• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 14
  • 6
  • 1
  • Tagged with
  • 46
  • 46
  • 26
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Problema do subgrupo oculto em grupos nilpotentes / Hidden subgroup problem in nilpotent groups

Tharso Dominisini Fernandes 13 March 2008 (has links)
Computadores quânticos prometem resolver certos problemas assintoticamente mais rápido do que os computadores clássicos. Algoritmos quânticos, como o algoritmo de Shor, podem ser considerados casos particulares do chamado Problema do Subgrupo Oculto(PSO). O PSO consiste em encontrar um subgrupo H de um grupo G por meio de avaliações de uma função f que é constante em classes laterais de H e distinta em classes laterais diferentes. O PSO em grupos abelianos é resolvido eficientemente em um computador quântico, mas será que os computadores quânticos podem resolver o PSO em grupos não abelianos? Esta questão tem sido discutida regularmente pela comunidade científica devido a importantes aplicações, como é o caso do problema de isomorfismo de grafos e do problema do menor vetor em um reticulado. Nesta dissertação é feita uma revisão do trabalho de Ivanyos et al. (2007a), o qual apresenta uma solução para o PSO em grupos nilpotentes de classe 2. Com esta finalidade, é elaborada uma breve revisão sobre a Computação Quântica; são mostradas algumas características dos grupos nilpotentes e dos grupos solúveis, dando uma atenção especial aos grupos nilpotentes de classe 2; é exposto o método padrão de solução do PSO em grupos abelianos; também são exibidas as principais características de sequencias policıclicas e reduçõesde grupos nilpotentes usando as propriedades de sequencias policıclicas / Quantum computers may solve certain problems asymptotically faster than the classical computers. Quantum algorithms, such as Shors algorithm, may be considered as a particular case of the Hidden Subgroup Problem (HSP). The HSP consists in finding a subgroup H of a group G by evaluating a function f, which is constant in cosets of H and distinct for each coset. The HSP for Abelian groups is efficiently solved in a quantum computer, but is quantum computers can solve the HSP in non-Abelian groups efficiently? This question has been regularly discussed by the scientific community due to the importance of some applications, such as the graph isomorphism problem and the short vector in a lattice. In this dissertation we review the Ivanyos et al. (2007a) that address HSP in nilpotent groups of class 2. We make a brief review on Quantum Computing; we address some characteristics of nilpotent groups and solvable groups, with special attention to nilpotent groups of class 2; we discuss the standard method of solution of the HSP in Abelian groups; we present the main characteristics of the polycyclic sequences and important reductions of the HSP in classes of nilpotent groups using the properties of polycyclic sequences. Finally, we present an efficient algorithm to solve the HSP in nilpotent groups of class 2.
22

Uma arquitetura de co-processador para simulação de algoritmos quânticos em FPGA / A Co-processor architecture for simulation of quantum algorithms on FPGA

Conceição, Calebe Micael de Oliveira January 2013 (has links)
Simuladores quânticos têm tido um importante papel no estudo e desenvolvimento da computação quântica ao longo dos anos. A simulação de algoritmos quânticos em computadores clássicos é computacionalmente difícil, principalmente devido à natureza paralela dos sistemas quânticos. Para acelerar essas simulações, alguns trabalhos propõem usar hardware paralelo programável como FPGAs, o que diminui consideravelmente o tempo de execução. Contudo, essa abordagem tem três problemas principais: pouca escalabilidade, já que apenas transfere a complexidade do domínio do tempo para o domínio do espaço; a necessidade de re-síntese a cada mudança no algoritmo; e o esforço extra ao projetar o código RTL para simulação. Para lidar com esses problemas, uma arquitetura de um co-processador SIMD é proposta, cujas operações das portas quânticas está baseada no modelo Network of Butterflies. Com isso, eliminamos a necessidade de re-síntese com mudanças pequenas no algoritmo quântico simulado, e eliminamos a influência de um dos fatores que levam ao crescimento exponencial do uso de recursos da FPGA. Adicionamente, desenvolvemos uma ferramenta para geração automática do código RTL sintetizável do co-processador, reduzindo assim o esforço extra de projeto. / Quantum simulators have had a important role on the studying and development of quantum computing throughout the years. The simulation of quantum algorithms on classical computers is computationally hard, mainly due to the parallel nature of quantum systems. To speed up these simulations, some works have proposed to use programmable parallel hardware such as FPGAs, which considerably shorten the execution time. However this approach has three main problems: low scalability, since it only transfers the complexity from time domain to space domain; the need of re-synthesis on every change on the algorithm; and the extra effort on designing the RTL code for simulation. To handle these problems, an architecture of a SIMD co-processor is proposed, whose operations of quantum gates are based on Network of Butterflies model. Thus, we eliminate the need of re-synthesis on small changes on the simulated quantum algorithm, and we eliminated the influence of one of the factors that lead to the exponential growth on the consumption of FPGA resources. Aditionally, we developed a tool to automatically generate the synthesizable RTL code of the co-processor, thus reducing the extra design effort.
23

Simulação de caminhos quânticos em redes bidimensionais / Simulation of quantum walks in two-Dimensional lattices

Oliveira, Amanda Castro 15 June 2007 (has links)
Made available in DSpace on 2015-03-04T18:50:52Z (GMT). No. of bitstreams: 1 thesis.pdf: 6097890 bytes, checksum: 7eea019378a8126c37befefac84557cb (MD5) Previous issue date: 2007-06-15 / Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Caminhos aleatórios clássicos são essenciais para a Física, a Matemática, a Ciência da Computação e muitas outras áreas. Há uma grande expectativa que a sua versão quântica seja ainda mais poderosa, uma vez que o caminhante quântico se espalha quadraticamente mais rápido que o seu análogo clássico. Neste trabalho, estudamos o comportamento do caminhante quântico em uma e duas dimensões, além de generalizarmos o formalismo de ligações interrompidas para duas ou mais dimensões. Em uma dimensão, analisamos o comportamento do caminhante quântico, que além das duas possibilidades de deslocamento usuais, direita e esquerda, também permanece na posição atual. Em duas dimensões, apresentamos um estudo detalhado do comportamento do caminhante no plano e quando há descoerência gerada pela quebra aleatória das ligações para as posições vizinhas com uma certa probabilidade para cada uma das direções. Quando essa probabilidade de quebra é diferente nas duas direções encontramos um resultado não trivial que representa uma transição do caso 2-D descorente para o caso 1-D coerente. Também utilizamos o formalismo de ligações interrompidas para modelar o comportamento de um caminhante quântico que passa por uma e por duas fendas. Realizamos simulações com com as principais moedas e observamos conclusivamente os padrões de interferência e difração.
24

Algoritmos quânticos para o problema do isomorfismo de grafos / Quantum Algorithms for the Graph Isomorphism Problem

Dalcumune, Edinelço 14 March 2008 (has links)
Made available in DSpace on 2015-03-04T18:50:59Z (GMT). No. of bitstreams: 1 thesis.pdf: 520664 bytes, checksum: a8423486c7ffd3a3ceff9cb2b60761ce (MD5) Previous issue date: 2008-03-14 / Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / The graph isomorphism problem has applications in several areas of science. This problem has not an efficient solution to its general case. In this work, we present the basic concepts of group theory, graph theory and quantum mechanics. We introduce the hidden subgroup problem and a known polynomial reduction of the graph isomorphism problem in its general case to the hidden subgroup problem on the symmetric group. We use a method that reduces the graph isomorphism problem to the group intersection problem. This method combines results from quantum computing and solvable group theory providing a efficient solution through a quantum algorithm to the graph isomorphism problem for the particular class of graphs. / O problema do isomorfismo de grafos possui aplicações em diversas áreas da ciência. Tal problema não possui uma solução eficiente para o seu caso geral. No presente trabalho, apresentamos os conceitos básicos em teoria de grupos, teoria dos grafos e mecânica quântica. Apresentamos o problema do subgrupo oculto e uma conhecida redução polinomial do problema do isomorfismo de grafos no seu caso geral para o problema do subgrupo oculto sobre o grupo simétrico. Utilizamos um método que reduz o problema do isomorfismo de grafos para o problema de interseção de grupos. Este método utiliza resultados da computação quântica e da teoria dos grupos solúveis, nos permitindo obter uma solução eficiente através de um algoritmo quântico para o problema do isomorfismo de grafos para uma classe particular de grafos.
25

Problema do subgrupo oculto em grupos nilpotentes / Hidden subgroup problem in nilpotent groups

Fernandes, Tharso Dominisini 13 March 2008 (has links)
Made available in DSpace on 2015-03-04T18:50:59Z (GMT). No. of bitstreams: 1 Thesis_Tharso_Dominisini_Fernandes_2008.pdf: 433414 bytes, checksum: 974d6b0bd3b829341f4f36f9c8d29a72 (MD5) Previous issue date: 2008-03-13 / Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Quantum computers may solve certain problems asymptotically faster than the classical computers. Quantum algorithms, such as Shor s algorithm, may be considered as a particular case of the Hidden Subgroup Problem (HSP). The HSP consists in finding a subgroup H of a group G by evaluating a function f, which is constant in cosets of H and distinct for each coset. The HSP for Abelian groups is efficiently solved in a quantum computer, but is quantum computers can solve the HSP in non-Abelian groups efficiently? This question has been regularly discussed by the scientific community due to the importance of some applications, such as the graph isomorphism problem and the short vector in a lattice. In this dissertation we review the Ivanyos et al. (2007a) that address HSP in nilpotent groups of class 2. We make a brief review on Quantum Computing; we address some characteristics of nilpotent groups and solvable groups, with special attention to nilpotent groups of class 2; we discuss the standard method of solution of the HSP in Abelian groups; we present the main characteristics of the polycyclic sequences and important reductions of the HSP in classes of nilpotent groups using the properties of polycyclic sequences. Finally, we present an efficient algorithm to solve the HSP in nilpotent groups of class 2. / Computadores quânticos prometem resolver certos problemas assintoticamente mais rápido do que os computadores clássicos. Algoritmos quânticos, como o algoritmo de Shor, podem ser considerados casos particulares do chamado Problema do Subgrupo Oculto(PSO). O PSO consiste em encontrar um subgrupo H de um grupo G por meio de avaliações de uma função f que é constante em classes laterais de H e distinta em classes laterais diferentes. O PSO em grupos abelianos é resolvido eficientemente em um computador quântico, mas será que os computadores quânticos podem resolver o PSO em grupos não abelianos? Esta questão tem sido discutida regularmente pela comunidade científica devido a importantes aplicações, como é o caso do problema de isomorfismo de grafos e do problema do menor vetor em um reticulado. Nesta dissertação é feita uma revisão do trabalho de Ivanyos et al. (2007a), o qual apresenta uma solução para o PSO em grupos nilpotentes de classe 2. Com esta finalidade, é elaborada uma breve revisão sobre a Computação Quântica; são mostradas algumas características dos grupos nilpotentes e dos grupos solúveis, dando uma atenção especial aos grupos nilpotentes de classe 2; é exposto o método padrão de solução do PSO em grupos abelianos; também são exibidas as principais características de sequencias policıclicas e reduções¸de grupos nilpotentes usando as propriedades de sequencias policıclicas
26

Generalizations Of The Quantum Search Algorithm

Tulsi, Tathagat Avatar 27 April 2009 (has links)
Quantum computation has attracted a great deal of attention from the scientific community in recent years. By using the quantum mechanical phenomena of superposition and entanglement, a quantum computer can solve certain problems much faster than classical computers. Several quantum algorithms have been developed to demonstrate this quantum speedup. Two important examples are Shor’s algorithm for the factorization problem, and Grover’s algorithm for the search problem. Significant efforts are on to build a large scale quantum computer for implementing these quantum algorithms. This thesis deals with Grover’s search algorithm, and presents its several generalizations that perform better in specific contexts. While writing the thesis, we have assumed the familiarity of readers with the basics of quantum mechanics and computer science. For a general introduction to the subject of quantum computation, see [1]. In Chapter 1, we formally define the search problem as well as present Grover’s search algorithm [2]. This algorithm, or more generally the quantum amplitude amplification algorithm [3, 4], drives a quantum system from a prepared initial state (s) to a desired target state (t). It uses O(α-1 = | (t−|s)| -1) iterations of the operator g = IsIt on |s), where { IsIt} are selective phase inversions selective phase inversions of the corresponding states. That is a quadratic speedup over the simple scheme of O(α−2) preparations of |s) and subsequent projective measurements. Several generalizations of Grover’s algorithm exist. In Chapter 2, we study further generalizations of Grover’s algorithm. We analyse the iteration of the search operator S = DsI t on |s) where Ds is a more general transformation than Is, and I t is a selective phase rotation of |t) by angle . We find sufficient conditions for S to produce a successful quantum search algorithm. In Chapter 3, we demonstrate that our general framework encapsulates several previous generalizations of Grover’s algorithm. For example, the phase-matching condition for the search operator requires the angles and and to be almost equal for a successful quantum search. In Kato’s algorithm, the search operator is where Ks consists of only single-qubit gates, which are easier to implement physically than multi-qubit gates. The spatial search algorithms consider the search operator where is a spatially local operator and provides implementation advantages over Is. The analysis of Chapter 2 provides a simpler understanding of all these special cases. In Chapter 4, we present schemes to improve our general quantum search algorithm, by controlling the operators through an ancilla qubit. For the case of two dimensional spatial search problem, these schemes yield an algorithm with time complexity . Earlier algorithms solved this problem in time steps, and it was an open question to design a faster algorithm. The schemes can also be used to find, for a given unitary operator, an eigenstate corresponding to a specified eigenvalue. In Chapter 5, we extend the analysis of Chapter 2 to general adiabatic quantum search. It starts with the ground state |s) of an initial Hamiltonian Hs and evolves adiabatically to the target state |t) that is the ground state of the final Hamiltonian The evolution uses a time dependent Hamiltonian HT that varies linearly with time . We show that the minimum excitation gap of HT is proportional to α. Also, the ground state of HT changes significantly only within a very narrow interval of width around the transition point, where the excitation gap has its minimum. This feature can be used to reach the target state (t) using adiabatic evolution for time In Chapter 6, we present a robust quantum search algorithm that iterates the operator on |s) to successfully reach |t), whereas Grover’s algorithm fails if as per the phase-matching condition. The robust algorithm also works when is generalized to multiple target states. Moreover, the algorithm provides a new search Hamiltonian that is robust against certain systematic perturbations. In Chapter 7, we look beyond the widely studied scenario of iterative quantum search algorithms, and present a recursive quantum search algorithm that succeeds with transformations {Vs,Vt} sufficiently close to {Is,It.} Grover’s algorithm generally fails if while the recursive algorithm is nearly optimal as long as , improving the error tolerance of the transformations. The algorithms of Chapters 6-7 have applications in quantum error-correction, when systematic errors affect the transformations The algorithms are robust as long as the errors are small, reproducible and reversible. This type of errors arise often from imperfections in apparatus setup, and so the algorithms increase the flexibility in physical implementation of quantum search. In Chapter 8, we present a fixed-point quantum search algorithm. Its state evolution monotonically converges towards |t), unlike Grover’s algorithm where the evolution passes through |t) under iterations of the operator . In q steps, our algorithm monotonically reduces the failure probability, i.e. the probability of not getting |t), from . That is asymptotically optimal for monotonic convergence. Though the fixed-point algorithm is of not much use for , it is useful when and each oracle query is highly expensive. In Chapter 9, we conclude the thesis and present an overall outlook.
27

A panoply of quantum algorithms

Furrow, Bartholomew 11 1900 (has links)
This thesis’ aim is to explore improvements to, and applications of, a fundamental quantum algorithm invented by Grover. Grover’s algorithm is a basic tool that can be applied to a large number of problems in computer science, creating quantum algorithms that are polynomially faster than fastest known and fastest possible classical algorithms that solve the same problems. Our goal in this thesis is to make these techniques readily accessible to those without a strong background in quantum physics: we achieve this by providing a set of tools, each of which makes use of Grover’s algorithm or similar techniques, that can be used as subroutines in many quantum algorithms. The tools we provide are carefully constructed: they are easy to use, and they are asymptotically faster than the best tools previously available. The tools that we supersede include algorithms by Boyer, Brassard, Hoyer and Tapp, Buhrman, Cleve, de Witt and Zalka and Durr and Hoyer. After creating our tools, we create several new quantum algorithms, each of which is faster than the fastest known classical algorithm that accomplishes the same aim, and some of which are faster than the fastest possible classical algorithm. These algorithms come from graph theory, computational geometry and dynamic programming. We discuss a breadth-first search that is faster than (edges) (the classical limit) in a dense graph, maximum-points-on-a-line in (N3/2 lgN) (faster than the fastest classical algorithm known), as well as several other algorithms that are similarly illustrative of solutions in some class of problem. Through these new algorithms we illustrate the use of our tools, working to encourage their use and the study of quantum algorithms in general.
28

A panoply of quantum algorithms

Furrow, Bartholomew 11 1900 (has links)
This thesis aim is to explore improvements to, and applications of, a fundamental quantum algorithm invented by Grover. Grovers algorithm is a basic tool that can be applied to a large number of problems in computer science, creating quantum algorithms that are polynomially faster than fastest known and fastest possible classical algorithms that solve the same problems. Our goal in this thesis is to make these techniques readily accessible to those without a strong background in quantum physics: we achieve this by providing a set of tools, each of which makes use of Grovers algorithm or similar techniques, that can be used as subroutines in many quantum algorithms. The tools we provide are carefully constructed: they are easy to use, and they are asymptotically faster than the best tools previously available. The tools that we supersede include algorithms by Boyer, Brassard, Hoyer and Tapp, Buhrman, Cleve, de Witt and Zalka and Durr and Hoyer. After creating our tools, we create several new quantum algorithms, each of which is faster than the fastest known classical algorithm that accomplishes the same aim, and some of which are faster than the fastest possible classical algorithm. These algorithms come from graph theory, computational geometry and dynamic programming. We discuss a breadth-first search that is faster than (edges) (the classical limit) in a dense graph, maximum-points-on-a-line in (N3/2 lgN) (faster than the fastest classical algorithm known), as well as several other algorithms that are similarly illustrative of solutions in some class of problem. Through these new algorithms we illustrate the use of our tools, working to encourage their use and the study of quantum algorithms in general.
29

Cryptographie Quantique : Protocoles et Graphes / Quantum Cryptography : Protocols and Graphs

Javelle, Jérôme 02 June 2014 (has links)
Je souhaite réaliser un modèle théorique optimal pour les protocoles de partage de secret quantique basé sur l'utilisation des états graphes. Le paramètre représentatif d'un partage de secret à seuil est, entre autres la taille du plus grand ensemble de joueurs qui ne peut pas accéder au secret. Je souhaite donc trouver un famille de protocoles pour laquelle ce paramètre est le plus petit possible. J'étudie également les liens entre les protocoles de partage de secret quantique et des familles de courbes en géométrie algébrique. / I want to realize an optimal theoretical model for quantum secret sharing protocols based on graph states. The main parameter of a threshold quantum secret sharing scheme is the size of the largest set of players that can not access the secret. Thus, my goal is to find a collection of protocols for which the value of this parameter is the smallest possible. I also study the links between quantum secret sharing protocols and families of curves in algebraic geometry.
30

Algoritmos quânticos para o problema do isomorfismo de grafos / Quantum Algorithms for the Graph Isomorphism Problem

Edinelço Dalcumune 14 March 2008 (has links)
O problema do isomorfismo de grafos possui aplicações em diversas áreas da ciência. Tal problema não possui uma solução eficiente para o seu caso geral. No presente trabalho, apresentamos os conceitos básicos em teoria de grupos, teoria dos grafos e mecânica quântica. Apresentamos o problema do subgrupo oculto e uma conhecida redução polinomial do problema do isomorfismo de grafos no seu caso geral para o problema do subgrupo oculto sobre o grupo simétrico. Utilizamos um método que reduz o problema do isomorfismo de grafos para o problema de interseção de grupos. Este método utiliza resultados da computação quântica e da teoria dos grupos solúveis, nos permitindo obter uma solução eficiente através de um algoritmo quântico para o problema do isomorfismo de grafos para uma classe particular de grafos. / The graph isomorphism problem has applications in several areas of science. This problem has not an efficient solution to its general case. In this work, we present the basic concepts of group theory, graph theory and quantum mechanics. We introduce the hidden subgroup problem and a known polynomial reduction of the graph isomorphism problem in its general case to the hidden subgroup problem on the symmetric group. We use a method that reduces the graph isomorphism problem to the group intersection problem. This method combines results from quantum computing and solvable group theory providing a efficient solution through a quantum algorithm to the graph isomorphism problem for the particular class of graphs.

Page generated in 0.043 seconds