• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 30
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 150
  • 150
  • 24
  • 21
  • 20
  • 19
  • 16
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Role of ATF4 in directing gene expression in the basal state and during the unfolded protein response in liver

Fusakio, Michael Edward 13 June 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Disturbances in membrane composition and protein folding in the endoplasmic reticulum (ER) trigger the unfolded protein response (UPR). Three UPR sensory proteins, PERK (PEK/EIF2AK3), IRE1, and ATF6 are each activated by ER stress. PERK phosphorylation of the alpha subunit of eIF2 represses global protein synthesis, lowering influx of nascent polypeptides into the stressed ER, coincident with the preferential translation of ATF4 (CREB2). Results from cultured cells demonstrate that ATF4 induces transcriptional expression of genes directed by the PERK arm of the UPR, including genes involved in amino acid metabolism, resistance to oxidative stress, and the proapoptotic transcription factor CHOP (GADD153/DDIT3). In this study, we characterized two ATF4 knockout mouse models and show in liver exposed to ER stress that ATF4 is not required for CHOP expression, but rather ATF6 is a primary inducer. RNA-sequence analysis indicated that ATF4 was responsible for a small portion of the PERK-dependent genes in the UPR. This smaller than expected subset of gene expression lends itself to the relevance of UPR crosstalk, with ATF6, XBP1, and CHOP being capable of upregulating UPR genes in the absence of ATF4. RNA-sequence analysis also revealed a requirement for expression of ATF4 for expression of a comparable number of genes basally, including those involved in oxidative stress response and cholesterol metabolism. Consistent with this pattern of gene expression, loss of ATF4 in our mouse model resulted in enhanced oxidative damage and increased free cholesterol in liver under stress accompanied by lowered cholesterol in sera. Taken together, this study highlights both an expansion of the role of ATF4 in transcriptional regulation of genes involved in metabolism in the basal state and a more specialized role during ER stress. These findings are important for understanding the variances of the UPR signaling between cell culture and in vivo and for a greater understanding of all the roles ATF4 plays within the cell.
142

Analysis of Histone Lysine Methylation Using Mass Spectrometry

True, Jason Donald 11 December 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Histones are highly basic proteins which when digested by trypsin are hard to analyze using mass spectrometry. Because histones are basic nuclear proteins, a nuclei prep followed by acid extraction is the best purification strategy to increase overall abundance of purified histones. Blocking the lysine residues and cleaving with trypsin is a useful technique to increase detection of histone peptides using MudPIT. In particular, carbamylation and propionylation are the best two methods to block lysine residues. Using both propionylation and carbamylation along with no treatment has been shown to increase the identification of unmodified and modified histone peptides when coupled with MudPIT analysis.
143

Etude de la protéine CIRP et sa fonction dans le métabolisme des ARN messagers

De Leeuw, Frédéric 15 January 2008 (has links)
La protéine CIRP (Cold Induced RNA binding Protein) est une petite protéine de liaison à l’ARN de 172 acides aminés, qui est constituée du côté amino-terminal d’un domaine de liaison à l’ARN de type RRM (RNA recognition motif), et d’une partie carboxy-terminale riche en glycine et arginine qui comprend plusieurs motifs RGG. Elle a été identifiée comme étant inductible par hypothermie mais aussi par irradiation aux UV et par hypoxie. Nous avons analysé son expression et sa localisation en réponse à différents stress cellulaires. Nous avons montré qu’un traitement à l’arsénite qui induit un stress oxydant n’altère pas l’expression de CIRP provoque sa localisation dans les granules de stress (SG). Les SG sont des structures ribonucléoprotéiques cytoplasmiques contenant des complexes de pré-initiation incompétents pour la traduction, et qui s’accumulent dans les cellules exposées à un stress. Ces structures constituent des sites de triages des ARNm, dans lesquels les ARNm sont soit stockés en attente d’une réinitiation de la traduction une fois le stress surmonté, soit destinés à être dégradés. La protéine CIRP se localise dans les SG que ce soit suite à un stress cytoplasmique ou du réticulum endoplasmique. Nous avons montré également que la localisation de la protéine CIRP dans les SG se déroule indépendamment de la présence de la protéine TIA-1 qui a été décrite comme responsable de l’assemblage des SG. De plus la surexpression de la protéine CIRP conduit à la formation de SG. Nous suggérons donc qu’il existe plusieurs voies qui mènent à l’assemblage de ces structures. En outre, nous avons analysé la localisation de mutants par délétion de la protéine CIRP et avons montré que le domaine RRM et le domaine RGG peuvent indépendamment localiser la protéine dans les SG. Par contre, la méthylation des résidus arginine du domaine RGG est une modification nécessaire à la localisation de CIRP dans les SG. Ensuite, nous avons étudié la fonction de la protéine CIRP dans le métabolisme des ARN messagers. Nous avons montré par une méthode d’adressage, que CIRP est un répresseur de la traduction des ARNm et que le domaine carboxy-terminal est nécessaire et suffisant à cette fonction. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
144

Identification of the Minimal Domain of RNA Trihosphastase Activity in the L Protien of Rinderpest Virus and Charecterization of its Enzymatic Activities

Singh, Piyush Kumar January 2013 (has links) (PDF)
Morbilliviruses belong to the family Paramyxoviridae of the Mononegavirale order of viruses. The Mononegavirale order contains viruses which contain negatively-polar, non-segmented and single stranded RNA genomes. This order contains some of most lethal pathogens known to the humankind. Ebola virus and Marburg virus are perhaps the most lethal human pathogens. Rinderpest virus, declared eradicated in 2011, was known to be the most significant cattle killer. Similarly the Canine distemper virus and Rabies virus, two topmost canine pathogens belong to this order. The L protein in the viruses of Morbillivirus genus harbours the viral RNA-dependent RNA polymerase that replicates and transcribes the viral genome and also all the mRNA capping enzymes, viz. RNA 5’ triphosphatase, guanylyltransferase, RNA (guanine-7-)methyltransferase and RNA 5’ cap-dependent (2’-oxo-)methyltransferase. Moreover this protein can act as a protein kinase that can regulate the function of P protein which serves as a switch between transcription and replication. mRNA capping is necessary for the virus for the purpose of exploiting host cellular machinery towards viral protein synthesis. The Rinderpest virus L protein serves as a model to study the capping enzymes of Morbillivirus. RNA triphosphatase (RTPase), the first enzyme of the capping cascade had earlier been located on the L protein. The RTPase minimal domain on the L protein was identified earlier by sequence homology studies done with RTPase proteins of Baculovirus and Vaccinia virus and cloned. The bacterially expressed recombinant domain was shown to possess RTPase activity. The enzymatic activity was characterized and the RTPase was found to be a metal-dependent enzyme which is highly specific to capping viral mRNA. Further characterization of the domain revealed that the domain also possesses nucleotide triphosphatase (NTPase), tripolyphosphatase and pyrophosphatase activities. Two site-directed mutants in motif-A of the domain: E1645A and E1647A were also tested and were found to be essential for the RTPase and NTPase activity. It was also recognized through these mutant studies that the active sites of RTPase and NTPase activities are partially overlapping. Earlier work done with Vesicular stomatitis virus capping enzymes showed that the Rhabdoviridae family of viruses follow unconventional capping pathway utilizing an enzyme polyribonucleotidyltransferase (PRNTase) which transfers GDP to 5’-monophosphated RNA. Characterization of the RTPase activity which converts 5’-triphosphated RNA into 5’-diphosphated RNA is an evidence for the morbilliviruses utilizing the conventional eukaryotic capping cascade. The results show that Paramyxoviridae do not follow unconventional capping pathway for the mRNA capping as has been the paradigm in the past decade.
145

Transcriptional regulation of ATF4 is critical for controlling the Integrated Stress Response during eIF2 phosphorylation

Dey, Souvik 29 October 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In response to different environmental stresses, phosphorylation of eIF2 (eIF2P) represses global translation coincident with preferential translation of ATF4. ATF4 is a transcriptional activator of the integrated stress response, a program of gene expression involved in metabolism, nutrient uptake, anti-oxidation, and the activation of additional transcription factors, such as CHOP/GADD153, that can induce apoptosis. Although eIF2P elicits translational control in response to many different stress arrangements, there are selected stresses, such as exposure to UV irradiation, that do not increase ATF4 expression despite robust eIF2P. In this study we addressed the underlying mechanism for variable expression of ATF4 in response to eIF2P during different stress conditions and the biological significance of omission of enhanced ATF4 function. We show that in addition to translational control, ATF4 expression is subject to transcriptional regulation. Stress conditions such as endoplasmic reticulum stress induce both transcription and translation of ATF4, which together enhance expression of ATF4 and its target genes in response to eIF2P. By contrast, UV irradiation represses ATF4 transcription, which diminishes ATF4 mRNA available for translation during eIF2∼P. eIF2P enhances cell survival in response to UV irradiation. However, forced expression of ATF4 and its target gene CHOP leads to increased sensitivity to UV irradiation. In this study, we also show that C/EBPβ is a transcriptional repressor of ATF4 during UV stress. C/EBPβ binds to critical elements in the ATF4 promoter resulting in its transcriptional repression. The LIP isoform of C/EBPβ, but not the LAP version is regulated following UV exposure and directly represses ATF4 transcription. Loss of the LIP isoform results in increased ATF4 mRNA levels in response to UV irradiation, and subsequent recovery of ATF4 translation, leading to enhanced expression of its target genes. Together these results illustrate how eIF2P and translational control, combined with transcription factors regulated by alternative signaling pathways, can direct programs of gene expression that are specifically tailored to each environmental stress.
146

Targeting acute phosphatase PTEN inhibition and investigation of a novel combination treatment with Schwann cell transplantation to promote spinal cord injury repair in rats

Walker, Chandler L. 02 April 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Human traumatic spinal cord injuries (SCI) are primarily incomplete contusion or compression injuries at the cervical spinal level, causing immediate local tissue damage and a range of potential functional deficits. Secondary damage exacerbates initial mechanical trauma and contributes to function loss through delayed cell death mechanisms such as apoptosis and autophagy. As such, understanding the dynamics of cervical SCI and related intracellular signaling and death mechanisms is essential. Through behavior, Western blot, and histological analyses, alterations in phosphatase and tensin homolog (PTEN)/phosphatidylinositol-3-kinase (PI3K) signaling and the neuroprotective, functional, and mechanistic effects of administering the protein tyrosine phosphatase (PTP) inhibitor, potassium bisperoxo (picolinato) vanadium ([bpV[pic]) were analyzed following cervical spinal cord injury in rats. Furthermore, these studies investigated the combination of subacute Schwann cell transplantation with acute bpV(pic) treatment to identify any potential additive or synergistic benefits. Although spinal SC transplantation is well-studied, its use in combination with other therapies is necessary to complement its known protective and growth promoting characteristics. v The results showed 400 μg/kg/day bpV(pic) promoted significant tissue sparing, lesion reduction, and recovery of forelimb function post-SCI. To further clarify the mechanism of action of bpV(pic) on spinal neurons, we treated injured spinal neurons in vitro with 100 nM bpV(pic) and confirmed its neurprotection and action through inhibition of PTEN and promotion of PI3K/Akt/mammalian target of rapamycin (mTOR) signaling. Following bpV(pic) treatment and green fluorescent protein (GFP)-SC transplantation, similar results in neuroprotective benefits were observed. GFP-SCs alone exhibited less robust effects in this regard, but promoted significant ingrowth of axons, as well as vasculature, over 10 weeks post-transplantation. All treatments showed similar effects in forelimb function recovery, although the bpV and combination treatments were the only to show statistical significance over non-treated injury. In the following chapters, the research presented contributes further understanding of cellular responses following cervical hemi-contusion SCI, and the beneficial effects of bpV(pic) and SC transplantation therapies alone and in combination. In conclusion, this work provides a thorough overview of pathology and cell- and signal-specific mechanisms of survival and repair in a clinically relevant rodent SCI model.
147

mTOR regulates Aurora A via enhancing protein stability

Fan, Li 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis. Dysregulation of mTOR signaling occurs in many human cancers and its inhibition causes arrest at the G1 cell cycle stage. However, mTOR’s impact on mitosis (M-phase) is less clear. Here, suppressing mTOR activity impacted the G2-M transition and reduced levels of M-phase kinase, Aurora A. mTOR inhibitors did not affect Aurora A mRNA levels. However, translational reporter constructs showed that mRNA containing a short, simple 5’-untranslated region (UTR), rather than a complex structure, is more responsive to mTOR inhibition. mTOR inhibitors decreased Aurora A protein amount whereas blocking proteasomal degradation rescues this phenomenon, revealing that mTOR affects Aurora A protein stability. Inhibition of protein phosphatase, PP2A, a known mTOR substrate and Aurora A partner, restored mTOR-mediated Aurora A abundance. Finally, a non-phosphorylatable Aurora A mutant was more sensitive to destruction in the presence of mTOR inhibitor. These data strongly support the notion that mTOR controls Aurora A destruction by inactivating PP2A and elevating the phosphorylation level of Ser51 in the “activation-box” of Aurora A, which dictates its sensitivity to proteasomal degradation. In summary, this study is the first to demonstrate that mTOR signaling regulates Aurora-A protein expression and stability and provides a better understanding of how mTOR regulates mitotic kinase expression and coordinates cell cycle progression. The involvement of mTOR signaling in the regulation of cell migration by its upstream activator, Rheb, was also examined. Knockdown of Rheb was found to promote F-actin reorganization and was associated with Rac1 activation and increased migration of glioma cells. Suppression of Rheb promoted platelet-derived growth factor receptor (PDGFR) expression. Pharmacological inhibition of PDGFR blocked these events. Therefore, Rheb appears to suppress tumor cell migration by inhibiting expression of growth factor receptors that in turn drive Rac1-mediate actin polymerization.
148

Inhibiting protein clearance to induce cell death in tuberous sclerosis and pancreatic cancer

Hendricks, Jeremiah William January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Sequestration at the aggresome and degradation through autophagy are two approaches by which a cell can counteract the toxic effect of misfolded proteins. Tuberous sclerosis (TS) and cancer cells can become dependent on autophagy for survival due to the high demand for protein synthesis, thus making protein clearance a potential therapeutic target. Because of its histone deacetylase (HDAC) inhibitory activity, we hypothesized that 4-phenylbutyrate (4-PBA) inhibits HDAC6 and aggresome formation to induce TS cell death. We found that 4-PBA treatment increases cell death and reduces bortezomib-induced aggresome formation. To link these results with HDAC inhibition we used two other HDAC inhibitors, trichostatin A (TSA) and tubastatin, and found that they also reduce bortezomib-induced protein aggregation. Because tubulin is a target of HDAC6, we next measured the effect of the HDAC inhibitors and 4-PBA treatment on tubulin acetylation. As expected, tubastatin increased tubulin acetylation but surprisingly TSA and 4-PBA did not. Because 4-PBA did not significantly inhibit HDAC6, we next hypothesized that 4-PBA was alternatively inducing autophagy and increasing aggresome clearance. Surprisingly, autophagy inhibition did not prevent the 4-PBA-induced reduction in protein aggregation. In conclusion, we found 4-PBA to induce cell death and reduce aggresome levels in TS cells, but we found no link between these phenomena. We next hypothesized that loss of the Ral guanine nucleotide exchange factor Rgl2 induces cell death via autophagy inhibition in pancreatic adenocarcinoma (PDAC) cells. KRas is mutationally activated in over 90% of PDACs and directly activates Rgl2. Rgl2 activates RalB, a known regulator of autophagy, and Rgl2 has been shown to promote PDAC cell survival. We first confirmed that loss of Rgl2 does increase cell death in PDAC cells. Initial experiments using doubly tagged fluorescent p62 and LC3 (autophagy markers) suggested that loss of Rgl2 inhibited autophagosome accumulation, but after developing a more sophisticated quantitation method we found loss of Rgl2 to have no effect. We also measured endogenous LC3 levels, and these experiments confirmed loss of Rgl2 to have no effect on autophagy levels. Therefore, loss of Rgl2 increases cell death in PDAC cells, but does not have a significant effect on autophagy.
149

Understanding the biological function of phosphatases of regenerating liver, from biochemistry to physiology

Bai, Yunpeng January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Phosphatases of regenerating liver, consisting of PRL-1, PRL-2 and PRL-3, belong to a novel protein tyrosine phosphatases subfamily, whose overexpression promotes cell proliferation, migration and invasion and contributes to tumorigenesis and metastasis. However, although great efforts have been made to uncover the biological function of PRLs, limited knowledge is available on the underlying mechanism of PRLs’ actions, therapeutic value by targeting PRLs, as well as the physiological function of PRLs in vivo. To answer these questions, we first screened a phage display library and identified p115 RhoGAP as a novel PRL-1 binding partner. Mechanistically, we demonstrated that PRL-1 activates RhoA and ERK1/2 by decreasing the association between active RhoA with GAP domain of p115 RhoGAP, and displacing MEKK1 from the SH3 domain of p115 RhoGAP, respectively, leading to enhanced cell proliferation and migration. Secondly, structure-based virtual screening was employed to discover small molecule inhibitors blocking PRL-1 trimer formation which has been suggested to play an important role for PRL-1 mediated oncogenesis. We identified Cmpd-43 as a novel PRL-1 trimer disruptor. Structural study demonstrated the binding mode of PRL-1 with the trimer disruptor. Most importantly, cellular data revealed that Cmpd-43 inhibited PRL-1 induced cell proliferation and migration in breast cancer cell line MDA-MB-231 and lung cancer cell line H1299. Finally, in order to investigate the physiological function of PRLs, we generated mouse knockout models for Prl-1, Prl-2 and Prl-3. Although mice deficient for Prl-1 and Prl-3 were normally developed, Prl-2-null mice displayed growth retardation, impaired male reproductive ability and insufficient hematopoiesis. To further investigate the in vivo function of Prl-1, we generated Prl-1-/-/Prl-2+/- and Prl-1+/-/Prl-2-/- mice. Similar to Prl-2 deficient male mice, Prl-1-/-/Prl-2+/- males also have impaired spermatogenesis and reproductivity. More strikingly, Prl-1+/-/Prl-2-/- mice are completely infertile, suggesting that, in addition to PRL-2, PRL-1 also plays an important role in maintaining normal testis function. In summary, these studies demonstrated for the first time that PRL-1 activates ERK1/2 and RhoA through the novel interaction with p115 RhoGAP, targeting PRL-1 trimer interface is a novel anti-cancer therapeutic treatment and both PRL-1 and PRL-2 contribute to spermatogenesis and male mice reproductivity.
150

Role of eIF3a expression in cellular sensitivity to ionizing radiation treatments by regulating synthesis of NHEJ repair proteins

Tumia, Rima Ahmed .N. Hashm 11 November 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Translation Initiation in protein synthesis is a crucial step controlling gene expression that enhanced by eukaryotic translation initiation factors (eIFs). eIF3a, the largest subunit of eIF3 complexes, has been shown to regulate protein synthesis and cellular response to cisplatin treatment. Its expression has also been shown to negatively associate with prognosis. In this study, we tested a hypothesis that eIF3a regulates synthesis of proteins important for repair of double strand DNA breaks induced by ionizing radiation (IR). We found that eIF3a up-regulation sensitizes cellular response to IR while its knockdown causes resistance to IR. We also found that eIF3a over-expression increases IR-induced DNA damage and decreases Non-Homologous End Joining (NHEJ) activity by suppressing expression level of NHEJ repair proteins such as DNA-PKcs and vice versa. Together, we conclude that eIF3a plays an important role in cellular response to DNA-damaging treatments by regulating synthesis of DNA repair proteins and, thus, eIIF3a likely plays an important role in the outcome of cancer patients treated with DNA-damaging strategies including ionizing radiation.

Page generated in 0.066 seconds