Spelling suggestions: "subject:"1protein kinase C."" "subject:"2protein kinase C.""
121 |
Molecular Physiology of Novel Class of Protein Kinase C isoforms in PlateletsBynagari, Yamini Saraswathy January 2010 (has links)
Platelets are primary components of hemostasis. However, incongruous activation of platelets lead to thrombosis, which result in multiple cardio-vascular and cerebrovascular complications. Thus, platelet activation is tightly regulated. Molecular components that aid in activation of platelets have been extensively studied. However, molecular pathways that negatively regulate platelet activation and prevent accidental activation of platelets are poorly understood. In this study we investigated the molecular mechanisms that negatively regulate platelet activation. Protein Kinase C isforms (PKCs) are serine threonine kinases that regulate various platelet functional responses leading to hemostasis. Positive regulatory role of PKCs towards platelet aggregation and secretion has been extensively studied. However, we have recently demonstrated that PKCs negatively regulate ADP- induced thromboxane generation. The PKC isoforms and mechanism involved in this process have not been known. Thus, in this study we investigated the mechanism by which PKCs negatively regulate ADP-induced thromboxane generation and identified PKC isoforms that regulate thromboxane generation. Thromboxane generation in platelets is a multi-step process beginning with cPLA2 activation. cPLA2 activation is the rate limiting step in the process of thromboxane generation. Furthermore, cPLA2 activation is regulated by ERK and calcium in various cell systems including platelets. PKC inhibition potentiated both cPLA2 and ERK activation, suggesting that PKCs negatively regulate thromboxane generation by regulating ERK activation, which in turn regulates cPLA2 activation. Furthermore, we have also shown that PKCs negatively regulate ADP-induced calcium mobilization. ADP activates platelets via P2Y1 and P2Y12 receptors. P2Y12 receptor-mediated signaling is shown to positively regulate P2Y1-mediated calcium mobilization in platelets. Furthermore, PKCs are shown to negatively regulate P2Y12 receptor desensitization in platelets. Thus, we investigated if PKCs regulate calcium mobilization indirectly by regulating P2Y12 receptor function. However, PKCs regulate calcium mobilization independent of P2Y12 receptor signaling. In summary we have shown that PKC isoforms negatively regulate ADP-induced thromboxane generation by regulating calcium mobilization and ERK activation that in turn regulates cPLA2 activity. We further investigated the PKC isoforms involved in this process. Based on our results with Go-6976, a classical PKC inhibitor and GF109203X, a pan PKC inhibitor, we identified that that novel or atypical PKC isoforms are involved in negative regulation of ADP-induced thromboxane generation. Thus, we investigated the role of various novel class of PKC isoforms (nPKCs) in platelets. We first investigated the nPKCs activated by ADP. In aspirin-treated platelets, ADP failed to activate nPKC θ and δ non-stirring conditions. Thus, we conclude that these isoforms are not involved in negative regulation of thromboxane generation. We further investigated if other non-classical PKC isoforms i. e nPKC η and ε or atypical PKC isoforms could be involved in this process. We began our investigation with the mechanism of activation and functional role of nPKC η in platelets. The mechanism of activation of PKCs has been extensively studied in various cell systems including platelets. However, the mechanism by which they are inactivated is not completely understood. In this study, we demonstrate a novel mechanism of inactivation of nPKC η isoform by integrin associated serine/threonine phosphatase. we demonstrated that ADP activates nPKC η via P2Y1 receptor coupled to Gq. As expected, Gi pathway, which does not generate DAG or mobilize calcium, has no role in regulation of nPKC η. Interestingly, we show that upon activation of platelets, αIIbβ3 mediated outside-in signaling dephosphorylates nPKCη through PP1γ phosphatase. We have also evaluated the role of nPKC η using η-RACK antagonistic peptides that interfere with enzyme-substrate interaction. Similar antagonistic peptides have been successfully used in various cell systems such as cardiomyocytes and neuronal cell. Using η-RACK antagonists we have demonstrated that nPKC η positively regulates agonist- induced thromboxane generation with no effect on agonist- induced platelet aggregation. The peptides were targeted in to the cell using TAT carrier protein, which is also used as a negative control for these experiments. The specificity of η-RACK antagonistic peptides is further elucidated by the fact that they do not affect the platelet aggregation. In summary, nPKC η is activated by ADP via P2Y1 receptor and is dephosphorylated by integrin αIIbβ3 via PP1γ phosphatase. Furthermore, activated nPKC η positively regulates ADP- induced thromboxane generation with no effect on aggregation. Since, our aim was to investigate the nPKC isoforms that negatively regulate ADPinduced thromboxane generation we investigated if nPKC ε is involved in this process. We made use of PKC ε knockout mice (PKC ε KO) for this process. We observed potentiated thromboxane generation in ADP-induced PKC ε murine platelets compared to witd type murine platelets. Thus, PKC ε might be one of the PKC isoforms involved in negative regulation of ADP-induced thromboxane generation. However, we failed to detect PKC ε in human platelets using western blot analysis. Since, PKC ε has been reported to be a part of platelet kinase repertoire, it could be limitation of our technique that we failed to detect it in western blot analysis. Since, PKCs negatively regulate ADP-induced thromboxane generation, we also investigated if PKCs also regulate PAR-mediated thromboxane generation. Similar to ADP, PAR-mediated thromboxane generation is not affected by Classical PKC isoforms. Furthermore, although non-classical PKC isoforms negatively regulate thromboxane generation, the extent of negative regulation is smaller and non-significant compared to ADP. Thus, we investigated if activation of nPKC isoforms were different between ADP and AYPGKF (PAR4 agonist). While, ADP fails to activate nPKC δ and θ, PARs activate Them. Furthermore, we have recently demonstrated that nPKC δ and θ are positive regulators of PAR-mediated platelet functional responses. Therefore, PKCinduced potentiation of thromboxane generation by ADP and PAR agonist are different due to differential activation of PKCs. This data lead to our final project, where we investigated the reason for differential activation of nPKC isoforms by various platelet agonists. Using strong and weak platelet agonists and DAG analogue, DiC8, we demonstrated that different platelet agonists differentially regulate nPKC activation due to variable amounts of DAG generated by them. Furthermore, we also have demonstrated that nPKC η and ε have higher affinities to DAG compared to nPKC δ and θ. / Molecular and Cellular Physiology
|
122 |
Molecular Mechanisms Underlying Differential Regulation of Platelet Dense Granule Secretion by Protein Kinase C deltaChari, Ramya January 2010 (has links)
Protein Kinase C delta (PKCδ) is expressed in platelets and activated downstream of protease-activated receptors (PAR)s and glycoprotein VI (GPVI) receptors. We evaluated the role of PKCδ in platelets using two approaches - pharmacological and molecular genetic approach. In human platelets pretreated with isoform selective antagonistic RACK peptide (δV1-1)TAT, and in the murine platelets lacking PKCδ, PAR4-mediated dense granule secretion was inhibited, whereas GPVI-mediated dense granule secretion was potentiated. These effects were statistically significant in the absence and presence of thromboxane A2 (TXA2). Furthermore, TXA2 generation was differentially regulated by PKCδ. However, PKCδ had a small effect on platelet P-selectin expression. Calcium- and PKC-dependent pathways independently activate fibrinogen receptor in platelets. When calcium pathways are blocked by dimethyl-BAPTA, AYPGKF-induced aggregation in PKCδ null mouse platelets and in human platelets pretreated with (δV1-1)TAT, was inhibited. In a FeCl3-induced injury in vivo thrombosis model, PKCδ-/- mice occluded similar to their wild-type littermates. Hence, we conclude that PKCδ differentially regulates platelet functional responses such as dense granule secretion and TXA2 generation downstream of PARs and GPVI receptors, but PKCδ deficiency does not affect the thrombus formation in vivo. We further investigated the mechanism of such differential regulation of dense granule release by PKCδ in platelets. SH2 domain-containing Inositol Phosphatase (SHIP)-1 is phosphorylated on Y1020, a marker for its activation, upon stimulation of human platelets with PAR agonists, SFLLRN and AYPGKF, or GPVI agonist, convulxin. GPVImediated SHIP-1 phosphorylation occurred rapidly at 15 sec whereas PAR-mediated phosphorylation was delayed, occurring at 1 min. Lyn and SHIP-1, but not SHIP-2 or Shc, preferentially associated with PKCδ upon stimulation of platelets with a GPVI agonists, but not with a PAR agonist. In PKCδ null murine platelets, convulxin-induced SHIP-1 phosphorylation was inhibited, suggesting that PKCδ regulates the phosphorylation of SHIP-1. Furthermore, in Lyn null murine platelets, GPVI-mediated phosphorylations on Y-1020 of SHIP-1, Y311 and Y155 of PKCδ were inhibited. In murine platelets lacking Lyn, or SHIP-1, GPVI-mediated dense granule secretions were potentiated, whereas PAR-mediated dense granule secretions were inhibited. Phosphorylated SHIP-1 associated with phosphorylated-Y155 PKCδ peptide. Therefore, we conclude that Lyn-mediated phosphorylations of PKCδ and SHIP-1 and their associations negatively regulate GPVI-mediated dense granule secretion in platelets. / Physiology
|
123 |
Regulation of Protein Kinases (Syk and PKC zeta) in plateletsMayanglambam, Azad January 2010 (has links)
Platelets are crucial components of the hemostatic machinery of the body. When the endothelial continuity is disrupted due to injury or atherosclerotic plaque rupture, one of the earliest responses to arrest the bleeding is the adhesion of circulating platelets to the exposed subendothelial collagen matrix. Subsequent intracellular signaling mediated downstream of various receptor systems leads to alpha IIb beta 3 activation, thromboxane generation, ADP release, etc., culminating in platelet clot or thrombus formation. The protein kinase family of enzymes mediates a significant number of these intracellular signaling events that culminate in platelet activation. These enzymes can be broadly classified into two classes- tyrosine kinases and serine/threonine kinases. Syk (spleen tyrosine kinase) is an important non-receptor tyrosine kinase present in platelets and plays an important role downstream of GPVI-FcR gamma chain receptor complex activation. We studied the effects of curcumin (diferuloylmethane), which is the active ingredient found in the herbal remedy and food spice turmeric, on the GPVI-mediated platelet activation. We have found that it significantly inhibits the kinase activity of Syk without affecting its phosphorylation. Pre-incubating the platelets with curcumin for only a minute resulted in a concentration-dependent inhibition of aggregation and secretion, with approximately 75% inhibition observed at 50 mM curcumin. Additionally, the activation-dependent phosphorylation of tyrosines 753/759 on PLC gamma2 and phosphorylation of tyrosine 191 on the transmembrane scaffold protein LAT, were inhibited (p<0.05). However, the phosphorylation of the activation loop tyrosines 525/526 on Syk and of the tyrosine 145 on intracellular adaptor molecule SLP-76 were not significantly affected. Furthermore, the inhibitory action of curcumin on the catalytic activity of Syk was independent of any of its effects on the thromboxane generation because all our studies were performed using aspirin-treated platelets. PKC zeta is an atypical member of the PKC family of serine/threonine kinases. In this study, we have confirmed that it is expressed in human platelets and is constitutively phosphorylated at the activation loop threonine 410 as well as the turn motif threonine 560, which is an autophosphorylation site. Phosphorylation at these two residues has been shown to be important for its kinase activity. Furthermore, agonist-mediated platelet aggregation under stirring condition results in dephosphorylation of the Thr410 residue, which can be prevented by blocking integrin alpha IIb beta 3 by its antagonist SC-57101 (p<0.01). The dephosphorylation of Thr410 can also be prevented by okadaic acid, a Ser/Thr protein phosphatase inhibitor, at concentrations above 100 nM. However, in PP1c gamma null mice, we did not observe any effect on the dephosphorylation, suggesting that other isoforms of PP1 or other classes of the phosphatases could be responsible for this phenomenon, at least in these knockout mice. The basal phosphorylation of Thr560, however, remained unaffected by agonist stimulation, integrin activation, integrin blockade, okadaic acid treatment and in the PP1c gamma null mice. It can be speculated that PKC zeta may be constitutively active under basal resting conditions and acts as a negative regulator of platelet activation or functional responses. The Thr560 autophosphorylation signal alone may not be sufficient to sustain its full enzymatic activity. / Physiology
|
124 |
Characterization of signal transduction pathways of alpha-1 adrenergic receptors in neonatal ventral hippocampus lesion rat modelAl-Khairi, Irina January 2007 (has links)
No description available.
|
125 |
Clonagem e caracterização da proteína 80K-H, possível substrato de proteína quinase C / Cloning and characterization of the protein 80K-H, a possible substrate for protein kinase CMalnic, Bettina 10 December 1991 (has links)
Plaquetas apresentam um papel importante no desenvolvimento de metastases tumorais. Os eventos que levam à ativação plaquetária, como agragação e secreção de proteínas, podem significar etapas importantes neste papel. O agonista plaquetário trombospondina está envolvido no processo de agragação plaquetária. Com o intuito de clonar o receptor de trombospondina GpIIIb, produziu-se um soro policlonal contra uma banda eluída de SDS PAGE de extrato proteico de plaquetas, que apresentava peso molecular igual ao de GpIIIb (denominada banda 80kD). Uma biblioteca de cDNA de endotélio de cordão umbilical humano construída em lambda gt11 foi varrida com este soro anti-80kD. Dois clones diferentes foram isolados, seus insertos foram subclonados no vetor pGEM-3Z e sequenciados. Através de consulta ao Genbank observou-se que um dos clones não apresentou homologia significativa com nenhuma proteína até então clonada. O outro clone, por sua vez, apresentou 100% de homologia com a proteína 80K-H, substrato de proteína quinase C. Levando em consideração o fato de que as vias detransdução de sinal que utilizam PKC apresentam extrema importância nos processos de ativação plaquetária decidiu-se prosseguir com a caracterização de 80K-H. Para isto foi produzido um soro policlonal contra a proteína de fusão 80K-H, que foi utilizado em ensaios bioquímicos e imunoquímicos que permitiram caracterizar a proteína 80K-H quanto a alguns aspectos como distribuição em diferentes tipos celulares, localização celular e fosforilação. Além de estar presente em plaquetas, a proteína 80K-H foi encontrada em todas as linhagens celulares testadas, parecendo portanto ser uma proteína ubíqua. Os dados obtidos indicaram que, apesar de apresentar uma sequência N-terminal que é clivada \"in vivo\" muito semelhante a um peptídeo sinal, 80K-H não é secretada nem é de membrana plasmática, mas sim citoplasmática. Em ensaios de fosforilação \"in vivo\" não se detectou fosforilação de 80K-H. Portanto, apesar de 80K-H ser um bom substrato para PKC \"in vitro\", ela não o é \"in vivo\", ao menos nas células analisadas, ou é fosforilada de uma forma extremamente rápida e transiente. / Abstract not available.
|
126 |
Papel da O-glicosilação com N-acetil-glucosamina (O-GlcNAc) no influxo e recaptação de cálcio pelo retículo sarcoplasmático em aorta de ratos: análise funcional / Effects of augmented O-GlcNAcylation on calcium influx and calcium uptake by the sarcoplasmic reticulum in the rat aorta: functional analysis.Zanotto, Camila Ziliotto 28 March 2013 (has links)
A O-glicosilação com N-acetil-glucosamina (O-GlcNAc) é uma modificação pós-translacional altamente dinâmica que modula diversas vias de sinalização. O processo de O-GlcNAc é controlado por duas enzimas: a enzima OGT é responsável por catalisar a adição de N-acetil-glucosamina no grupo hidroxila dos resíduos de serina e treonina, enquanto a OGA catalisa a remoção de O-GlcNAc das proteínas modificadas. Proteínas com importante papel na função vascular são alvo de O-GlcNAc e o aumento da expressão de proteínas modificadas por O-GlcNAc promove aumento da reatividade vascular para estímulos contráteis. Um dos mecanismos de extrema importância no controle do tônus vascular está ligado à regulação da concentração de cálcio (Ca2+) intracelular, onde destacamos a participação do sistema STIM1/Orai1. As moléculas de interação estromal (STIM) atuam como sensores dos estoques intracelulares de Ca2+ e as proteínas Orai representam as subunidades que formam os canais de Ca2+ ativados pela liberação de Ca2+ (CRAC). Neste estudo investigamos a hipótese de que o aumento dos níveis vasculares de proteínas glicosiladas aumenta a resposta contrátil em aorta de ratos, por mecanismos relacionados ao controle da concentração intracelular de Ca2+.Em nossos experimentos, utilizamos aortas torácicas de ratos incubadas com PugNAc (inibidor seletivo da OGA, ), por 24h. Utilizando protocolo experimental que permite avaliar contrações induzidas pelo influxo de Ca2+ e liberação de Ca2+ intracelular, demonstramos que a incubação com PugNAc aumentou a resposta contrátil à PE bem como a contração durante o período de influxo de Ca2+, induzida pela reintrodução de solução fisiológica contendo Ca2+ (1,56 mM). O bloqueio dos canais CRAC com 2-APB (100 ) e gadolíneo (Gd3+, 100 ) diminuiu significativamente as contrações induzidas pelo influxo de Ca2+ em aortas incubadas com PugNAc. Além disso, estas aortas apresentaram aumento da expressão protéica de STIM1, o que resultaria em maior influxo de Ca2+. A contração induzida por cafeína (20 mM) e serotonina (10 ), a qual reflete a capacidade funcional do retículo sarcoplasmático (RS) em captar Ca2+, foi maior em aortas incubadas com PugNAc. O papel da Ca2+-ATPase (SERCA) foi avaliado com a utilização de tapsigargina, bloqueador da SERCA. O efeito da tapsigargina foi semelhante em artérias incubadas com PugNAc e veículo, apesar do aumento de expressão proteica da SERCA em aortas incubadas com PugNAc. Como a proteína cinase C (PKC) é ativada por aumentos de Ca2+ intracelular, determinamos se a atividade de proteínas alvo da PKC estavam aumentadas. A incubação com PugNAc aumentou a expressão das formas fosforiladas da CPI-17, MYPT-1 e MLC. Em conjunto, estes resultados sugerem que a ativação de STIM1/Orai1, aumento da liberação de Ca2+ intracelular e ativação da via de sinalização da PKC podem representar mecanismos que modulam as alterações vasculares em resposta ao aumento de proteínas glicosiladas por O-GlcNAc. / Glycosylation with O-linked -N-acetyl-glucosamine (O-GlcNAc) is a highly dynamic post-translational modification. The process of O-GlcNAc is controlled by two enzymes: the OGT enzyme catalyses the addition of N-acetyl-glucosamine to the hydroxyl group of serine and threonine residues of a target protein, while OGA catalyzes the cleavage of O-GlcNAc from post-translationally-modified proteins. Proteins with an important role in vascular function are targets of O-GlcNAc and increased levels of proteins modified by O-GlcNAc increase vascular reactivity to contractile stimuli. The regulation of intracellular calcium (Ca2+) concentration, including the activation of STIM1/Orai1, is key in the control of vascular tone. The stromal interaction molecules (STIM) act as sensors of intracellular Ca2+ stores whereas the Orai proteins represent subunits of the Ca2+ release-activated Ca2+ channels (CRAC). We hypothesized that increased levels of vascular O-GlcNAc proteins augment vascular contractile responses by altering mechanisms that regulate the intracellular Ca2+. Rat thoracic aortas were incubated with PugNAc (OGA selective inhibitor, ) for 24h. Using an experimental protocol that evaluates contractions induced by Ca2+ influx and release, we demonstrated that incubation with PugNAc increases contractile responses to phenylephrine (PE) as well as the contraction induced by Ca2+ influx, after depletion of intracellular Ca2+ stores. The CRAC channel blockers, 2-APB (100 ) and gadolinium (Gd3+, 100 ), significantly reduced the contractions induced by Ca2+ influx in aortas incubated with PugNAc. Furthermore, these aortas showed increased STIM1 protein expression, which could result in increased influx of Ca2+ and, in turn, increase vascular contraction. The contraction induced by the release of intracellular Ca2+ stores, stimulated by caffeine (20 mM) and serotonin (10 ), was increased in aortas incubated with PugNAc. The Ca2+-ATPase (SERCA) inhibitor thapsigargin produced similar effects in arteries incubated with PugNAc or vehicle, despite the increased SERCA protein expression in aortas incubated with PugNAc. Since PKC is activated by increases in intracellular Ca2+ and arteries incubated with PugNAc show activation of PKC, we determined whether the activity of proteins that are targets of PKC was increased in PugNAc-treated aortas. Incubation with PugNAc increased the expression of phosphorylated forms of CPI-17, MYPT-1 and MLC. Together, these results suggest that activation of STIM1/Orai1, increased release of intracellular Ca2+ and PKC activation may represent mechanisms that modulate vascular responses upon increased O-GlcNAc proteins.
|
127 |
Papel da O-glicosilação com N-acetil-glucosamina (O-GlcNAc) no influxo e recaptação de cálcio pelo retículo sarcoplasmático em aorta de ratos: análise funcional / Effects of augmented O-GlcNAcylation on calcium influx and calcium uptake by the sarcoplasmic reticulum in the rat aorta: functional analysis.Camila Ziliotto Zanotto 28 March 2013 (has links)
A O-glicosilação com N-acetil-glucosamina (O-GlcNAc) é uma modificação pós-translacional altamente dinâmica que modula diversas vias de sinalização. O processo de O-GlcNAc é controlado por duas enzimas: a enzima OGT é responsável por catalisar a adição de N-acetil-glucosamina no grupo hidroxila dos resíduos de serina e treonina, enquanto a OGA catalisa a remoção de O-GlcNAc das proteínas modificadas. Proteínas com importante papel na função vascular são alvo de O-GlcNAc e o aumento da expressão de proteínas modificadas por O-GlcNAc promove aumento da reatividade vascular para estímulos contráteis. Um dos mecanismos de extrema importância no controle do tônus vascular está ligado à regulação da concentração de cálcio (Ca2+) intracelular, onde destacamos a participação do sistema STIM1/Orai1. As moléculas de interação estromal (STIM) atuam como sensores dos estoques intracelulares de Ca2+ e as proteínas Orai representam as subunidades que formam os canais de Ca2+ ativados pela liberação de Ca2+ (CRAC). Neste estudo investigamos a hipótese de que o aumento dos níveis vasculares de proteínas glicosiladas aumenta a resposta contrátil em aorta de ratos, por mecanismos relacionados ao controle da concentração intracelular de Ca2+.Em nossos experimentos, utilizamos aortas torácicas de ratos incubadas com PugNAc (inibidor seletivo da OGA, ), por 24h. Utilizando protocolo experimental que permite avaliar contrações induzidas pelo influxo de Ca2+ e liberação de Ca2+ intracelular, demonstramos que a incubação com PugNAc aumentou a resposta contrátil à PE bem como a contração durante o período de influxo de Ca2+, induzida pela reintrodução de solução fisiológica contendo Ca2+ (1,56 mM). O bloqueio dos canais CRAC com 2-APB (100 ) e gadolíneo (Gd3+, 100 ) diminuiu significativamente as contrações induzidas pelo influxo de Ca2+ em aortas incubadas com PugNAc. Além disso, estas aortas apresentaram aumento da expressão protéica de STIM1, o que resultaria em maior influxo de Ca2+. A contração induzida por cafeína (20 mM) e serotonina (10 ), a qual reflete a capacidade funcional do retículo sarcoplasmático (RS) em captar Ca2+, foi maior em aortas incubadas com PugNAc. O papel da Ca2+-ATPase (SERCA) foi avaliado com a utilização de tapsigargina, bloqueador da SERCA. O efeito da tapsigargina foi semelhante em artérias incubadas com PugNAc e veículo, apesar do aumento de expressão proteica da SERCA em aortas incubadas com PugNAc. Como a proteína cinase C (PKC) é ativada por aumentos de Ca2+ intracelular, determinamos se a atividade de proteínas alvo da PKC estavam aumentadas. A incubação com PugNAc aumentou a expressão das formas fosforiladas da CPI-17, MYPT-1 e MLC. Em conjunto, estes resultados sugerem que a ativação de STIM1/Orai1, aumento da liberação de Ca2+ intracelular e ativação da via de sinalização da PKC podem representar mecanismos que modulam as alterações vasculares em resposta ao aumento de proteínas glicosiladas por O-GlcNAc. / Glycosylation with O-linked -N-acetyl-glucosamine (O-GlcNAc) is a highly dynamic post-translational modification. The process of O-GlcNAc is controlled by two enzymes: the OGT enzyme catalyses the addition of N-acetyl-glucosamine to the hydroxyl group of serine and threonine residues of a target protein, while OGA catalyzes the cleavage of O-GlcNAc from post-translationally-modified proteins. Proteins with an important role in vascular function are targets of O-GlcNAc and increased levels of proteins modified by O-GlcNAc increase vascular reactivity to contractile stimuli. The regulation of intracellular calcium (Ca2+) concentration, including the activation of STIM1/Orai1, is key in the control of vascular tone. The stromal interaction molecules (STIM) act as sensors of intracellular Ca2+ stores whereas the Orai proteins represent subunits of the Ca2+ release-activated Ca2+ channels (CRAC). We hypothesized that increased levels of vascular O-GlcNAc proteins augment vascular contractile responses by altering mechanisms that regulate the intracellular Ca2+. Rat thoracic aortas were incubated with PugNAc (OGA selective inhibitor, ) for 24h. Using an experimental protocol that evaluates contractions induced by Ca2+ influx and release, we demonstrated that incubation with PugNAc increases contractile responses to phenylephrine (PE) as well as the contraction induced by Ca2+ influx, after depletion of intracellular Ca2+ stores. The CRAC channel blockers, 2-APB (100 ) and gadolinium (Gd3+, 100 ), significantly reduced the contractions induced by Ca2+ influx in aortas incubated with PugNAc. Furthermore, these aortas showed increased STIM1 protein expression, which could result in increased influx of Ca2+ and, in turn, increase vascular contraction. The contraction induced by the release of intracellular Ca2+ stores, stimulated by caffeine (20 mM) and serotonin (10 ), was increased in aortas incubated with PugNAc. The Ca2+-ATPase (SERCA) inhibitor thapsigargin produced similar effects in arteries incubated with PugNAc or vehicle, despite the increased SERCA protein expression in aortas incubated with PugNAc. Since PKC is activated by increases in intracellular Ca2+ and arteries incubated with PugNAc show activation of PKC, we determined whether the activity of proteins that are targets of PKC was increased in PugNAc-treated aortas. Incubation with PugNAc increased the expression of phosphorylated forms of CPI-17, MYPT-1 and MLC. Together, these results suggest that activation of STIM1/Orai1, increased release of intracellular Ca2+ and PKC activation may represent mechanisms that modulate vascular responses upon increased O-GlcNAc proteins.
|
128 |
Organelle movement in melanophores: Effects of <em>Panax ginseng</em>, ginsenosides and quercetinEriksson, Therese January 2009 (has links)
<p><em>Panax ginseng</em> is a traditional herb that has been used for over 2000 years to promote health and longevity. Active components of ginseng include ginsenosides, polysaccharides, flavonoids, polyacetylenes, peptides, vitamins, phenols and enzymes, of which the ginsenosides are considered to be the major bioactive constituents. Although widely used, the exact mechanisms of ginseng and its compounds remain unclear. In this thesis we use melanophores from <em>Xenopus laevis</em> to investigate the effects of <em>Panax ginseng</em> extract G115 and its constituents on organelle transport and signalling. Due to coordinated bidirectional movement of their pigmented granules (melanosomes), in response to defined chemical signals, melanophores are capable of fast colour changes and provide a great model for the study of intracellular transport. The movement is regulated by alterations in cyclic adenosine 3’:5’-monophosphate (cAMP) concentration, where a high or low level induce anterograde (dispersion) or retrograde (aggregation) transport respectively, resulting in a dark or light cell. Here we demonstrate that <em>Panax ginseng</em> and its constituents ginsenoside Rc and Rd and flavonoid quercetin induce a concentration-dependent anterograde transport of melanosomes. The effect of ginseng is shown to be independent of cAMP changes and protein kinase A activation. Upon incubation of melanophores with a combination of Rc or Rd and quercetin, a synergistic increase in anterograde movement was seen, indicating cooperation between the ginsenoside and flavonoid parts of ginseng. Protein kinase C (PKC) inhibitor Myristoylated EGF-R Fragment 651-658 decreased the anterograde movement stimulated by ginseng and ginsenoside Rc and Rd. Moreover, ginseng, but not ginsenosides or quercetin, stimulated an activation of 44/42-mitogen activated protein kinase (MAPK), previously shown to be involved in both aggregation and dispersion of melanosomes. PKC-inhibition did not affect the MAPK-activation, suggesting a role for PKC in the ginseng- and ginsenoside-induced dispersion but not as an upstream activator of MAPK.</p> / <p><em>Panax ginseng </em>är ett av de vanligaste naturläkemedlen i världen och används traditionellt för att öka kroppens uthållighet, motståndskraft och styrka. Ginseng är ett komplext ämne bestående av ett antal olika substanser, inklusive ginsenosider, flavonoider, vitaminer och enzymer, av vilka de steroidlika ginsenosiderna anses vara de mest aktiva beståndsdelarna. Flavonoider (som finns i till exempel frukt och grönsaker) och ginseng har genom forskning visat sig motverka bland annat hjärt-och kärlsjukdomar, diabetes, cancer och demens. Trots den omfattande användningen är dock mekanismen för hur ginseng verkar fortfarande oklar. I den här studien har vi använt pigmentinnehållande celler, melanoforer, från afrikansk klogroda för att undersöka effekterna av <em>Panax ginseng</em> på pigment-transport och dess maskineri. Melanoforer har förmågan att snabbt ändra färg genom samordnad förflyttning av pigmentkorn fram och tillbaka i cellen, och utgör en utmärkt modell för studier av intracellulär transport. Förflyttningen regleras av förändringar i halten av cykliskt adenosin-monofosfat (cAMP) i cellen, där en hög eller låg koncentration medför spridning av pigment över hela cellen (dispergering) eller en ansamling i mitten (aggregering), vilket resulterar i mörka respektive ljusa celler. Här visar vi att <em>Panax ginseng</em>, ginsenosiderna Rc och Rd samt flavonoiden quercetin stimulerar en dispergering av pigmentkornen. När melanoforerna inkuberades med en kombination av ginsenosid Rc eller Rd och quercetin, kunde en synergistisk ökning av dispergeringen ses, vilket tyder på en samverkan mellan ginsenosid- och flavonoid-delarna av ginseng. Ett protein som tidigare visats vara viktigt för pigmenttransporten är mitogen-aktiverat protein kinas (MAPK), och här visar vi att också melanoforer stimulerade med ginseng, men dock inte med ginsenosider eller quercetin, innehåller aktiverat MAPK. Genom att blockera enzymet protein kinas C (PKC) (känd aktivator av dispergering), minskade den ginseng- och ginsenosid-inducerade dispergeringen, medan aktiveringen av MAPK inte påverkades alls. Detta pekar på en roll för PKC i pigment-transporten men inte som en aktivator av MAPK.</p>
|
129 |
The Role of Protein Kinase C in the Extracellular Ca<sup>2+</sup>-regulated Secretion of Parathyroid HormoneSakwe, Amos M. January 2004 (has links)
<p>Parathyroid hormone (PTH) is the major physiological regulator of the extracellular Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>o</sub>) in the body. The secretion of this hormone is suppressed at high [Ca<sup>2+</sup>]<sub>o</sub>. Previously this was thought to occur by intracellular degradation of the hormone in the secretory pathway of parathyroid (PT) cells but is now believed to result from extracellular Ca<sup>2+</sup> stimulus-secretion coupling via the calcium sensing receptor (CaR). In contrast to the stimulation of PTH secretion upon inhibition of mature PTH proteolysis, inhibition of PT proteasomes caused the accumulation of PTH precursors and inhibited secretion of PTH. This suggests that PT proteasomes play a quality control function in the maturation of PTH but they do not directly participate in the [Ca<sup>2+</sup>]<sub>o</sub>-regulated secretion of the hormone. Treatment of PT cells with 12-O-tetradecanyolphorbol-13-acetate (TPA) blocks the high [Ca<sup>2+</sup>]<sub>o</sub>-induced CaR-mediated suppression of PTH secretion. To delineate the role of DAG-responsive protein kinase C (PKC) isoforms in this process, we complemented pharmacological modulation of PKC activity with physiological activation of the enzyme via the CaR. PKC-α was rapidly activated by high [Ca<sup>2+</sup>]<sub>o</sub> and was efficiently down-regulated by prolonged TPA treatment. In CaR-transfected HEK293 cells, TPA and high [Ca<sup>2+</sup>]<sub>o</sub> induced the activation of ERK1/2 but the TPA effect was CaR- and Ca<sup>2+</sup>-independent. The magnitude of neomycin-induced release of Ca<sup>2+</sup> from intracellular stores following pharmacological modulation of PKC activity was opposite to that resulting from physiological activation/inhibition of the enzyme via the CaR. Influx of Ca<sup>2+</sup> following activation of the receptor occurred by store-operated mechanisms. Over-expression of wt or DN PKC-α or-ε in PT cells using the Tet-On adenovirus gene delivery system revealed that the stimulatory effect of TPA on PTH secretion at high [Ca<sup>2+</sup>]<sub>o</sub> was enhanced in cells over-expressing wt PKC-α, but the coupling of the extracellular Ca<sup>2+</sup> signal to PTH secretion was not dependent on the physiological activation of this PKC isoform via the CaR.</p>
|
130 |
Organelle movement in melanophores: Effects of Panax ginseng, ginsenosides and quercetinEriksson, Therese January 2009 (has links)
Panax ginseng is a traditional herb that has been used for over 2000 years to promote health and longevity. Active components of ginseng include ginsenosides, polysaccharides, flavonoids, polyacetylenes, peptides, vitamins, phenols and enzymes, of which the ginsenosides are considered to be the major bioactive constituents. Although widely used, the exact mechanisms of ginseng and its compounds remain unclear. In this thesis we use melanophores from Xenopus laevis to investigate the effects of Panax ginseng extract G115 and its constituents on organelle transport and signalling. Due to coordinated bidirectional movement of their pigmented granules (melanosomes), in response to defined chemical signals, melanophores are capable of fast colour changes and provide a great model for the study of intracellular transport. The movement is regulated by alterations in cyclic adenosine 3’:5’-monophosphate (cAMP) concentration, where a high or low level induce anterograde (dispersion) or retrograde (aggregation) transport respectively, resulting in a dark or light cell. Here we demonstrate that Panax ginseng and its constituents ginsenoside Rc and Rd and flavonoid quercetin induce a concentration-dependent anterograde transport of melanosomes. The effect of ginseng is shown to be independent of cAMP changes and protein kinase A activation. Upon incubation of melanophores with a combination of Rc or Rd and quercetin, a synergistic increase in anterograde movement was seen, indicating cooperation between the ginsenoside and flavonoid parts of ginseng. Protein kinase C (PKC) inhibitor Myristoylated EGF-R Fragment 651-658 decreased the anterograde movement stimulated by ginseng and ginsenoside Rc and Rd. Moreover, ginseng, but not ginsenosides or quercetin, stimulated an activation of 44/42-mitogen activated protein kinase (MAPK), previously shown to be involved in both aggregation and dispersion of melanosomes. PKC-inhibition did not affect the MAPK-activation, suggesting a role for PKC in the ginseng- and ginsenoside-induced dispersion but not as an upstream activator of MAPK. / Panax ginseng är ett av de vanligaste naturläkemedlen i världen och används traditionellt för att öka kroppens uthållighet, motståndskraft och styrka. Ginseng är ett komplext ämne bestående av ett antal olika substanser, inklusive ginsenosider, flavonoider, vitaminer och enzymer, av vilka de steroidlika ginsenosiderna anses vara de mest aktiva beståndsdelarna. Flavonoider (som finns i till exempel frukt och grönsaker) och ginseng har genom forskning visat sig motverka bland annat hjärt-och kärlsjukdomar, diabetes, cancer och demens. Trots den omfattande användningen är dock mekanismen för hur ginseng verkar fortfarande oklar. I den här studien har vi använt pigmentinnehållande celler, melanoforer, från afrikansk klogroda för att undersöka effekterna av Panax ginseng på pigment-transport och dess maskineri. Melanoforer har förmågan att snabbt ändra färg genom samordnad förflyttning av pigmentkorn fram och tillbaka i cellen, och utgör en utmärkt modell för studier av intracellulär transport. Förflyttningen regleras av förändringar i halten av cykliskt adenosin-monofosfat (cAMP) i cellen, där en hög eller låg koncentration medför spridning av pigment över hela cellen (dispergering) eller en ansamling i mitten (aggregering), vilket resulterar i mörka respektive ljusa celler. Här visar vi att Panax ginseng, ginsenosiderna Rc och Rd samt flavonoiden quercetin stimulerar en dispergering av pigmentkornen. När melanoforerna inkuberades med en kombination av ginsenosid Rc eller Rd och quercetin, kunde en synergistisk ökning av dispergeringen ses, vilket tyder på en samverkan mellan ginsenosid- och flavonoid-delarna av ginseng. Ett protein som tidigare visats vara viktigt för pigmenttransporten är mitogen-aktiverat protein kinas (MAPK), och här visar vi att också melanoforer stimulerade med ginseng, men dock inte med ginsenosider eller quercetin, innehåller aktiverat MAPK. Genom att blockera enzymet protein kinas C (PKC) (känd aktivator av dispergering), minskade den ginseng- och ginsenosid-inducerade dispergeringen, medan aktiveringen av MAPK inte påverkades alls. Detta pekar på en roll för PKC i pigment-transporten men inte som en aktivator av MAPK.
|
Page generated in 0.0757 seconds