Spelling suggestions: "subject:"projective geometry"" "subject:"projectives geometry""
21 |
Invariant bilinear differential pairings on parabolic geometries.Kroeske, Jens January 2008 (has links)
This thesis is concerned with the theory of invariant bilinear differential pairings on parabolic geometries. It introduces the concept formally with the help of the jet bundle formalism and provides a detailed analysis. More precisely, after introducing the most important notations and definitions, we first of all give an algebraic description for pairings on homogeneous spaces and obtain a first existence theorem. Next, a classification of first order invariant bilinear differential pairings is given under exclusion of certain degenerate cases that are related to the existence of invariant linear differential operators. Furthermore, a concrete formula for a large class of invariant bilinear differential pairings of arbitrary order is given and many examples are computed. The general theory of higher order invariant bilinear differential pairings turns out to be much more intricate and a general construction is only possible under exclusion of finitely many degenerate cases whose significance in general remains elusive (although a result for projective geometry is included). The construction relies on so-called splitting operators examples of which are described for projective geometry, conformal geometry and CR geometry in the last chapter. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1339548 / Thesis (Ph.D.) - University of Adelaide, School of Mathematical Sciences, 2008
|
22 |
Sobre álgebras de Clifford, geometria projetiva e visão computacional / On Clifford algebras, projective geometry and computer visionMattos, Eduardo Souza 16 August 2018 (has links)
Orientador: Jayme Vaz Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-16T08:39:55Z (GMT). No. of bitstreams: 1
Mattos_EduardoSouza_M.pdf: 1032396 bytes, checksum: fd915adc5546adcea3d86c90b4fda15b (MD5)
Previous issue date: 2010 / Resumo: Atualmente, o estudo das Álgebras de Clifford é utilizado em inúmeras áreas de pesquisa. Uma delas é na área de Visão Computacional. O objetivo central dessa dissertação consiste em exibir noções sobre Álgebras de Clifford e sua utilização na formulação dos conceitos e definições de operações entre objetos da Geometria Projetiva e na formulação algébrica de câmeras virtuais, que é um dos assuntos tratados na área de Visão Computacional. Para isso são expostos de forma gradual e coerente os principais aspectos teóricos necessários para atingir os objetivos citados. Como resultado, as Álgebras de Clifford proporcionam uma excelente descrição da Geometria Projetiva e das câmeras virtuais / Abstract: Currently, the study of Clifford algebras are used in many research areas. One is in the area of Computer Vision. The main objective of this dissertation is to display notions of Clifford algebras and their use in formulating the concepts and definitions of transactions between objects of Projective Geometry and algebraic formulation of virtual cameras, which is one of the topics covered in Computer Vision. For it is exposed gradually and consistently the main theoretical aspects needed to achieve the goals mentioned. As a result, Clifford algebras provide an excellent description of Projective Geometry and virtual cameras / Mestrado / Matematica Aplicada / Mestre em Matemática Aplicada
|
23 |
Uma proposta de trabalho didático com a geometria projetivaVieira, Marina Dutra 22 December 2016 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-04-11T11:01:56Z
No. of bitstreams: 1
marinadutravieira.pdf: 2289869 bytes, checksum: b8e82f26da6a00278d8c816af95a5769 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-11T11:47:24Z (GMT) No. of bitstreams: 1
marinadutravieira.pdf: 2289869 bytes, checksum: b8e82f26da6a00278d8c816af95a5769 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-11T11:47:37Z (GMT) No. of bitstreams: 1
marinadutravieira.pdf: 2289869 bytes, checksum: b8e82f26da6a00278d8c816af95a5769 (MD5) / Made available in DSpace on 2017-04-11T11:47:37Z (GMT). No. of bitstreams: 1
marinadutravieira.pdf: 2289869 bytes, checksum: b8e82f26da6a00278d8c816af95a5769 (MD5)
Previous issue date: 2016-12-22 / O presente texto estrutura estudos realizados em torno da Geometria Projetiva. O trabalho traz resultados de um estudo histórico sobre a Geometria Projetiva e uma revisão bibliográfica sobre o ensino de Geometria no Brasil. O objetivo é enfatizar o papel de práticas curriculares alternativas, inclusive as que premiam o uso de recursos da tecnologia computacional. A partir daí, é elaborada uma pesquisa que propõe um trabalho didático que une conceitos projetivos e geometria feita com a mediação de softwares gráficos. Assim, constitui-se uma questão: COMO A GEOMETRIA PROJETIVA PODE SER UMA PRESENÇA CURRICULAR, A PARTIR DE SUA PRESENÇA NA FORMAÇÃO DO LICENCIANDO EM MATEMÁTICA? São esboçadas ideias metodológicas dentro do escopo da Fenomenologia, com as quais apronta-se uma pesquisa de campo, com posteriores tratamentos de dados e análises abarcando a experiência de licenciandos sobre atividades especialmente desenhadas. As análises permitem discussões que estabelecem uma síntese sobre a questão constituída. Nosso estudo levantou possibilidades para a inclusão da Geometria Projetiva em práticas curriculares em escolas. / This dissertation structures a study on Projective Geometry, presenting results of a historical study on Projective Geometry and a bibliographical revision on the teaching of Geometry in Brazil. The objective is to emphasize alternative curricular practices, including those rewarding the use of computational technology resources. Hence, this study suggests a didactic intervention that unites projective concepts and geometry made with the mediation of graphic software. Thus, an issue arises: HOW CAN PROJECTIVE GEOMETRY BE A CURRICULAR PRESENCE, SINCE ITS PRESENCE IN THE TRAINING OF LICENSING IN MATHEMATICS? Methodological ideas are outlined within the scope of the Phenomenology, from which a field research is then elaborated and with later data processing and analysis covering the experience of subjects graduated on specially designed activities. The assessments made allow conclusions that establish a synthesis on the indicated issue. Our study highlights possibilities on how Projective Geometry may be applied in curricular practices in schools.
|
24 |
Objects height estimation implementing an uncalibrated camera / Objects height estimation implementing an uncalibrated cameraMoreno, Luis Alberto Garcia January 2010 (has links)
Height estimation of objects can be implemented both for soft-biometrics and as an object tracking feature. In first case we can eliminate some possible subjects having considerably different height than the observed one, and focus on determining more distinctive remote identification features, like colour, face or ear, and search for similar subjects in a smaller set of possible candidates. For object tracking it can be used for temporal and spatial correspondence analysis as well or simultaneously for both in case of having different cameras. In this thesis we propose a novel method for automatic estimation of height using an uncalibrated camera. Nowadays such cameras can be found in any corner for different purposes like as for security reasons. A crucial moment in height estimation is finding vanishing points. In the method we use RANSAC to estimate best vanishing point from several estimated candidate points. The method has the new advantages that from different frames and their respective height estimations, automatically determines certain reasonable heights depending on height measurements distribution. With spreading of camera implementation in common applications, we believe this new software can be widely applied in as many fields as it can be imagined.
|
25 |
Local and global methods for registering 2D image sets and 3D point clouds / Méthodes d'optimisation locales et globales pour le recalage d'images 2D et de nuages de points 3DPaudel, Danda Pani 10 December 2015 (has links)
Pas de résumé / In this thesis, we study the problem of registering 2D image sets and 3D point clouds under threedifferent acquisition set-ups. The first set-up assumes that the image sets are captured using 2Dcameras that are fully calibrated and coupled, or rigidly attached, with a 3D sensor. In this context,the point cloud from the 3D sensor is registered directly to the asynchronously acquired 2D images.In the second set-up, the 2D cameras are internally calibrated but uncoupled from the 3D sensor,allowing them to move independently with respect to each other. The registration for this set-up isperformed using a Structure-from-Motion reconstruction emanating from images and planar patchesrepresenting the point cloud. The proposed registration method is globally optimal and robust tooutliers. It is based on the theory Sum-of-Squares polynomials and a Branch-and-Bound algorithm.The third set-up consists of uncoupled and uncalibrated 2D cameras. The image sets from thesecameras are registered to the point cloud in a globally optimal manner using a Branch-and-Prunealgorithm. Our method is based on a Linear Matrix Inequality framework that establishes directrelationships between 2D image measurements and 3D scene voxels.
|
26 |
Non-algebraic convergence proofs for continuous-time fictitious playBerger, Ulrich January 2012 (has links) (PDF)
In this technical note we use insights from the theory of projective geometry to provide novel and non-algebraic proofs of convergence of continuous-time fictitious play for a class of games. As a corollary we obtain a kind of equilibrium selection result, whereby continuous-time fictitious play converges to a particular equilibrium contained in a continuum of equivalent equilibria for symmetric 4x4 zero-sum games.
|
27 |
Fotogrammetrická analýza obrazů / Photogrammetric Image AnalysisVelebová, Jana January 2011 (has links)
This thesis is dedicated photogrammetric image analysis that makes it possible from your photos with the help selected methods to determine the location and dimensions of objects recorded on them. There are explained the basics of photogrammetry and its current application. Chapters focused on digital imaging describing its characteristics, treatment options and key points findability for the scene calibration. For a comprehensive view are in this thesis introduced examples of existing software, its possibilities and use in practice.
|
28 |
Line Based Estimation of Object Space Geometry and Camera MotionSrestasathiern, Panu 31 August 2012 (has links)
No description available.
|
29 |
Collaborative Tracking of Image Features Based on Projective InvarianceJIANG, JINWEI 31 August 2012 (has links)
No description available.
|
30 |
[en] AN INTERDISCIPLINARY PERSPECTIVE ON DESARGUES THEOREM / [pt] UMA VISÃO INTERDISCIPLINAR DO TEOREMA DE DESARGUESFELIPE ASSIS DA COSTA 23 May 2024 (has links)
[pt] A presente dissertação analisa a relação interdisciplinar entre a matemática e
as artes, dando especial destaque ao Teorema de Desargues como uma ponte entre
estas áreas. Destaca-se a importância atual da interdisciplinaridade na educação,
embasada pela Base Nacional Comum Curricular (BNCC), que dá destaque à
integração de tecnologia e conhecimento em múltiplas áreas do currículo escolar.
O Teorema de Desargues é abordado como um conceito que rompe os limites da
matemática, alcançando também os campos da arte e da tecnologia. A Geometria
Projetiva é contextualizada historicamente, apresentando seus primeiros passos e
progresso ao longo do tempo. Revela Girard Desargues como um como precursor
de ideias nesse contexto, contribuindo tanto para o avanço da matemática quanto
para a expressão artística. A dissertação enfatiza a aplicação prática do Teorema de
Desargues no contexto educacional, propondo atividades significativas e atrativas
para os alunos no contexto escolar. Apresenta o produto educacional desenvolvido
pelos autores como uma fonte valiosa de sugestões para educadores que pretendem
se dedicar à interdisciplinaridade. A dissertação promove uma abordagem
educacional que estimula o diálogo entre disciplinas, destacando a conexão entre
matemática, geometria projetiva, arte e tecnologia, para isso utiliza o Teorema de
Desargues desempenhando um papel central nesse processo. / [en] The present dissertation examines the interdisciplinary relationship between
mathematics and the arts, with special emphasis on Desargues Theorem as a bridge
between these fields. It highlights the current importance of interdisciplinarity in
education, supported by the National Common Curricular Base (BNCC), which
emphasizes the integration of technology and knowledge across multiple areas of
the school curriculum. Desargues Theorem is approached as a concept that
transcends the boundaries of mathematics, also reaching into the realms of art and
technology. Projective Geometry is historically contextualized, tracing its origins
and development over time. Girard Desargues is revealed as a precursor of ideas in
this context, contributing to both the advancement of mathematics and artistic
expression. The dissertation emphasizes the practical application of Desargues
Theorem in the educational context, proposing meaningful and engaging activities
for students in the school setting. It presents the educational product developed by
the authors as a valuable source of suggestions for educators looking to dedicate
themselves to interdisciplinarity. The dissertation promotes an educational
approach that encourages dialogue between disciplines, highlighting the connection
between mathematics, projective geometry, art, and technology, utilizing
Desargues Theorem as a central element in this process.
|
Page generated in 0.059 seconds