Spelling suggestions: "subject:"kuantum"" "subject:"auantum""
221 |
AlGaN quantum dots grown by molecular beam epitaxy for ultraviolet light emitting diodes / Boîtes quantiques AlGaN par épitaxie par jets moléculaires pour diodes électroluminescentes ultraviolettesMatta, Samuel 02 May 2018 (has links)
Ce travail porte sur la croissance par épitaxie sous jets moléculaires (EJM) et sur les propriétés structurales et optiques de boîtes quantiques (BQs) AlyGa1-yN insérées dans une matrice AlxGa1-xN (0001). L’objectif principal est d’étudier le potentiel des BQs en tant que nouvelle voie pour la réalisation d’émetteurs ultraviolets (UV) efficaces.Tout d'abord, nous avons étudié la croissance des BQs GaN en utilisant soit une source plasma (N2, appelée PAMBE) soit une source ammoniac (NH3, appelée NH3-MBE) afin de choisir la meilleure approche pour former les BQs les plus efficaces. Il a été montré que le procédé de croissance est mieux contrôlé en utilisant l’approche PAMBE, conduisant à la croissance de BQs GaN avec des densités plus élevées, une meilleure uniformité en taille et des intensités de photoluminescence (PL) jusqu’à trois fois plus élevées. En outre, l'influence de la contrainte épitaxiale sur le processus d'auto-assemblage des BQs a été étudiée en fabriquant des BQs GaN sur différentes couche tremplins d’AlxGa1-xN (avec 0,5 ≤ x ≤ 0,7). Nous avons montré que des BQs avec des densités plus élevées et des hauteurs plus faibles sont formées en augmentant le désaccord de paramètre de maille (c.à.d en utilisant des tremplins avec xAl plus élevé). Cependant, les mesures de photoluminescence (PL) indiquent un fort décalage de l'énergie d'émission vers le rouge lorsque xAl augmente, en raison de l'augmentation de la discontinuité du champ électrique interne de 3 à 5,3 MV/cm.Ensuite, des études approfondies sur les conditions de croissance et les propriétés optiques des BQs Al0,1Ga0,9N / Al0,5Ga0,5N ont été présentées, montrant les différents défis pour fabriquer des BQs efficaces. L’optimisation de la procédure de croissance, notamment l’étape de recuit post-croissance, a montré une modification de la forme des BQs. Plus précisément, un changement d’une forme allongée (pour un recuit à 740 °C), à une forme symétrique (pour un recuit à une température proche de ou supérieure à 800°C) a été observé. En plus, une bande d’émission supplémentaire vers les plus grandes longueurs d’onde a également été observée pour les BQs formées avec un recuit à 740°C. Cette bande a été attribuée à une fluctuation de composition des BQs, induisant la formation d’une famille additionnelle de BQs avec des hauteurs plus grandes et une compostions en Al inférieure à 10 %, estimée proche de l’alliage binaire GaN. Enfin, il a été démontré qu’en faisant un recuit à plus haute température (≥ 800°C), l’émission de PL de cette famille supplémentaire de BQs (BQs riche en Ga ou (Al)GaN) diminue très fortement. De plus, cette étape de recuit impacte fortement la forme des BQs et a conduit à une amélioration de leur efficacité radiative d’un facteur 3. Ensuite, la variation de la composition en Al des BQs AlyGa1-yN (0,1 ≤ y ≤ 0,4), ainsi que la quantité de matière déposée ont permis d’évaluer la gamme de longueurs d’onde d’émission accessibles. En ajustant les conditions de croissance, l’émission des BQs a été déplacée de l’UVA vers l’UVC, atteignant une émission autour de 270 - 275 nm (pour les applications de purification de l’eau et de l’air) avec des rendements radiatifs élevés. Les mesures de photoluminescence résolue en temps (TRPL), combinées avec les mesures de PL en fonction de la température, nous ont permis de déterminer les efficacités quantiques internes (IQE) des BQs GaN / AlxGa1-xN (0001). Des valeurs d’IQE comprises entre 50 % et 66 % ont été obtenues à basse température, avec la possibilité d’atteindre un rapport d’intensité intégré de PL, entre 300 K et 9 K, allant jusqu’à 75 % pour les BQs GaN et 46 % pour les BQs AlyGa1-yN (contre 0,5 % pour des structures équivalents à base de puits quantiques).Enfin, nous avons montré la possibilité de fabriquer des DELs à base de BQs (Al,Ga)N couvrant une grande gamme de longueurs d’onde allant du bleu-violet jusqu’à l’UVB (de 415 nm à 305 nm). / This PhD deals with the epitaxial growth, structural and optical properties of AlyGa1-yN quantum dots (QDs) grown on AlxGa1-xN (0001) by molecular beam epitaxy (MBE), with the aim to study their potential as a novel route for efficient ultraviolet (UV) emitters.First, we have studied the growth of GaN QDs using either plasma MBE (PAMBE) or ammonia MBE (NH3-MBE) to find the most adapted nitrogen source for the fabrication of UV emitting QDs. It was shown that the growth process is better controlled using PAMBE, leading to the growth of GaN QDs with higher densities, better size uniformity and up to three times higher photoluminescence (PL) intensities. Also, the influence of the epitaxial strain on the QD self-assembling process was studied by fabricating GaN QDs on different AlxGa1-xN surfaces (with 0.5 ≤ x ≤ 0.7). We showed that QDs with higher densities and smaller sizes (heights) are formed by using a larger lattice-mismatch (i.e. a higher xAl composition). However, photoluminescence (PL) measurements indicated a strong redshift in the emission energy as the Al content of the AlxGa1-xN template increases due to the increase of the internal electric field discontinuity from 3 to 5.3 MV/cm.Next, in-depth investigations of the growth conditions and optical properties of Al0.1Ga0.9N QDs / Al0.5Ga0.5N were done presenting the different challenges to be solved to grow efficient QDs. Changing the growth procedure, especially the post-growth annealing step, has shown a modification of the QD shape from elongated QDs, formed with an annealing at 740°C, to symmetric QDs, formed with an annealing at a temperature around or above 800°C. An additional band emission at lower energies was also observed for QDs grown with a lower annealing temperature (740°C). This additional band emission was attributed to the formation of QDs with higher heights and a reduced Al composition less than the nominal one of 10 % (i.e. forming Ga-rich QDs). The influence of the annealing step performed at higher temperature has been shown to strongly decrease the PL emission from this additional QD family. In addition, this annealing step strongly impacted the QD shape and led to an improvement of the QD radiative efficiency by a factor 3. Then, the AlxGa1-xN barrier composition (0.5 ≤ x ≤ 0.7), the AlyGa1-yN QD composition (0.1 ≤ y ≤ 0.4) as well as the deposited amount were varied in order to assess the range of accessible emission energies. Also, the influence of varying the AlxGa1-xN barrier composition on the QD formation was studied. By varying these growth conditions, the QD wavelength emission was shifted from the UVA down to the UVC range, reaching a minimum wavelength emission of 270 - 275 nm (for water and air purification applications) with a high radiative efficiency. Time resolved photoluminescence (TRPL) combined with temperature dependent PL measurements enabled us to determine the internal quantum efficiencies (IQE) of AlyGa1-yN QDs / AlxGa1-xN (0001). IQE values between 50 % and 66 % were found at low temperature, combined with the ability to reach a PL integrated intensity ratio, between 300 K and 9 K, up to 75 % for GaN QDs and 46 % for AlyGa1-yN QDs (versus 0.5 % in a similar quantum well structure emitting in the UVC range).Finally, the demonstration of AlyGa1-yN QD-based light emitting diode prototypes, emitting in the whole UVA range, using GaN and Al0.1Ga0.9N QDs, and in the UVB range down to 305 nm with Al0.2Ga0.8N QDs active regions, was shown.
|
222 |
Les fils photoniques : une géométrie innovante pour la réalisation de sources de lumière quantique brillantes / Photonic nanowires : a new geometry to realize bright sources of quantum lightMalik, Nitin Singh 21 November 2011 (has links)
Cette thèse présente la réalisation d'une source de photons uniques basée sur une boîte quantique InAs intégrée dans un fil photonique. Un fil photonique est un guide d'onde monomode constitué d'un matériau de fort indice de réfraction (GaAs dans notre cas). Pour un diamètre optimal voisin de 200 nm, pratiquement toute l'émission spontanée de l'émetteur (longueur d'onde dans le vide 950 nm) est dirigée vers le mode guidé fondamental. Le couplage des photons guidés à un objectif de microscope est ensuite optimisé en travaillant la géométrie des extrémités du fil. Ce dernier repose ainsi sur un miroir intégré et présente une extrémité supérieure en forme de taper. Cette approche non résonante combine de très bonnes performances à une grande tolérance sur la longueur d'onde de l'émetteur intégré. Cette thèse discute la physique des fils photoniques, la réalisation des structures en salle blanche et les résultats obtenus lors de la caractérisation optique. En particulier, nous avons réalisé une source combinant une efficacité record (0.72, état de l'art à 0.4) et une émission de photons uniques très pure. Nous discutons également le contrôle de la polarisation obtenu dans des fils de section elliptique. / This thesis presents the realization of an efficient single-photon source based on an InAs quantum dot integrated in a photonic nanowire. A photonic nanowire is a monomode waveguide made of a high refractive index material (GaAs in our case). For an optimal wire diameter around 200 nm, nearly all the spontaneous emission of the embedded single-photon emitter (free space wavelength 950 nm) is funnelled into the fundamental guided mode. In addition, the outcoupling efficiency of the guided photon to a microscope objective can be brought close to one with a proper engineering of the wire ends. The source thus features an integrated bottom mirror and a smooth tapering of the wire upper end. High performances are maintained over a broad wavelength range, a key asset of this 1D photonic structure. This thesis presents the physics which governs these structures, their realization, and their characterization. Under pulsed optical pumping, we demonstrate a single-photon source with a record efficiency of 0.72, combined with highly pure single-photon emission. We also discuss the possibility to obtain polarization control, using wire with an elliptical section.
|
223 |
Room-temperature continuous-wave operation of GaInNAs/GaAs quantum dot laser with GaAsN barrier grown by solid source molecular beam epitaxySun, Z. Z., Yoon, Soon Fatt, Yew, K. C., Bo, B. X., Yan, Du An, Tung, Chih-Hang 01 1900 (has links)
We present the results of GaInNAs/GaAs quantum dot structures with GaAsN barrier layers grown by solid source molecular beam epitaxy. Extension of the emission wavelength of GaInNAs quantum dots by ~170nm was observed in samples with GaAsN barriers in place of GaAs. However, optimization of the GaAsN barrier layer thickness is necessary to avoid degradation in luminescence intensity and structural property of the GaInNAs dots. Lasers with GaInNAs quantum dots as active layer were fabricated and room-temperature continuous-wave lasing was observed for the first time. Lasing occurs via the ground state at ~1.2μm, with threshold current density of 2.1kA/cm[superscript 2] and maximum output power of 16mW. These results are significantly better than previously reported values for this quantum-dot system. / Singapore-MIT Alliance (SMA)
|
224 |
Cytotoxicological Response to Engineered Nanomaterials: A Pathway-Driven ProcessRomoser, Amelia Antonia 2012 May 1900 (has links)
Nanoparticles, while included in a growing number of consumer products, may pose risks to human health due to heavy metal leaching and/or the production of reactive oxygen species following exposures. Subcellular mechanisms of action triggered as a result of exposure to various nanoparticles are still largely unexplored. In this work, an effort to elucidate such toxicological parameters was accomplished by evaluating oxidative stress generation, changes in gene and protein expression, and cell cycle status after low-dose exposures to a variety of metal and carbon-based nanomaterials in primary human dermal cells. Additionally, mitigation of nanoparticle toxicity via microencapsulation was investigated to assess the feasibility of utilizing nanomaterials in dermally implantable biosensor applications.
Cellular immune and inflammatory processes were measured via qPCR and immunoblotting, which revealed gene and protein expression modulation along the NF-kappaB pathway after a variety of nanoparticle exposures. The role of immunoregulatory transcription factor NF-kappaB was examined in an oxidative stress context in cells exposed to a panel of nanoparticles, whereby glutathione conversion and modulation of oxidative stress proteins in normal and NF-kappaB knockdown human dermal fibroblasts were monitored. Results revealed decreased antioxidant response and corresponding increased levels of oxidative stress and cell death in exposed normal cells, compared to NF-kappaB incompetent cells. However, reactive oxygen species production was not an absolute precursor to DNA damage, which was measured by the comet assay, gamma-H2AX expression, and flow cytometry. Protein analysis revealed that map kinase p38, rather than p53, was involved in the halting of the cell cycle in S-phase after ZnO exposures, which caused DNA double strand breaks.
Microencapsulation of fluorescent quantum dot nanoparticles, specifically, was utilized as a method to improve system functionality and surrounding cellular viability for the purpose of a dermal analyte detection assay. In vitro results indicated a functional localization of nanoparticles, as well as cessation of cellular uptake. Subsequently, cellular metabolism was unaffected over the range of time and concentrations tested in comparison to unencapsulated quantum dot treatments, indicating the usefulness of this technique in developing nanoparticle-driven biomedical applications.
|
225 |
Natural and artificial fluorescence on 3-dimensional bioorganic nanostructuresCameron, Craig G. 08 June 2015 (has links)
A challenge exists for understanding the origin of color for structurally colored, 3-dimensional bioorganic nanostructures, such as the scales of butterflies, beetles, and moths. Complex, hierarchical structures found within such scales create the overall scale appearance. The controlled alteration of color through material deposition and the addition of new optical functionalities to such structures are other areas of scientific interest. This dissertation addresses these challenges with a first-of-its-kind, systematic isolation (deconstruction) of scale component nanostructures, followed by evaluation of optical property/structure correlations. The additive deposition (constructive alteration) of emissive materials to structurally-colored templates complements this deconstructive approach towards understanding the origin of color in butterfly scales. Discoveries made through this work may help advance the bioinspired design of synthetic optical structures and subsequent color control through the addition of multilayered, emissive optical components.
|
226 |
The application of light trapping structures and of InGaAs/GaAs quantum wells and quantum dots to improving the performance of single-junction GaAs solar cellsMcPheeters, Claiborne Ott 12 July 2012 (has links)
High efficiency photovoltaic solar cells are expected to continue to be important for a variety of terrestrial and space power applications. Solar cells made of optically thick materials often cannot meet the cost, efficiency, or physical requirements for specialized applications and, increasingly, for traditional applications. This dissertation investigates improving the performance of single-junction GaAs solar cells by incorporating InGaAs/GaAs quantum wells and quantum dots to increase their spectral response bandwidth, and by incorporating structures that confine light in the devices to improve their absorption of it. InGaAs/GaAs quantum dots-in-wells extend the response of GaAs homojunction devices to wavelengths >1200 nm. Nanoparticles that are randomly deposited on the top of optically thick devices scatter light into waveguide modes of the device structures, increasing their absorption of electromagnetic energy and improving their short-circuit current by up to 16%. Multiply periodic diffractive structures have been optimized using rigorous software algorithms and fabricated on the back sides of thin film quantum dot-in-well solar cells, improving their spectral response at wavelengths 850 nm to 1200 nm, where only the quantum dot-in-well structures absorb light, by factors of up to 10. The improvement results from coupling of diffracted light to waveguide modes of the thin film device structure, and from Fabry-Perot interference effects. Simulations of absorption in these device structures corroborate the measured results and indicate that quantum well solar cells of ~2 µm in thickness, and which are equipped with optimized backside gratings, can achieve 1 Sun Airmass 0 short-circuit current densities of up to ~5 mA/cm2 (15%) greater than GaAs homojunction devices, and of up to >2 mA/cm2 (7%) greater than quantum well devices, with planar back reflectors. A combination of Fabry-Perot interference and diffraction into waveguide modes of the thin devices is shown to dominate the simulated device response spectra. Simulations also demonstrate the importance of low-loss metals for realizing optimal light trapping structures. Such device geometries are promising for reducing the cost of high efficiency solar cells that may be suitable for a variety of traditional and emerging applications. / text
|
227 |
Electron Transport through Carbon Nanotube Quantum Dots in A Dissipative EnvironmentMebrahtu, Henok Tesfamariam January 2012 (has links)
<p>The role of the surroundings, or <italic> environment </italic>, is essential in understanding funda- mental quantum-mechanical concepts, such as quantum measurement and quantum entanglement. It is thought that a dissipative environment may be responsible for certain types of quantum (i.e. zero-temperature) phase transitions. We observe such a quantum phase transition in a very basic system: a resonant level coupled to a dissipative environment. Specifically, the resonant level is formed by a quantized state in a carbon nanotube, and the dissipative environment is realized in resistive leads; and we study the shape of the resonant peak by measuring the nanotube electronic conductance.</p><p>In sequential tunneling regime, we find the height of the single-electron conductance peaks increases as the temperature is lowered, although it scales more weakly than the conventional T<super>-1</super>. Moreover, the observed scaling signals a close connec- tion between fluctuations that influence tunneling phenomenon and macroscopic models of the electromagnetic environment.</p><p>In the resonant tunneling regime (temperature smaller than the intrinsic level width), we characterize the resonant conductance peak, with the expectation that the width and height of the resonant peak, both dependent on the tunneling rate, will be suppressed. The observed behavior crucially depends on the ratio of the coupling between the resonant level and the two contacts. In asymmetric barriers the peak width approaches saturation, while the peak height starts to decrease.</p><p>Overall, the peak height shows a non-monotonic temperature dependence. In sym- metric barriers case, the peak width shrinks and we find a regime where the unitary conductance limit is reached in the incoherent resonant tunneling. We interpret this behavior as a manifestation of a quantum phase transition.</p><p>Finally, our setup emulates tunneling in a Luttinger liquid (LL), an interacting one-dimensional electron system, that is distinct from the conventional Fermi liquids formed by electrons in two and three dimensions. Some of the most spectacular properties of LL are revealed in the process of electron tunneling: as a function of the applied bias or temperature the tunneling current demonstrates a non-trivial power-law suppression. Our setup allows us to address many prediction of resonant tunneling in a LL, which have not been experimentally tested yet.</p> / Dissertation
|
228 |
Synthesis and optical properties of CdSe core and core/shell nanocrystalsvan Embden, Joel Leonard January 2008 (has links)
The synthesis of nanocrystals is unique compared to the formation of larger micron-sizesspecies as the final crystal sizes are not much larger than the primary nuclei. As a consequencethe final outcome of a nanocrystal synthesis i.e mean crystal size, concentrationand standard deviation is almost solely determined by the end of the nucleation phase. Directingthe growth of crystals beginning from aggregates of only tens of atoms into maturemonodisperse nanocrystals requires that the governing kinetics are strictly controlled at everymoment of the reaction. To effect this task various different ligands need to be employed,each performing a particular function during both nucleation and growth. (For complete abstract open document)
|
229 |
Propriedades eletrônicas de pontos quânticos contendo muitos eletronsMelo, Heitor Alves de 18 September 2015 (has links)
MELO, Heitor Alves de. Propriedades eletrônicas de pontos quânticos contendo muitos elétrons. 2010. 75 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências, Departamento de Física, Fortaleza, 2010 . / Submitted by francisco lima (admir@ufc.br) on 2012-11-27T15:20:10Z
No. of bitstreams: 1
2010_hadmelo.pdf: 2475149 bytes, checksum: f2b733568c55c95683fc14e493c5ab31 (MD5) / Approved for entry into archive by Nirlange Queiroz(nirlange@gmail.com) on 2015-09-18T12:10:21Z (GMT) No. of bitstreams: 1
2010_hadmelo.pdf: 2475149 bytes, checksum: f2b733568c55c95683fc14e493c5ab31 (MD5) / Made available in DSpace on 2015-09-18T12:10:21Z (GMT). No. of bitstreams: 1
2010_hadmelo.pdf: 2475149 bytes, checksum: f2b733568c55c95683fc14e493c5ab31 (MD5) / This work investigates the eletronic properties of semiconductor quantum dots in
which there are many electrons con ned. In particular, we study Si and Ge quantum dots
embedded in dielectric matrices (SiO2 e HfO2). The theoretical methos used to calculate the total energy of N electrons con ned in quantum dots is based on a simpli ed version of the Hartree-Fock method. In this model, the total energy is obtained from single-particle wavefunctions and eigen-energies. The obtained results show that the total energy in Ge quantum dots are always larger than in Si ones. The reason is the smaller electron e ective mass in Ge, which raises the energies of the con ned states. As for the role of the dielectric matrix, the total energy is always larger for SiO2 than for HfO2. Physically, this e ect is caused by the fact that SiO2 has larger con nement barriers (3.2 eV) than HfO2 (1.5 eV). Smaller barriers favor larger spatial extent of the wavefunctions, decreasing the
repulsion energy of the con ned electrons. The chemical potential and additional energy
was also calculated as function of the number of con ned electrons. It was observed that the chemical potential of Ge quantum dots are always larger than Si ones, but the role of the dielectric matrix is inverted. The chemical potential for HfO2 is larger than for SiO2. With respect to the additional energy, we observed that this quantity strongly oscillates within the range 0 to 0.4 eV for cases. If one takes into account that the Coulomb blockade
phenomena is only observed for additional energies much larger the thermal enegy (of the order of 3=2kBT), this phenomena can only be observed for the case where there are only a few electrons con ned in the quantum dots. / Este trabalho dedica-se ao estudo das propriedades eletrônicas de pontos quânticos
semicondutores contendo muitos el etrons con nados. Em particular, ser~ao investigados
pontos quânticos de Si e Ge imersos em matrizes diel etricas (SiO2 e HfO2). O m etodo
te orico utilizado para calcular a energia total de um sistema de N el etrons con nados
baseia-se numa vers~ao simpli cada do m etodo de Hartree-Fock. Neste modelo a energia
total e calculada a partir das fun ções de onda e estados de energia de uma unica part cula. Os resultados obtidos mostram que a energia total em pontos quânticos de Ge s~ao em geral maiores que em pontos quânticos de Si, independentemente do n umero de el etrons
con nados. Isto acontece devido a massa efetiva menor dos el etrons no Ge que aumentam
as energia de con namento. Em rela ção ao papel das barreiras diel etricas, a energia total e sempre maior nos casos em que o ponto quântico est a envolvido por SiO2. Fisicamente, isto se deve ao fato de que a barreira de con namento do SiO2 (3.2 eV) e maior que a do HfO2 (1.5 eV). Barreiras mais baixas favorecem o aumento da extensão espacial das funções de onda, reduzindo a repulsão coulombiana dos el etrons con nados. Calculouse tamb em o potencial quí mico dos pontos quânticos em fun ção do n umero de el etrons con nados, e a energia adicional necess aria para aprisionar mais um el etron nos pontos quânticos. Veri cou-se que o potencial qu mico dos pontos quânticos de Ge são sempre
maiores que nos de Si, por em o potencial qu mico para pontos quânticos envoltos em HfO2
são sempre maiores que no caso do SiO2. Em relação a energia adicional, observa-se que
esta quantidade apresenta fortes oscilações e que varia entre 0 e 0.4 eV para todos os casos estudados. Se levarmos em conta que o fenômeno conhecido como bloqueio de Coulomb
acontece quando a energia adicional e muito maior que a energia t ermica (da ordem de
3=2kBT), este fenômeno s o ser a observado quando houver poucos el etrons con nados nos
pontos quânticos.
|
230 |
Band Structure Modelling of Strained Bulk and Quantum Dot III-Nitrides to Determine the Linear Polarization for Interband RecombinationsAndersson, Joakim January 2018 (has links)
8-band k.p theory was applied to bulk GaN and InN. The optical transitionintensity was computed and results show > 80-90% degree of polarization inthe direction of compression. Polarization switching is observed when strainwas reversed from compressive to tensile. 6 band k.p theory was used tostudy InGaN quantum dot/GaN elliptical pyramid structures. The opticaltransition intensity was calculated for different elongations of the pyramid.Elongation of the pyramid gives rise to a small polarization in the directionof the pyramid elongation. The optical transition intensity was calculatedfor elongated quantum dots and was strongly in uencing the polarization inthe direction of the quantum dot elongation, with a degree of polarization of >90%.
|
Page generated in 0.0442 seconds