés de dégradation et de choc en fiabilité / Some contributions to study of bivariate models for deterioration and shocks in reliabilityPham, Hai Ha 15 October 2013 (has links)
La thèse est consacrée à l'étude de modèles bivariés en Fabilité, qui tiennent compte de différents types de dépendance entre composants. Dans un premier temps, nous nous intéressons au cas d'un système formé de deux composants, dont la dégradation est modélisée par un processus de Lévy croissant bivarié (subordinateur bivarié). Sous cette hypothèse, eux études sont faites : l'une sous l'hypothèse de surveillance continue et de réparation parfaite du système, l'autre sous une hypothèse d'inspections périodiques et de réparation imparfaite. Dans un deuxième temps, la thèse est consacrée à un autre modèle de survie bivarié, sous influence d'un environnement stochastique stressant ponctuel. La dépendance entre composants est ici induite par un environnement stressant commun, qui induit des détériorations différentes sur chacun des composants (augmentation du taux de panne pour l'un, du niveau de détérioration pour l'autre). Pour chacun des modèles étudiés, nos résultats montrent l'importance de la prise en compte de la dépendance entre les composants d'un système. / The thesis is devoted to the study of bivariate models in reliability, which take into account several types of dependence between components. As a first step, we are interested in a two-component system with accumulating deterioration modeled by a bivariate increasing Lévy process (bivariate subordinator). Under this hypothesis, two different studies are made : one under the assumption of continuous monitoring and perfect repair, the other one under the assumption of periodic inspections and imperfect repair. In a second step, the thesis is devoted to the study of another bivariate survivalmodel, under the influence of a stochastic and stressful environment. The dependence between components is here induced by the common stressful environment, with different incidence on the two components (increment of failure rate for one, of deterioration level for the other). For each of the studied models, our results show the importance of taking into account the dependence between the components of a system.
|
Page generated in 0.0764 seconds