• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 30
  • 15
  • 7
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 248
  • 248
  • 36
  • 36
  • 31
  • 30
  • 27
  • 24
  • 24
  • 24
  • 24
  • 23
  • 21
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

SnRK1-eIF4E Interaction in Translational Control and Antiviral Defense

Li, Sizhun January 2014 (has links)
No description available.
222

Creating an Efficient Biopharmaceutical Factory: Protein Expression and Purification Using a Self-Cleaving Split Intein

Cooper, Merideth A. 07 September 2018 (has links)
No description available.
223

Assessment of disulfide bond formation during co-translational folding of synonymous codon variants of recombinant gamma-B crystallin

Kojukhov, Artyom, 11 May 2018 (has links)
No description available.
224

Dietary source and availibility of fatty acids to manipulate ruminal protozoa, metabolism of fat, and milk fatty acid profile in lactating dairy cows

Reveneau, Carine 19 March 2008 (has links)
No description available.
225

Computational Modeling of Planktonic and Biofilm Metabolism

Guo, Weihua 16 October 2017 (has links)
Most of microorganisms are ubiquitously able to live in both planktonic and biofilm states, which can be applied to dissolve the energy and environmental issues (e.g., producing biofuels and purifying waste water), but can also lead to serious public health problems. To better harness microorganisms, plenty of studies have been implemented to investigate the metabolism of planktonic and/or biofilm cells via multi-omics approaches (e.g., transcriptomics and proteomics analysis). However, these approaches are limited to provide the direct description of intracellular metabolism (e.g., metabolic fluxes) of microorganisms. Therefore, in this study, I have applied computational modeling approaches (i.e., 13C assisted pathway and flux analysis, flux balance analysis, and machine learning) to both planktonic and biofilm cells for better understanding intracellular metabolisms and providing valuable biological insights. First, I have summarized recent advances in synergizing 13C assisted pathway and flux analysis and metabolic engineering. Second, I have applied 13C assisted pathway and flux analysis to investigate the intracellular metabolisms of planktonic and biofilm cells. Various biological insights have been elucidated, including the metabolic responses under mixed stresses in the planktonic states, the metabolic rewiring in homogenous and heterologous chemical biosynthesis, key pathways of biofilm cells for electricity generation, and mechanisms behind the electricity generation. Third, I have developed a novel platform (i.e., omFBA) to integrate multi-omics data with flux balance analysis for accurate prediction of biological insights (e.g., key flux ratios) of both planktonic and biofilm cells. Fourth, I have designed a computational tool (i.e., CRISTINES) for the advanced genome editing tool (i.e., CRISPR-dCas9 system) to facilitate the sequence designs of guide RNA for programmable control of metabolic fluxes. Lastly, I have also accomplished several outreaches in metabolic engineering. In summary, during my Ph.D. training, I have systematically applied computational modeling approaches to investigate the microbial metabolisms in both planktonic and biofilm states. The biological findings and computational tools can be utilized to guide the scientists and engineers to derive more productive microorganisms via metabolic engineering and synthetic biology. In the future, I will apply 13C assisted pathway analysis to investigate the metabolism of pathogenic biofilm cells for reducing their antibiotic resistance. / Ph. D. / Most of microorganisms are ubiquitously able to live in both planktonic and biofilm states (i.e., floating in a flow and anchoring on a surface, respectively), which can be applied to dissolve the energy and environmental issues (e.g., producing biofuels and purifying waste water), but can also lead to serious public health problems (e.g., chronic infections). Therefore, deciphering the metabolism of both planktonic and biofilm cells are of great importance to better harness microorganism. Plenty of studies have been implemented to investigate the metabolism of planktonic and/or biofilm cells by measuring the abundances of single type of biological components (e.g., gene expression and proteins). However, these approaches are limited to provide the direct description of intracellular metabolism (e.g., enzyme activities) of microorganisms. Therefore, in this study, I have applied computational modeling approaches to both planktonic and biofilm cells for providing valuable biological insights (e.g., enzyme activities). The biological insights include 1) how planktonic cells response to mixed stresses (e.g., acids and organics) 2) how planktonic cells produce various chemicals, and 3) how biofilm cells generate electricity by rewiring the intracellular metabolic pathways. I also developed a novel platform to utilize multiple types of biological data for improving the prediction accuracy of biological insights of both planktonic and biofilm cells. In addition, I designed a computational tool to facilitate the sequence designs of an advanced genome editing tool for precisely controlling the corresponding enzyme activities. Lastly, I have also accomplished several outreaches in metabolic engineering. In summary, during my Ph.D. training, I have systematically applied computational modeling approaches to investigate the microbial metabolisms in both planktonic and biofilm states. The biological findings and computational tools can be utilized to guide the metabolic engineered to derive more productive microorganisms via metabolic engineering and synthetic biology. In the future, I plan to investigate how the pathogenic biofilm cells improve their antibiotic resistance and attempt to reduce such strong resistance.
226

Impact de l’ajout de glutathion à la nutrition parentérale sur la synthèse protéique chez le cochon d’Inde.

Morin, Guillaume 12 1900 (has links)
No description available.
227

Crystallographic characterization of the ribosomal binding site and molecular mechanism of action of Hygromycin A.

Kaminishi, Tatsuya, Schedlbauer, Andreas, Fabbretti, Attilio, Brandi, Letizia, Ochoa Lizarralde, Borja, He, Cheng-Guang, Milon, Pohl, Connell, Sean R, Gualerzi, Claudio O, Fucini, Paola 16 November 2015 (has links)
Hygromycin A (HygA) binds to the large ribosomal subunit and inhibits its peptidyl transferase (PT) activity. The presented structural and biochemical data indicate that HygA does not interfere with the initial binding of aminoacyl-tRNA to the A site, but prevents its subsequent adjustment such that it fails to act as a substrate in the PT reaction. Structurally we demonstrate that HygA binds within the peptidyl transferase center (PTC) and induces a unique conformation. Specifically in its ribosomal binding site HygA would overlap and clash with aminoacyl-A76 ribose moiety and, therefore, its primary mode of action involves sterically restricting access of the incoming aminoacyl-tRNA to the PTC. / Bizkaia:Talent and the European Union's Seventh Framework Program (Marie Curie Actions; COFUND; to S.C., A.S., T.K.); Marie Curie Actions Career Integration Grant (PCIG14-GA-2013-632072 to P.F.); Ministerio de Economía Y Competitividad (CTQ2014-55907-R to P.F., S.C.); FIRB Futuro in Ricerca from the Italian Ministero dell'Istruzione, dell'Universitá e della Ricerca (RBFR130VS5_001 to A.F.); Peruvian Programa Nacional de Innovación para la Competitividad y Productividad (382-PNICP-PIBA-2014 (to P.M. and A.F.)). Funding for open access charge: Institutional funding. / Revisión por pares
228

Kombination chemischer, gentechnischer und enzymatischer Methoden zur Darstellung schwer synthetisierbarer Proteine

Abel, Sabine 26 May 2014 (has links)
Das fibrillen-bildende beta2-Mikroglobulin (b2M) und das CRF1-Mimetikum mit verzweigter Rückgratstruktur können als „schwierige“ Proteine betrachtet werden, deren Darstellung sich eignet, gegenwärtige Möglichkeiten und Grenzen der Proteinsynthese zu ermitteln. Die Proteine sollen zu spektroskopischen Untersuchungen von Proteinfaltung bzw. Ligand-Rezeptor- Wechselwirkungen eingesetzt werden. Versuche zur Chemosynthese von b2M über drei Segmente führten per NCL zwar zu linearen Produkten mit korrekter Primärstruktur, aber wiederholt wurden zwei, mittels HPLC trennbare Proteine erhalten, deren enzymatische Spaltung zu identischen Fragmenten führte. Eine Isomerisierung (wie z.B. Epimerisierung) als Ursache für die Bildung der zwei Produkte konnte ausgeschlossen werden. Mittels CD- und FTIR-Spektroskopie wurden für beide Produkte beta- Faltblatt-Strukturen ermittelt, die sich sowohl untereinander als auch vom rekombinanten Protein unterschieden. Die „fehlgefalteten“ Syntheseprodukte konnten nicht entfaltet und anschließend in die „korrekte“ Struktur des rekombinanten b2M überführt werden. Es ist denkbar, dass die beobachtete „Fehlfaltung“, deren Ursache nicht geklärt werden konnte, für vom b2M ausgelöste Amyloidosen verantwortlich ist. Das CRF1-Modell, das aus drei zyklischen Peptiden und einem Protein mit Disulfidbrücken besteht, welche auf einem linearen Peptid-Templat verankert sind, wurde durch ein zyklisches Templat zur strukturellen Einschränkung modifiziert. Durch das zyklische Templat ergaben sich keine Syntheseprobleme, aber interessanterweise führte die Zyklisierung des Templats zu einer signifikant höheren Affinität für den Agonisten Urocortin-I im funktionellen Assay. Darüber hinaus wurde gezeigt, dass ein zyklisches Rezeptor-Loop-Peptid mittels EPL im mg-Maßstab erhalten werden kann, was künftig die Synthese isotopenmarkierter Analoga für Struktur-Untersuchungen ermöglicht. / The fibril forming beta2-microglobulin (b2m) and the CRF1 mimic with branched peptide backbone could be considered as “difficult” proteins, whose synthesis is suited for determining present possibilities and limits of protein synthesis. The proteins shall be used for spectroscopic analysis of protein misfolding or ligand-receptor-interaction, respectively. Efforts of the chemosynthesis of b2m over three segments may lead via NCL to linear products with correct primary structure, but two, via HPLC isolatable proteins were repetitively susbstained, whose enzymatic digest lead to identical fragments. An isomerization (such as e. g. epimerization) as reason for the formation of the two products could be excluded. By means of CD and FTIR spectroscopy for both products beta-sheet structure were determined, which differ among themselves as well as from the recombinant protein. The “misfolded” synthetic product could not be unfolded und subsequently converted into the “correct” structure of the recombinant b2m. It is possible that the observed “misfolding”, whose cause could not be clarified, is reasonable for the amyloidosis induced by b2m. The CRF1 model that consists of three cyclic peptides and one protein with disulfid bridges coupled to a linear peptide template, was modified for structural constraints by a cyclic template. In consequence of the cyclic template no synthetic problems aroused, although the cyclisation of the template leads interestingly to a significant higher affinity for the antagonist urocortin-I in the functional assay. Furthermore, it was shown that a cyclic receptor loop peptide could be received via EPL in mg scale, what in future enables the synthesis of isotopically labeled analogs for structure investigations.
229

Chemische Synthese & funktionelle Analyse von immobilisierten Protein-Domänen

Zitterbart, Robert 26 July 2017 (has links)
Protein-Arrays sind das Mittel der Wahl, um eine Vielzahl von Proteinen parallel zu untersuchen. Ziele dieser Untersuchungen sind meistens Proteininteraktionsnetzwerke zu entdecken oder besser verstehen zu können. Bisher wurden die benötigten Proteine fast ausschließlich mit biologischen Methoden gewonnen. Diese bieten allerdings keinen generellen Zugang zu posttranslational-modi-fizierten (PTM)-Proteinen. Somit war es bisher nicht möglich den Einfluss von PTMs auf Protein-Protein-Interaktionen (PPIs) im Arrayformat zu untersuchen. Die chemische Synthese kann dagegen Proteine mit ortsspezifischen PTMs liefern. Daher ist es verwunderlich, dass bislang noch keine Berichte über chemisch hergestellte PTM-Protein-Arrays existieren, besonders da PTMs meist entscheidend für proteomische Interaktionsnetzwerke sind. In der vorliegenden Arbeit wird eine Methodik beschrieben, die es ermöglicht PTM-modifizierte Protein-Domänen-Arrays auf der Oberfläche zu synthetisieren und zu analysieren. Mit der Methodik wurden 20 SH3-Domänen synthetisiert und 64 PPIs gemessen. Neben vier Hefe-SH3-Domänen wurden je acht humane (Phospho)SH3-Domänen der Abl- und Arg(Abl2)-Tyrosinkinase synthetisiert und funktionell untersucht. Es wurde gefunden, dass die Ligandenspezifität von Abl-SH3-Domänen durch Phosphorylierung feinreguliert wird. Je nach Phosphorylierungsmustern wurde die Affinität für spezifische Liganden erhöht oder erniedrigt. Der Ursprung dieser Phosphoregulierung wurde für die Abl-SH3-Domäne mit Hilfe der NMR-Spektroskopie und durch Zellexperimente versucht zu entschlüsseln und weiter validiert. / Protein-arrays are the method of choice to investigate a variety of proteins in a parallel fashion. Objectives of these studies are mostly to discover or to investigate protein interaction networks. So far, the necessary proteins were almost exclusively gained by biological methods. Unfortunately, generic access to proteins bearing post-translational modifications (PTM) is not provided by these techniques. Therefore, it was not possible to investigate the impact of PTMs on protein-protein-interactions (PPIs) on arrays so far. Chemical synthesis in contrast offers proteins with site-specific PTM incorporation. In this context, it is surprising, that chemical methods of PTM-protein array synthesis remained virtually unexplored, especially since these modifications are usually crucial for proteomic interaction networks. In this thesis, a methodology is described, that allows to synthesize and functional analyse post-translationally modified protein domain arrays on the surface. By using this methodology, 20 SH3 domains were synthesized and 64 protein-pep-tide interactions were measured. In addition to 4 yeast SH3 domains, 8 human (phospho) SH3 domains of the Abl and Arg(Abl2) tyrosine kinase were synthesized and functionally investigated. The experiments revealed that phosphorylation might serve as a means to fine tune the ligand recognition. Depending on the phosphorylation pattern the affinity to specific interaction partners were enhanced or reduced. The origin of this phosphoregulation was further investigated for the Abl SH3 domain by means of NMR spectroscopy and cellular experiments.
230

Cell-Free Synthesis of Proteins with Unnatural Amino Acids: Exploring Fitness Landscapes, Engineering Membrane Proteins and Expanding the Genetic Code

Schinn, Song Min 01 August 2017 (has links)
Unnatural amino acids (uAA) expand the structural and functional possibilities of proteins. Numerous previous studies have demonstrated uAA as a powerful tool for protein engineering, but challenges also remain. Three notable such challenges include: (1) the fitness of uAA-incorporated proteins are difficult to predict and time-consuming to screen with conventional methods, (2) uAA incorporation in difficult-to-express proteins (e.g. membrane proteins such as G-protein coupled receptors) remain challenging, and (3) the incorporation of multiple types of uAA are still limited. In response, we pose cell-free protein synthesis (CFPS), a rapid and versatile in vitro expression system, as a platform to explore solutions to these challenges. The "cell-free" nature of CFPS enables it to accelerate protein expression and tolerate extensive modifications to its translational environment. In this work, these advantages were utilized to address the aforementioned challenges by: (1) rapidly expressing and screening uAA-containing proteins, (2) incorporating uAA in functional G-protein coupled receptor in the presence of membrane-mimicking lipid additives, and (3) engineer the translational environment extensively towards multiple uAA incorporation.

Page generated in 0.0549 seconds