• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 277
  • 119
  • 60
  • 57
  • 38
  • 27
  • 23
  • 16
  • 9
  • 9
  • 7
  • 7
  • 5
  • 5
  • 5
  • Tagged with
  • 746
  • 746
  • 195
  • 167
  • 145
  • 119
  • 107
  • 102
  • 100
  • 90
  • 89
  • 88
  • 86
  • 75
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
731

TCP Protocol Optimization for HTTP Adaptive Streaming / Optimisation du protocole TCP pour le streaming adaptatif sur HTTP

Ben Ameur, Chiheb 17 December 2015 (has links)
Le streaming adaptatif sur HTTP, désigné par HAS, est une technique de streaming vidéo largement déployée sur Internet. Elle utilise TCP comme protocole de transport. Elle consiste à segmenter la vidéo stockée sur un serveur web en petits segments indépendants de même durée de lecture et transcodés à plusieurs niveaux de qualité, désignés par "chunks". Le player, du côté du client HAS, demande périodiquement un nouveau chunk. Il sélectionne le niveau de qualité en se basant sur l’estimation de la bande passante du/des chunk(s) précédent(s). Étant donné que chaque client HAS est situé au sein d’un réseau d’accès, notre étude traite un cas fréquent dans l’usage quotidien: lorsque plusieurs clients partagent le même lien présentant un goulot d’étrangement et se trouvent en compétition sur la bande passante. Dans ce cas, on signale une dégradation de la qualité d’expérience (QoE) des utilisateurs de HAS et de la qualité de service (QoS) du réseau d’accès. Ainsi, l’objectif de cette thèse est d’optimiser le protocole TCP pour résoudre ces dégradations de QoE et QoS. Notre première contribution propose une méthode de bridage du débit HAS au niveau de la passerelle. Cette méthode est désignée par "Receive Window Tuning Method" (RWTM): elle utilise le principe de contrôle de flux de TCP et l’estimation passive du RTT au niveau de la passerelle. Nous avons comparé les performances de RWTM avec une méthode récente implémentée à la passerelle qui utilise une discipline particulière de gestion de la file d’attente, qui est désignée par "Hierarchical Token Bucket shaping Method" (HTBM). Les résultats d’évaluations indiquent que RWTM offre une meilleure QoE et une meilleure QoS de réseau d’accès que HTBM. Notre deuxième contribution consiste à mener une étude comparative combinant deux méthodes de bridages, RWTM et HTBM, avec quatre variantes TCP largement déployées, NewReno, Vegas, Illinois et Cubic. Les résultats d'évaluations montrent une discordance importante entre les performances des différentes combinaisons. De plus, la combinaison qui améliore les performances dans la majorité des scénarios étudiés est celle de RWTM avec Illinois. En outre, une mise à jour efficace de la valeur du paramètre "Slow Start Threshold", sthresh, peut accélérer la vitesse de convergence du player vers la qualité optimale. Notre troisième contribution propose une nouvelle variante de TCP adaptée aux flux HAS, qu’on désigne par TcpHas; c’est un algorithme de contrôle de congestion de TCP adapté aux spécifications de HAS. TcpHas estime le niveau de la qualité optimale du flux HAS en se basant sur l’estimation de la bande passante de bout en bout. Ensuite, TcpHas applique un bridage au trafic HAS en fonction du débit d’encodage du niveau de qualité estimé. TcpHas met à jour ssthresh pour accélérer la vitesse de convergence. Une étude comparative a été réalisée avec la variante Westwood+. Les résultats d’évaluations montrent que TcpHas est plus performant que Westwood+. / HTTP adaptive streaming (HAS) is a streaming video technique widely used over the Internet. It employs Transmission Control Protocol (TCP) as transport protocol and it splits the original video inside the server into segments of same duration, called "chunks", that are transcoded into multiple quality levels. The HAS player, on the client side, requests for one chunk each chunk duration and it commonly selects the quality level based on the estimated bandwidth of the previous chunk(s). Given that the HAS clients are located inside access networks, our investigation involves several HAS clients sharing the same bottleneck link and competing for bandwidth. Here, a degradation of both Quality of Experience (QoE) of HAS users and Quality of Service (QoS) of the access network are often recorded. The objective of this thesis is to optimize the TCP protocol in order to solve both QoE and QoS degradations. Our first contribution consists of proposing a gateway-based shaping method, that we called Receive Window Tuning Method (RWTM); it employs the TCP flow control and passive round trip time estimation on the gateway side. We compared the performances of RWTM with another gateway-based shaping method that is based on queuing discipline, called Hierarchical Token Bucket shaping Method (HTBM). The results of evaluation indicate that RWTM outperforms HTBM not only in terms of QoE of HAS but also in terms of QoS of access network by reducing the queuing delay and significantly reducing packet drop rate at the bottleneck.Our second contribution consists of a comparative evaluation when combining two shaping methods, RWTM and HTBM, and four very common TCP variants, NewReno, Vegas, Illinois and Cubic. The results show that there is a significant discordance in performance between combinations. Furthermore, the best combination that improves performances in the majority of scenarios is when combining Illinois variant with RWTM. In addition, the results reveal the importance of an efficient updating of the slow start threshold value, ssthresh, to accelerate the convergence toward the best feasible quality level. Our third contribution consists of proposing a novel HAS-based TCP variant, that we called TcpHas; it is a TCP congestion control algorithm that takes into consideration the specifications of HAS flow. Besides, it estimates the optimal quality level of its corresponding HAS flow based on end-to-end bandwidth estimation. Then, it permanently performs HAS traffic shaping based on the encoding rate of the estimated level. It also updates ssthresh to accelerate convergence speed. A comparative performance evaluation of TcpHas with a recent and well-known TCP variant that employs adaptive decrease mechanism, called Westwood+, was performed. Results indicated that TcpHas largely outperforms Westwood+; it offers better quality level stability on the optimal quality level, it dramatically reduces the packet drop rate and it generates lower queuing delay.
732

An Extension Of Multi Layer IPSec For Supporting Dynamic QoS And Security Requirements

Kundu, Arnab 02 1900 (has links) (PDF)
Governments, military, corporations, financial institutions and others exchange a great deal of confidential information using Internet these days. Protecting such confidential information and ensuring their integrity and origin authenticity are of paramount importance. There exist protocols and solutions at different layers of the TCP/IP protocol stack to address these security requirements. Application level encryption viz. PGP for secure mail transfer, TLS based secure TCP communication, IPSec for providing IP layer security are among these security solutions. Due to scalability, wide acceptance of the IP protocol, and its application independent character, the IPSec protocol has become a standard for providing Internet security. The IPSec provides two protocols namely the Authentication header (AH) and the Encapsulating Security Payload (ESP). Each protocol can operate in two modes, viz. transport and tunnel mode. The AH provides data origin authentication, connectionless integrity and anti replay protection. The ESP provides all the security functionalities of AH along with confidentiality. The IPSec protocols provide end-to-end security for an entire IP datagram or the upper layer protocols of IP payload depending on the mode of operation. However, this end-to-end model of security restricts performance enhancement and security related operations of intermediate networking and security devices, as they can not access or modify transport and upper layer headers and original IP headers in case of tunnel mode. These intermediate devices include routers providing Quality of Service (QoS), TCP Performance Enhancement Proxies (PEP), Application level Proxy devices and packet filtering firewalls. The interoperability problem between IPSec and intermediate devices has been addressed in literature. Transport friendly ESP (TF-ESP), Transport Layer Security (TLS), splitting of single IPSec tunnel into multiple tunnels, Multi Layer IPSec (ML-IPSec) are a few of the proposed solutions. The ML-IPSec protocol solves this interoperability problem without violating the end-to-end security for the data or exposing some important header fields unlike the other solutions. The ML-IPSec uses a multilayer protection model in place of the single end-to-end model. Unlike IPSec where the scope of encryption and authentication applies to the entire IP datagram, this scheme divides the IP datagram into zones. It applies different protection schemes to different zones. When ML-IPSec protects a traffic stream from its source to its destination, it first partitions the IP datagram into zones and applies zone-specific cryptographic protections. During the flow of the ML-IPSec protected datagram through an authorized intermediate gateway, certain type I zones of the datagram may be decrypted and re-encrypted, but the other zones will remain untouched. When the datagram reaches its destination, the ML-IPSec will reconstruct the entire datagram. The ML-IPSec protocol, however suffers from the problem of static configuration of zones and zone specific cryptographic parameters before the commencement of the communication. Static configuration requires a priori knowledge of routing infrastructure and manual configuration of all intermediate nodes. While this may not be an issue in a geo-stationary satellite environment using TCP-PEP, it could pose problems in a mobile or distributed environment, where many stations may be in concurrent use. The ML-IPSec endpoints may not be trusted by all intermediate nodes in a mobile environment for manual configuration without any prior arrangement providing the mutual trust. The static zone boundary of the protocol forces one to ignore the presence of TCP/IP datagrams with variable header lengths (in case of TCP or IP headers with OPTION fields). Thus ML-IPSec will not function correctly if the endpoints change the use of IP or TCP options, especially in case of tunnel mode. The zone mapping proposed in ML-IPSec is static in nature. This forces one to configure the zone mapping before the commencement of the communication. It restricts the protocol from dynamically changing the zone mapping for providing access to intermediate nodes without terminating the existing ML-IPSec communication. The ML-IPSec endpoints can off course, configure the zone mapping with maximum number of zones. This will lead to unnecessary overheads that increase with the number of zones. Again, static zone mapping could pose problems in a mobile or distributed environment, where communication paths may change. Our extension to the ML-IPSec protocol, called Dynamic Multi Layer IPSec (DML-IPSec) proposes a multi layer variant with the capabilities of dynamic zone configuration and sharing of cryptographic parameters between IPSec endpoints and intermediate nodes. It also accommodates IP datagrams with variable length headers. The DML-IPSec protocol redefines some of the IPSec and ML-IPSec fundamentals. It proposes significant modifications to the datagram processing stage of ML-IPSec and proposes a new key sharing protocol to provide the above-mentioned capabilities. The DML-IPSec supports the AH and ESP protocols of the conventional IPSec with some modifications required for providing separate cryptographic protection to different zones of an IP datagram. This extended protocol defines zone as a set of non-overlapping and contiguous partitions of an IP datagram, unlike the case of ML-IPSec where a zone may consist of non-contiguous portions. Every zone is provided with cryptographic protection independent of other zones. The DML-IPSec categorizes zones into two separate types depending on the accessibility requirements at the intermediate nodes. The first type of zone, called type I zone, is defined on headers of IP datagram and is required for examination and modification by intermediate nodes. One type I zone may span over a single header or over a series of contiguous headers of an IP datagram. The second type of zone, called type II zone, is meant for the payload portion and is kept secure between endpoints of IPSec communications. The single type II zone starts immediately after the last type I zone and spans till the end of the IP datagram. If no intermediate processing is required during the entire IPSec session, the single type II zone may cover the whole IP datagram; otherwise the single type II zone follows one or more type I zones of the IP datagram. The DML-IPSec protocol uses a mapping from the octets of the IP datagram to different zones, called zone map for partitioning an IP datagram into zones. The zone map contains logical boundaries for the zones, unlike physical byte specific boundaries of ML-IPSec. The physical boundaries are derived on-the-fly, using either the implicit header lengths or explicit header length fields of the protocol headers. This property of the DML-IPSec zones, enables it to accommodate datagrams with variable header lengths. Another important feature of DML-IPSec zone is that the zone maps need not remain constant through out the entire lifespan of IPSec communication. The key sharing protocol may modify any existing zone map for providing service to some intermediate node. The DML-IPSec also redefines Security Association (SA), a relationship between two endpoints of IPSec communication that describes how the entities will use security services to communicate securely. In the case of DML-IPSec, several intermediate nodes may participate in defining these security protections to the IP datagrams. Moreover, the scope of one particular set of security protection is valid on a single zone only. So a single SA is defined for each zone of an IP datagram. Finally all these individual zonal SA’s are combined to represent the security relationship of the entire IP datagram. The intermediate nodes can have the cryptographic information of the relevant type I zones. The cryptographic information related to the type II zone is, however, hidden from any intermediate node. The key sharing protocol is responsible for selectively sharing this zone information with the intermediate nodes. The DML-IPSec protocol has two basic components. The first one is for processing of datagrams at the endpoints as well as intermediate nodes. The second component is the key sharing protocol. The endpoints of a DML-IPSec communication involves two types of processing. The first one, called Outbound processing, is responsible for generating a DML-IPSec datagram from an IP datagram. It first derives the zone boundaries using the zone map and individual header field lengths. After this partitioning of IP datagram, zone wise encryption is applied (in case of ESP). Finally zone specific authentication trailers are calculated and appended after each zone. The other one, Inbound processing, is responsible for generating the original IP datagram from a DML-IPSec datagram. The first step in the inbound processing, the derivation of zone boundary, is significantly different from that of outbound processing as the length fields of zones remain encrypted. After receiving a DML-IPSec datagram, the receiver starts decrypting type I zones till it decrypts the header length field of the header/s. This is followed by zone-wise authentication verification and zone-wise decryption. The intermediate nodes processes an incoming DML-IPSec datagram depending on the presence of the security parameters for that particular DML-IPSec communication. In the absence of the security parameters, the key sharing protocol gets executed; otherwise, all the incoming DML-IPSec datagrams get partially decrypted according to the security association and zone mapping at the inbound processing module. After the inbound processing, the partially decrypted IP datagram traverses through the networking stack of the intermediate node . Before the IP datagram leaves the intermediate node, it is processed by the outbound module to reconstruct the DML-IPSec datagram. The key sharing protocol for sharing zone related cryptographic information among the intermediate nodes is the other important component of the DML-IPSec protocol. This component is responsible for dynamically enabling intermediate nodes to access zonal information as required for performing specific services relating to quality or security. Whenever a DML-IPSec datagram traverses through an intermediate node, that requires access to some of the type I zones, the inbound security database is searched for cryptographic parameters. If no entry is present in the database, the key sharing protocol is invoked. The very first step in this protocol is a header inaccessible message from the intermediate node to the source of the DML-IPSec datagram. The intermediate node also mentions the protocol headers that it requires to access in the body portion of this message. This first phase of the protocol, called the Zone reorganization phase, is responsible for deciding the zone mapping to provide access to intermediate nodes. If the current zone map can not serve the header request, the DML-IPSec endpoint reorganizes the existing zone map in this phase. The next phase of the protocol, called the Authentication Phase is responsible for verifying the identity of the intermediate node to the source of DML-IPSec session. Upon successful authentication, the third phase, called the Shared secret establishment phase commences. This phase is responsible for the establishment of a temporary shared secret between the source and intermediate nodes. This shared secret is to be used as key for encrypting the actual message transfer of the DML-IPSec security parameters at the next phase of the protocol. The final phase of the protocol, called the Security parameter sharing phase, is solely responsible for actual transfer of the security parameters from the source to the intermediate nodes. This phase is also responsible for updation of security and policy databases of the intermediate nodes. The successful execution of the four phases of the key sharing protocol enables the DML-IPSec protocol to dynamically modify the zone map for providing access to some header portions for intermediate nodes and also to share the necessary cryptographic parameters required for accessing relevant type I zones without disturbing an existing DML-IPSec communication. We have implemented the DML-IPSec for ESP protocol according to the definition of zones along with the key sharing algorithm. RHEL version 4 and Linux kernel version 2.6.23.14 was used for the implementation. We implemented the multi-layer IPSec functionalities inside the native Linux implementation of IPSec protocol. The SA structure was updated to hold necessary SA information for multiple zones instead of single SA of the normal IPSec. The zone mapping for different zones was implemented along with the kernel implementation of SA. The inbound and outbound processing modules of the IPSec endpoints were re-implemented to incorporate multi-layer IPSec capability. We also implemented necessary modules for providing partial IPSec processing capabilities at the intermediate nodes. The key sharing protocol consists of some user space utilities and corresponding kernel space components. We use ICMP protocol for the communications required for the execution of the protocol. At the kernel level, pseudo character device driver was implemented to update the kernel space data structures and necessary modifications were made to relevant kernel space functions. User space utilities and corresponding kernel space interface were provided for updating the security databases. As DML-IPSec ESP uses same Security Policy mechanism as IPSec ESP, existing utilities (viz. setkey) are used for the updation of security policy. However, the configuration of the SA is significantly different as it depends on the DML-IPSec zones. The DML-IPSec ESP implementation uses the existing utilities (setkey and racoon) for configuration of the sole type II zone. The type I zones are configured using the DML-IPSec application. The key sharing protocol also uses this application to reorganize the zone mapping and zone-wise cryptographic parameters. The above feature enables one to use default IPSec mechanism for the configuration of the sole type II zone. For experimental validation of DML-IPSec, we used the testbed as shown in the above figure. An ESP tunnel is configured between the two gateways GW1 and GW2. IN acts as an intermediate node and is installed with several intermediate applications. Clients C11 and C21 are connected to GW1 and GW2 respectively. We carried out detailed experiments for validating our solution w.r.t firewalling service. We used stateful packet filtering using iptables along with string match extension at IN. First, we configured the firewall to allow only FTP communication (using port information of TCP header and IP addresses of Inner IP header ) between C11 and C21. In the second experiment, we configured the firewall to allow only Web connection between C11 and C21 using the Web address of C11 (using HTTP header, port information of TCP header and IP addresses of Inner IP header ). In both experiments, we initiated the FTP and WEB sessions before the execution of the key sharing protocol. The session could not be established as the access to upper layer headers was denied. After the execution of the key sharing protocol, the sessions could be established, showing the availability of protocol headers to the iptables firewall at IN following the successful key sharing. We use record route option of ping program to validate the claim of handling datagrams with variable header lengths. This option of ping program records the IP addresses of all the nodes traversed during a round trip path in the IP OPTION field. As we used ESP in tunnel mode between GW1 and GW2, the IP addresses would be recorded inside the encrypted Inner IP header. We executed ping between C11 and C21 and observed the record route output. Before the execution of the key sharing protocol, the IP addresses of IN were absent in the record route output. After the successful execution of key sharing protocol, the IP addresses for IN were present at the record route output. The DML-IPSec protocol introduces some processing overhead and also increases the datagram size as compared to IPSec and ML-IPSec. It increases the datagram size compared to the standard IPSec. However, this increase in IP datagram size is present in the case of ML-IPSec as well. The increase in IP datagram length depends on the number of zones. As the number of zone increases this overhead also increases. We obtain experimental results about the processing delay introduced by DML-IPSec processing. For this purpose, we executed ping program from C11 to C21 in the test bed setup for the following cases: 1.ML-IPSec with one type I and one type II zone and 2. DML-IPSec with one type I and one type II zone. We observe around 10% increase in RTT in DML-IPSec with two dynamic zones over that of ML-IPSec with two static zones. This overhead is due to on-the-fly derivation of the zone length and related processing. The above experiment analyzes the processing delay at the endpoints without intermediate processing. We also analyzed the effect of intermediate processing due to dynamic zones of DML-IPSec. We used iptables firewall in the above mentioned experiment. The RTT value for DML-IPSec with dynamic zones increases by less than 10% over that of ML-IPSec with static zones. To summarize our work, we have proposed an extension to the multilayer IPSec protocol, called Dynamic Multilayer IPSec (DML-IPSec). It is capable of dynamic modification of zones and sharing of cryptographic parameters between endpoints and intermediate nodes using a key sharing protocol. The DML-IPSec also accommodates datagrams with variable header lengths. The above mentioned features enable any intermediate node to dynamically access required header portions of any DML-IPSec protected datagrams. Consequently they make the DML-IPSec suited for providing IPSec over mobile and distributed networks. We also provide complete implementation of ESP protocol and provide experimental validation of our work. We find that our work provides the dynamic support for QoS and security services without any significant extra overhead compared to that of ML-IPSec. The thesis begins with an introduction to communication security requirements in TCP/IP networks. Chapter 2 provides an overview of communication security protocols at different layers. It also describes the details of IPSec protocol suite. Chapter 3 provides a study on the interoperability issues between IPSec and intermediate devices and discusses about different solutions. Our proposed extension to the ML-IPSec protocol, called Dynamic ML-IPSec(DML-IPSec) is presented in Chapter 4. The design and implementation details of DML-IPSec in Linux environment is presented in Chapter 5. It also provides experimental validation of the protocol. In Chapter 6, we summarize the research work, highlight the contributions of the work and discuss the directions for further research.
733

Étude des problèmes d’ordonnancement sur des plates-formes hétérogènes en modèle multi-port

Rejeb, Hejer 30 August 2011 (has links)
Les travaux menés dans cette thèse concernent les problèmes d'ordonnancement sur des plates-formes de calcul dynamiques et hétérogènes et s'appuient sur le modèle de communication "multi-port" pour les communications. Nous avons considéré le problème de l'ordonnancement des tâches indépendantes sur des plates-formes maîtres-esclaves, dans les contextes statique et dynamique. Nous nous sommes également intéressé au problème de la redistribution de fichiers répliqués dans le cadre de l'équilibrage de charge. Enfin, nous avons étudié l'importance des mécanismes de partage de bande passante pour obtenir une meilleure efficacité du système. / The results presented in this document deal with scheduling problems on dynamic and heterogeneous computing platforms under the "multiport" model for the communications. We have considered the problem of scheduling independent tasks on master-slave platforms, in both offline and online contexts. We have also proposed algorithms for replicated files redistribution to achieve load balancing. Finally, we have studied the importance of bandwidth sharing mechanisms to achieve better efficiency.
734

Kvalita služeb a kvalita zážitku pro sítě nové generace / Quality of services and experience qualify for next generation networks

Vaněk, Jiří January 2018 (has links)
The thesis sums up the traffic parameters for the evaluation of next-generation access networks. There are mentioned parameters for service quality management and parameters for measuring the quality of experience. The EU regulation on High Speed Internet in the Czech Republic is analyzed. The practical part compares the results between the implementation of the quality management of services and without implementation. Also there is comparing theoretical and practical transmission rates of physical ports. Part of the thesis is a questionnaire focused on the quality of experience of the video sequence.
735

Cena, kvalita a rizika poskytování prací a služeb facility managementu / Price, quality and risk of providing facility management services

Hladišová, Marika January 2020 (has links)
This thesis focuses on prices, quality & risks of the Facility management. In the theoretical part there are explained points referring to the Facility management, it’s contributions, ways of securing them, important fields and it’s targets. Also individual levels of cooperation and the job description of the management. There is also a mention of an important standardization, of which the Facility management couldn’t function without. Also the example of service contract and lastly, a very important chapter is dedicated to the quality of work provision and Facility management services. The practical part of this thesis is the case study based on a questionnaire of how to support services of the two different subjects, hotels and construction companies. The case study also describes the cost of these services, ways of controlling the quality provided and contracts with appointed workers. The result of this thesis is a detailed description of potential risks which can appear in the individual type of services. There is a suggested optimization for all the risks mentioned.
736

Quality of Service Aware Mechanisms for (Re)Configuring Data Stream Processing Applications on Highly Distributed Infrastructure / Mécanismes prenant en compte la qualité de service pour la (re)configuration d’applications de traitement de flux de données sur une infrastructure hautement distribuée

Da Silva Veith, Alexandre 23 September 2019 (has links)
Une grande partie de ces données volumineuses ont plus de valeur lorsqu'elles sont analysées rapidement, au fur et à mesure de leur génération. Dans plusieurs scénarios d'application émergents, tels que les villes intelligentes, la surveillance opérationnelle de grandes infrastructures et l'Internet des Objets (Internet of Things), des flux continus de données doivent être traités dans des délais très brefs. Dans plusieurs domaines, ce traitement est nécessaire pour détecter des modèles, identifier des défaillances et pour guider la prise de décision. Les données sont donc souvent rassemblées et analysées par des environnements logiciels conçus pour le traitement de flux continus de données. Ces environnements logiciels pour le traitement de flux de données déploient les applications sous-la forme d'un graphe orienté ou de dataflow. Un dataflow contient une ou plusieurs sources (i.e. capteurs, passerelles ou actionneurs); opérateurs qui effectuent des transformations sur les données (e.g., filtrage et agrégation); et des sinks (i.e., éviers qui consomment les requêtes ou stockent les données). Nous proposons dans cette thèse un ensemble de stratégies pour placer les opérateurs dans une infrastructure massivement distribuée cloud-edge en tenant compte des caractéristiques des ressources et des exigences des applications. En particulier, nous décomposons tout d'abord le graphe d'application en identifiant quelques comportements tels que des forks et des joints, puis nous le plaçons dynamiquement sur l'infrastructure. Des simulations et un prototype prenant en compte plusieurs paramètres d'application démontrent que notre approche peut réduire la latence de bout en bout de plus de 50% et aussi améliorer d'autres métriques de qualité de service. L'espace de recherche de solutions pour la reconfiguration des opérateurs peut être énorme en fonction du nombre d'opérateurs, de flux, de ressources et de liens réseau. De plus, il est important de minimiser le coût de la migration tout en améliorant la latence. Des travaux antérieurs, Reinforcement Learning (RL) et Monte-Carlo Tree Searh (MCTS) ont été utilisés pour résoudre les problèmes liés aux grands nombres d’actions et d’états de recherche. Nous modélisons le problème de reconfiguration d'applications sous la forme d'un processus de décision de Markov (MDP) et étudions l'utilisation des algorithmes RL et MCTS pour concevoir des plans de reconfiguration améliorant plusieurs métriques de qualité de service. / A large part of this big data is most valuable when analysed quickly, as it is generated. Under several emerging application scenarios, such as in smart cities, operational monitoring of large infrastructure, and Internet of Things (IoT), continuous data streams must be processed under very short delays. In multiple domains, there is a need for processing data streams to detect patterns, identify failures, and gain insights. Data is often gathered and analysed by Data Stream Processing Engines (DSPEs).A DSPE commonly structures an application as a directed graph or dataflow. A dataflow has one or multiple sources (i.e., gateways or actuators); operators that perform transformations on the data (e.g., filtering); and sinks (i.e., queries that consume or store the data). Most complex operator transformations store information about previously received data as new data is streamed in. Also, a dataflow has stateless operators that consider only the current data. Traditionally, Data Stream Processing (DSP) applications were conceived to run in clusters of homogeneous resources or on the cloud. In a cloud deployment, the whole application is placed on a single cloud provider to benefit from virtually unlimited resources. This approach allows for elastic DSP applications with the ability to allocate additional resources or release idle capacity on demand during runtime to match the application requirements.We introduce a set of strategies to place operators onto cloud and edge while considering characteristics of resources and meeting the requirements of applications. In particular, we first decompose the application graph by identifying behaviours such as forks and joins, and then dynamically split the dataflow graph across edge and cloud. Comprehensive simulations and a real testbed considering multiple application settings demonstrate that our approach can improve the end-to-end latency in over 50% and even other QoS metrics. The solution search space for operator reassignment can be enormous depending on the number of operators, streams, resources and network links. Moreover, it is important to minimise the cost of migration while improving latency. Reinforcement Learning (RL) and Monte-Carlo Tree Search (MCTS) have been used to tackle problems with large search spaces and states, performing at human-level or better in games such as Go. We model the application reconfiguration problem as a Markov Decision Process (MDP) and investigate the use of RL and MCTS algorithms to devise reconfiguring plans that improve QoS metrics.
737

Квалитет хотелских услуга као фактор тржишног позиционирања у бањама Западноморавске бањске зоне / Kvalitet hotelskih usluga kao faktor tržišnog pozicioniranja u banjama Zapadnomoravske banjske zone / Quality of hotel servicies as a factor of market position in spas of the west Morava region

Blešić Ivana 16 July 2010 (has links)
<p>Захтев за бољим квалитетом производа и услуга, један је од најважнијих стратешких приоритета с којим се суочавају хотелска предузећа. Хотели који се определе за примену концепта квалитета као кључног фактора успеха требало би да постигну пораст задовољства корисника (гостију), односно, да се успешно позиционирају на тржишту и тако остваре већи профит. У раду се испитује концепт и мерење квалитета услуге у хотелском сектору. Приказани су резултати анкетног истраживања који се односе на очекивања и перцепције корисника о квалитету услуге у бањским хотелима. Истраживање је спроведено у пет бања Западноморавске зоне, у току августа и септембра 2008. Модел за мерење квалитета услуга развијен је на основу SERVQUAL модела. Коришћени су статистички методи дескриптивна статистичка анализа, Т тест за независне узорке и анализа варијансе ANOVA, помоћу које је испитано да ли између зависних варијабли (питања из домена очекивања и перцепције) и независних варијабли (старосне и образовне структуре испитаника) постоји статистички сигнификантна веза. Добијени резултати могу бити значајни за пружаоце хотелских услуга и допринети унапређењу пословања кроз прилагођавање хотелског производа потребама госта. Резултати спроведеног итраживања показали су да гости генерално нису задовољни хотелским услугама. Њихова очекивања била су већа од доживљеног квалитета услуге код свих детерминанти, изузев детерминанте &bdquo;саосећање&ldquo;, где је позитивна вредност јаза резултат ниских очекивања. Укупни SERVQUAL јаз је негативан и износи &ndash; 0,21. Горући проблем у пружању квалитетне услуге у бањским хотелима, представља неадекватна уређеност и опремљеност објеката и недостатак додатних хотелских садржаја (садржаја за забаву и рекреацију гостију као и wellness &amp; spa програма). Превазилажење овог проблема треба тражити у изградњи стратегије развоја са краткорочним и дугорочним плановима и стимулацији инвестирања у развој бањског туризма. Уређење и изградња објеката који су у складу са захтевима савременог госта, довели би до продужетка туристичке сезоне и привлачења платежнијих туриста. Понуда услуга високог квалитета представља најбољи начин за постизање конкурентске предности хотелског предузећа и изградње добрих односа са гостом, стога, у управљачким одлукама хотелских менаџера, концепти као што су очекивана и перципирана вредност треба да имају пресудну улогу.</p> / <p>Zahtev za boljim kvalitetom proizvoda i usluga, jedan je od najvažnijih strateških prioriteta s kojim se suočavaju hotelska preduzeća. Hoteli koji se opredele za primenu koncepta kvaliteta kao ključnog faktora uspeha trebalo bi da postignu porast zadovoljstva korisnika (gostiju), odnosno, da se uspešno pozicioniraju na tržištu i tako ostvare veći profit. U radu se ispituje koncept i merenje kvaliteta usluge u hotelskom sektoru. Prikazani su rezultati anketnog istraživanja koji se odnose na očekivanja i percepcije korisnika o kvalitetu usluge u banjskim hotelima. Istraživanje je sprovedeno u pet banja Zapadnomoravske zone, u toku avgusta i septembra 2008. Model za merenje kvaliteta usluga razvijen je na osnovu SERVQUAL modela. Korišćeni su statistički metodi deskriptivna statistička analiza, T test za nezavisne uzorke i analiza varijanse ANOVA, pomoću koje je ispitano da li između zavisnih varijabli (pitanja iz domena očekivanja i percepcije) i nezavisnih varijabli (starosne i obrazovne strukture ispitanika) postoji statistički signifikantna veza. Dobijeni rezultati mogu biti značajni za pružaoce hotelskih usluga i doprineti unapređenju poslovanja kroz prilagođavanje hotelskog proizvoda potrebama gosta. Rezultati sprovedenog itraživanja pokazali su da gosti generalno nisu zadovoljni hotelskim uslugama. NJihova očekivanja bila su veća od doživljenog kvaliteta usluge kod svih determinanti, izuzev determinante &bdquo;saosećanje&ldquo;, gde je pozitivna vrednost jaza rezultat niskih očekivanja. Ukupni SERVQUAL jaz je negativan i iznosi &ndash; 0,21. Gorući problem u pružanju kvalitetne usluge u banjskim hotelima, predstavlja neadekvatna uređenost i opremljenost objekata i nedostatak dodatnih hotelskih sadržaja (sadržaja za zabavu i rekreaciju gostiju kao i wellness &amp; spa programa). Prevazilaženje ovog problema treba tražiti u izgradnji strategije razvoja sa kratkoročnim i dugoročnim planovima i stimulaciji investiranja u razvoj banjskog turizma. Uređenje i izgradnja objekata koji su u skladu sa zahtevima savremenog gosta, doveli bi do produžetka turističke sezone i privlačenja platežnijih turista. Ponuda usluga visokog kvaliteta predstavlja najbolji način za postizanje konkurentske prednosti hotelskog preduzeća i izgradnje dobrih odnosa sa gostom, stoga, u upravljačkim odlukama hotelskih menadžera, koncepti kao što su očekivana i percipirana vrednost treba da imaju presudnu ulogu.</p> / <p>Demand for better quality of products and service is one of the most important strategic priorities that hotel companies have to manage with. Hotels that choose to implement the concept of quality as the key success factor needed to achieve increased customer satisfaction, respectively, to be successfully positioned in the market and thus achieve higher profits.The paper examines the concept and measurement of quality of service in the hotel sector. The results of research survey that relate to the expectations and perceptions of consumers about the quality of services in the spa hotels are represented here. The survey was conducted in five Serbian spas (West Morava region) in August and September 2008. A model for measuring the quality of services is developed based on the SERVQUAL model. Statistical methods used here are descriptive statistical analysis, t-test and analysis of variance ANOVA, which is used for analyzing whether there is a statistically significant link between the dependent variables (questions in the domain of expectations and perceptions) and the independent variables (age structure of respondents). The results may be important to the providers of hotel services and contribute to the advancement of business through the adjustment of the product to the needs of the guest. Results of the research showed that guests are not generally satisfied with hotel services. Their expectations were higher than their perceptions of quality services in all determinants, except the determinants of &quot;empathy&quot;, where the positive value of gap is the result of low expectations. Total SERVQUAL gap is negative and amounts to - 0.21. The burning issue in the provision of quality services in the spa hotels, is inadequate organization and infrastructure facilities and lack of additional hotel content (content for entertainment and recreation and spa &amp; wellness contents). Overcoming of this problem should be sought in construction of development strategies with short-term and long-term plans and cultural stimulation of investment in development of spa tourism. Planning and construction of facilities that are in accordance with the requirements of the guest, would lead to the extention of the tourist season and that would attract wealthier tourists. Offering high quality service is the best way to achieve competitive advantage of hotel companies and building good relations with the guests, therefore, in the management decisions of the hotel manager, concepts such as expected value and the perceived need have a crucial rolе.</p>
738

Real-time Scheduling for Data Stream Management Systems

Lehner, Wolfgang, Schmidt, Sven, Legler, Thomas, Schaller, Daniel 02 June 2022 (has links)
Quality-aware management of data streams is gaining more and more importance with the amount of data produced by streams growing continuously. The resources required for data stream processing depend on different factors and are limited by the environment of the data stream management system (DSMS). Thus, with a potentially unbounded amount of stream data and limited processing resources, some of the data stream processing tasks (originating from different users) may not be satisfyingly answered, and therefore, users should be enabled to negotiate a certain quality for the execution of their stream processing tasks. After the negotiation process, it is the responsibility of the Data Stream Management System to meet the quality constraints by using adequate resource reservation and scheduling techniques. Within this paper, we consider different aspects of real-time scheduling for operations within a DSMS. We propose a scheduling concept which enables us to meet certain time-dependent quality of service requirements for user-given processing tasks. Furthermore, we describe the implementation of our scheduling concept within a real-time capable data stream management system, and we give experimental results on that.
739

High-Performance Network-on-Chip Design for Many-Core Processors

Wang, Boqian January 2020 (has links)
With the development of on-chip manufacturing technologies and the requirements of high-performance computing, the core count is growing quickly in Chip Multi/Many-core Processors (CMPs) and Multiprocessor System-on-Chip (MPSoC) to support larger scale parallel execution. Network-on-Chip (NoC) has become the de facto solution for CMPs and MPSoCs in addressing the communication challenge. In the thesis, we tackle a few key problems facing high-performance NoC designs. For general-purpose CMPs, we encompass a full system perspective to design high-performance NoC for multi-threaded programs. By exploring the cache coherence under the whole system scenario, we present a smart communication service called Advance Virtual Channel Reservation (AVCR) to provide a highway to target packets, which can greatly reduce their contention delay in NoC. AVCR takes advantage of the fact that we can know or predict the destination of some packets ahead of their arrival at the Network Interface (NI). Exploiting the time interval before a packet is ready, AVCR establishes an end-to-end highway from the source NI to the destination NI. This highway is built up by reserving the Virtual Channel (VC) resources ahead of the target packet transmission and offering priority service to flits in the reserved VC in the wormhole router, which can avoid the target packets’ VC allocation and switch arbitration delay. Besides, we also propose an admission control method in NoC with a centralized Artificial Neural Network (ANN) admission controller, which can improve system performance by predicting the most appropriate injection rate of each node using the network performance information. In the online control process, a data preprocessing unit is applied to simplify the ANN architecture and make the prediction results more accurate. Based on the preprocessed information, the ANN predictor determines the control strategy and broadcasts it to each node where the admission control will be applied. For application-specific MPSoCs, we focus on developing high-performance NoC and NI compatible with the common AMBA AXI4 interconnect protocol. To offer the possibility of utilizing the AXI4 based processors and peripherals in the on-chip network based system, we propose a whole system architecture solution to make the AXI4 protocol compatible with the NoC based communication interconnect in the many-core system. Due to possible out-of-order transmission in the NoC interconnect, which conflicts with the ordering requirements specified by the AXI4 protocol, in the first place, we especially focus on the design of the transaction ordering units, realizing a high-performance and low cost solution to the ordering requirements. The microarchitectures and the functionalities of the transaction ordering units are also described and explained in detail for ease of implementation. Then, we focus on the NI and the Quality of Service (QoS) support in NoC. In our design, the NI is proposed to make the NoC architecture independent from the AXI4 protocol via message format conversion between the AXI4 signal format and the packet format, offering high flexibility to the NoC design. The NoC based communication architecture is designed to support high-performance multiple QoS schemes. The NoC system contains Time Division Multiplexing (TDM) and VC subnetworks to apply multiple QoS schemes to AXI4 signals with different QoS tags and the NI is responsible for traffic distribution between two subnetworks. Besides, a QoS inheritance mechanism is applied in the slave-side NI to support QoS during packets’ round-trip transfer in NoC. / Med utvecklingen av tillverkningsteknologi av on-chip och kraven på högpresterande da-toranläggning växer kärnantalet snabbt i Chip Multi/Many-core Processors (CMPs) ochMultiprocessor Systems-on-Chip (MPSoCs) för att stödja större parallellkörning. Network-on-Chip (NoC) har blivit den de facto lösningen för CMP:er och MPSoC:er för att mötakommunikationsutmaningen. I uppsatsen tar vi upp några viktiga problem med hög-presterande NoC-konstruktioner.Allmänna CMP:er omfattas ett fullständigt systemperspektiv för att design högprester-ande NoC för flertrådad program. Genom att utforska cachekoherensen under hela system-scenariot presenterar vi en smart kommunikationstjänst, AVCR (Advance Virtual ChannelReservation) för att tillhandahålla en motorväg till målpaket, vilket i hög grad kan min-ska deras förseningar i NoC. AVCR utnyttjar det faktum att vi kan veta eller förutsägadestinationen för vissa paket före deras ankomst till nätverksgränssnittet (Network inter-face, NI). Genom att utnyttja tidsintervallet innan ett paket är klart, etablerar AVCRen ände till ände motorväg från källan NI till destinationen NI. Denna motorväg byggsupp genom att reservera virtuell kanal (Virtual Channel, VC) resurser före målpaket-söverföringen och erbjuda prioriterade tjänster till flisar i den reserverade VC i wormholerouter. Dessutom föreslår vi också en tillträdeskontrollmetod i NoC med en centraliseradartificiellt neuronät (Artificial Neural Network, ANN) tillträdeskontroll, som kan förbättrasystemets prestanda genom att förutsäga den mest lämpliga injektionshastigheten för varjenod via nätverksprestationsinformationen. I onlinekontrollprocessen används en förbehan-dlingsenhet på data för att förenkla ANN-arkitekturen och göra förutsägningsresultatenmer korrekta. Baserat på den förbehandlade informationen bestämmer ANN-prediktornkontrollstrategin och sänder den till varje nod där tillträdeskontrollen kommer att tilläm-pas.För applikationsspecifika MPSoC:er fokuserar vi på att utveckla högpresterande NoCoch NI kompatibla med det gemensamma AMBA AXI4 protokoll. För att erbjuda möj-ligheten att använda AXI4-baserade processorer och kringutrustning i det on-chip baseradenätverkssystemet föreslår vi en hel systemarkitekturlösning för att göra AXI4 protokolletkompatibelt med den NoC-baserade kommunikation i det multikärnsystemet. På grundav den out-of-order överföring i NoC, som strider mot ordningskraven som anges i AXI4-protokollet, fokuserar vi i första hand på utformningen av transaktionsordningsenheterna,för att förverkliga en hög prestanda och låg kostnad-lösning på ordningskraven. Sedanfokuserar vi på NI och Quality of Service (QoS)-stödet i NoC. I vår design föreslås NI attgöra NoC-arkitekturen oberoende av AXI4-protokollet via meddelandeformatkonverteringmellan AXI4 signalformatet och paketformatet, vilket erbjuder NoC-designen hög flexi-bilitet. Den NoC-baserade kommunikationsarkitekturen är utformad för att stödja fleraQoS-schema med hög prestanda. NoC-systemet innehåller Time-Division Multiplexing(TDM) och VC-subnät för att tillämpa flera QoS-scheman på AXI4-signaler med olikaQoS-taggar och NI ansvarar för trafikdistribution mellan två subnät. Dessutom tillämpasen QoS-arvsmekanism i slav-sidan NI för att stödja QoS under paketets tur-returöverföringiNoC / <p>QC 20201008</p>
740

A Process Framework for Managing Quality of Service in Private Cloud

Maskara, Arvind 01 August 2014 (has links)
As information systems leaders tap into the global market of cloud computing-based services, they struggle to maintain consistent application performance due to lack of a process framework for managing quality of service (QoS) in the cloud. Guided by the disruptive innovation theory, the purpose of this case study was to identify a process framework for meeting the QoS requirements of private cloud service users. Private cloud implementation was explored by selecting an organization in California through purposeful sampling. Information was gathered by interviewing 23 information technology (IT) professionals, a mix of frontline engineers, managers, and leaders involved in the implementation of private cloud. Another source of data was documents such as standard operating procedures, policies, and guidelines related to private cloud implementation. Interview transcripts and documents were coded and sequentially analyzed. Three prominent themes emerged from the analysis of data: (a) end user expectations, (b) application architecture, and (c) trending analysis. The findings of this study may help IT leaders in effectively managing QoS in cloud infrastructure and deliver reliable application performance that may help in increasing customer population and profitability of organizations. This study may contribute to positive social change as information systems managers and workers can learn and apply the process framework for delivering stable and reliable cloud-hosted computer applications.

Page generated in 0.0537 seconds