Spelling suggestions: "subject:"processus dde lévy"" "subject:"processus dde révy""
11 |
Processus de Lévy et leurs applications en finance : analyse, méthodologie et estimation / No English title availableLalaharison, Hanjarivo 26 November 2013 (has links)
Processus de Lévy et leurs applications en finance / No English summary available.
|
12 |
Processus de Lévy en Finance : Problèmes Inverses et Modélisation de DépendanceTankov, Peter 21 September 2004 (has links) (PDF)
Cette thèse traite de la modélisation de prix boursiers par les exponentielles de processus de Lévy. La première partie développe une méthode non-paramétrique stable de calibration de modèles exponentielle-Lévy, c'est-à-dire de reconstruction de ces modèles à partir des prix d'options cotées sur un marché financier. J'étudie les propriétés de convergence et de stabilité de cette méthode de calibration, décris sa réalisation numérique et donne des exemples de son utilisation. L'approche adoptée ici consiste à reformuler le problème de calibration comme celui de trouver un modèle exponentielle-Lévy risque-neutre qui reproduit les prix d'options cotées avec la plus grande précision possible et qui a l'entropie relative minimale par rapport à un processus "a priori" donné. Ce problème est alors résolu en utilisant la méthode de régularisation, provenant de la théorie de problèmes inverses mal posés. L'application de ma méthode de calibration aux données empiriques de prix d'options sur indice permet d'étudier certaines propriétés des mesures de Lévy implicites qui correspondent aux prix de marché. <br /><br />La deuxième partie est consacrée au développement d'une méthode permettant de caractériser les structures de dépendance entre les composantes d'un processus de Lévy multidimensionnel et de construire des modèles exponentielle-Lévy multidimensionnels. Cet objectif est atteint grâce à l'introduction de la notion de copule de Lévy, qui peut être considérée comme l'analogue pour les processus de Lévy de la notion de copule, utilisée en statistique pour modéliser la dépendance entre les variables aléatoires réelles. Les exemples de familles paramétriques de copules de Lévy sont donnés et une méthode de simulation de processus de Lévy multidimensionnels, dont la structure de dépendance est décrite par une copule de Lévy, est proposée.
|
13 |
Origines géométriques du comportement quasi-statique des assemblages granulaires denses: étude par simulation numériqueCombe, Gaël 27 June 2001 (has links) (PDF)
-
|
14 |
Copules dynamiques : applications en finance et en économieTotouom Tangho, Daniel 06 November 2007 (has links) (PDF)
Les dérivés de crédit ont connu en quelques années un développement fulgurant en finance : les volumes de transactions ont augmenté exponentiellement, de nouveaux produits ont été créés. La récente crise du sub-prime a mis en évidence l'insuffisance des modèles actuels. Le but de cette thèse est de créer de nouveaux modèles mathématiques qui prennent en compte la dynamique de dépendance (« tail dependence ») des marchés. Après une revue de la littérature et des modèles existants, nous nous focalisons sur la modélisation de la « corrélation » (ou plus exactement la dynamique de la structure de dépendance) entre différentes entités dans un portefeuille de crédit (CDO). Dans une première phase, une formulation simple des copules dynamiques est proposée. Ensuite, nous présentons une seconde formulation en utilisant des processus de Lévy à spectre positif (i.e. gamma Ornstein-Uhlenbeck). L'écriture de cette nouvelle famille de copules archimédiennes nous permet d'obtenir une formule asymptotique simple pour la distribution des pertes d'un portefeuille de crédit granulaire. L'une des particularités du modèle proposé est sa capacité de reproduire des dépendances extrêmes comparables aux phénomènes récents de contagion sur les marchés comme la crise du « subprime » aux Etats-Unis. Une application sur l'estimation des prix des tranches de CDOs est aussi présentée. Dans cette thèse, nous proposons également d'utiliser des copules dynamiques pour modéliser des migrations jointes des qualités de crédit afin de prendre en compte les co-migrations extrêmes. En effet, les copules nous permettent d'étendre notre connaissance des processus de migration mono-variable à un cadre multi-variables. Afin de tenir compte de multiples sources de risques systémiques, nous développons des copules dynamiques à plusieurs facteurs. Enfin, nous montrons que la brique élémentaire de structure de dépendance induite par une mesure du temps aléatoire « Time Changed Process » rentre dans le cadre des copules dynamiques.
|
15 |
Comportement asymptotique des processus de Markov auto-similaires positifs et forêts de Lévy stables conditionnées.Pardo Millan, Juan Carlos 09 July 2007 (has links) (PDF)
Les processus de Markov auto-similaires apparaissent souvent dans diverses parties de la théorie de probabilités comme limites de processus normalisés. La propriété de Markov ajoutée à l'auto-similarité fournit des propriétés très intéressantes comme l'avait remarqué Lamperti. La première partie de cette thèse est consacrée à l'étude de l'enveloppe inférieure et supérieure au moyen de test intégraux et de lois du logarithme itéré pour une classe suffisamment grandes des processus de Markov auto-similaires positifs et quelques processus associés, comme le minimum futur et le processus de Markov auto-similaire positif réflechi en son minimum futur. La seconde partie concernent à l'étude des forêt de Lévy stables conditionnés par leur taille et leur masse. En particulier, un principe d'invariance est établi pour la forêt de Galton-Watson conditionnée par leur taille et leur masse.
|
16 |
Diffusions en milieux aléatoires et marches multi-excitéesSingh, Arvind 27 June 2007 (has links) (PDF)
Ce travail regroupe cinq articles et porte sur l'étude de certaines propriétés des diffusions en milieux aléatoires et des marches multi-excitées.<br /><br />Dans la première partie, nous considérons le modèle de la diffusion aléatoire dans un potentiel aléatoire ainsi que son analogue discret : la marche aléatoire en milieu aléatoire. On étudie, dans le cas récurrent, le comportement asymptotique presque sûr de ces processus lorsque le potentiel sous-jacent est dans le domaine d'attraction d'un processus stable. On caractérise ensuite les différents régimes de croissance d'une diffusion transiente lorsque son potentiel est un processus de Lévy sans sauts positifs. <br /><br />Dans la seconde partie, nous étudions le modèle récent de la marche multi-excitée. Nous établissons en particulier un critère permettant de déterminer si la vitesse asymptotique de la marche est strictement positive. Nous caractérisons de plus, dans le cas d'une vitesse nulle, tous les régimes de transiences possibles.
|
17 |
Approximation récursive du régime stationnaire d'une Equation Differentielle Stochastique avec sautsPanloup, Fabien 13 December 2006 (has links) (PDF)
La thématique principale de cette thèse est la construction et l'étude de méthodes implémentables par ordinateur permettant d'approcher le régime stationnaire d'un processus ergordique multidimensionnel solution d'une EDS dirigée par un processus de Lévy. S'appuyant sur une approche développée par Lamberton&Pagès puis Lemaire dans le cadre des diffusions Browniennes, nos méthodes basées sur des schémas <br />d'Euler à pas décroissant, « exacts » ou « approchés », permettent de simuler efficacement la probabilité invariante mais également la loi globale d'un tel processus en régime stationnaire. <br />Ce travail possède des applications théoriques et pratiques diverses dont certaines <br />sont développées ici (TCL p.s. pour les lois stables, théorème limite relatif aux valeurs extrêmes, pricing d'options pour des modèles à volatilité stochastique stationnaire...).
|
18 |
Processus de Lévy et applications en finance : problèmes inverses et modélisation de la dépendance.Tankov, Peter 21 September 2004 (has links) (PDF)
Cette thèse traite de la modélisation de prix boursiers par les exponentielles de processus de Lévy. La première partie développe une méthode non-paramétrique stable de calibration de modèles exponentielle-Lévy, c'est-à-dire de reconstruction de ces modèles à partir des prix d'options cotées sur un marché financier. J'étudie les propriétés de convergence et de stabilité de cette méthode de calibration, décris sa réalisation numérique et donne des exemples de son utilisation. L'approche adoptée ici consiste à reformuler le problème de calibration comme celui de trouver un modèle exponentielle-Lévy risque-neutre qui reproduit les prix d'options cotées avec la plus grande précision possible et qui a l'entropie relative minimale par rapport à un processus "a priori" donné. Ce problème est alors résolu en utilisant la méthode de régularisation, provenant de la théorie de problèmes inverses mal posés. L'application de ma méthode de calibration aux données empiriques de prix d'options sur indice permet d'étudier certaines propriétés des mesures de Lévy implicites qui correspondent aux prix de marché. La deuxième partie est consacrée au développement d'une méthode permettant de caractériser les structures de dépendance entre les composantes d'un processus de Lévy multidimensionnel et de construire des modèles exponentielle-Lévy multidimensionnels. Cet objectif est atteint grâce à l'introduction de la notion de copule de Lévy, qui peut être considérée comme l'analogue pour les processus de Lévy de la notion de copule, utilisée en statistique pour modéliser la dépendance entre les variables aléatoires réelles. Les exemples de familles paramétriques de copules de Lévy sont donnés et une méthode de simulation de processus de Lévy multidimensionnels, dont la structure de dépendance est décrite par une copule de Lévy, est proposée.
|
19 |
Vieillissement pour la marche aléatoire biaisée sur des conductances aléatoires dans l'hyper-grille à d dimensionsDavignon, Thomas 10 1900 (has links)
No description available.
|
20 |
Théorèmes limites pour les processus de branchement avec mutations / Limit theorems for branching processes with mutationsDelaporte, Cécile 02 October 2014 (has links)
Cette thèse étudie des modèles de populations branchantes appelés arbres de ramification, dans lesquels les individus évoluent indépendamment les uns des autres, ont des durées de vie indépendantes, identiquement distribuées (non nécessairement exponentielles), et donnent naissance à taux constant au cours de leur vie. On enrichit ces modèles en supposant que chaque individu porte un type et peut subir à la naissance une mutation, qui lui confère un nouveau type. On démontre dans le premier chapitre des résultats théoriques de convergence en loi pour des processus de Lévy bivariés sans sauts négatifs. Ces résultats sont ensuite exploités dans le deuxième chapitre pour établir un principe d'invariance pour l'arbre généalogique des populations décrites ci-dessus, enrichi de leur historique mutationnel, dans une asymptotique de grande taille de population. Enfin, on étudie dans le troisième chapitre la structure généalogique et le spectre de fréquence par site (nombre de mutations portées par un nombre donné d'individus) d'échantillons uniformes dans des populations branchantes critiques dont la limite d'échelle est un arbre brownien (par exemple, des arbres de naissance et mort critiques). Des perspectives d'applications de ces résultats à la génétique des populations sont présentées dans le quatrième chapitre. / This thesis studies branching population models called splitting trees, where individuals evolve independently from one another, have independent and identically distributed lifetimes (that are not necessarily exponential), and give birth at constant rate during their lives. We further assume that each individual carries a type, and possibly undergoes a mutation at her birth, that changes her type into a new one. In the first chapter, we prove convegence results for bivariate Lévy processes with non negative jumps. These theoretical results are used in the second chapter to establish an invariance principle for the genealogical tree of the populations described above, enriched with their mutational history, in a large population size asymptotic. Finally we study in the third chapter the genealogical structure and the site frequency spectrum (number of mutations carried by a given number of individuals) for uniform samples in critical branching populations whose scaling limit is a Brownian tree (e.g., critical birth-death trees). Possible future applications of these results to population genetics are presented in the fourth chapter.
|
Page generated in 0.0505 seconds