• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 28
  • 16
  • 9
  • 9
  • 6
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 185
  • 185
  • 47
  • 31
  • 29
  • 24
  • 21
  • 20
  • 20
  • 16
  • 15
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Three Wave Mixing in Periodically Quantum-well-intermixed GaAs:AlGaAs Superlattices: Modeling, Optimization, and Parametric Generation

Sigal, Iliya 11 January 2011 (has links)
The three wave mixing process was modeled in GaAs:AlGaAs superlattices using two new modeling tools that were developed in the course of this work: A 2D beam propagation tool for optimizing quasi-phase matching gratings, and a 1D iterative beam propagation tool for determining the output powers and threshold of optical parametric oscillators of arbitrary geometries. The 2D tool predicts close to 80% enhancement of conversion e ciency by phase matching near 800 nm compared to 775 nm, which was the originally designed operation wavelength. The model also predicts resonant behaviour for an abrupt grating pro le. The 1D tool was used to determine the threshold conditions for para- metric oscillation for di erent geometries. The performances of di erent phase matching approaches in AlGaAs were quantitatively compared. The model also indicated the need for pulsed operation to achieve reasonably low threshold powers in AlGaAs waveguides.
42

Spin Splitting in Bulk Wurtzite Materials and Their Quantum Wells

Wu, Chieh-lung 01 August 2011 (has links)
The spin-splitting energies in strained bulk wurtzite aluminum nitride (AlN) are studied using the linear combination of atomic orbital method. It is found that strain and crystal field induce not only a linear-k (£\wz ) but also two cubic-k terms (£^¡¦and £f¡¦ ) in the two-band k¡Dp Hamiltonian Hso=(£\wz-£^¡¦k2//+£f¡¦k2z)(£mxky-£mykx)+H0so, where H0so=(-£^0k2//+£f0k2z)(£mxky-£mykx) is for ideal wurtzite and generates a cone-shaped minimum-spin-splitting (MSS) surface. As biaxial strain increases, the shape of the MSS surface changes from a hexagonal hyperboloid of two sheets in unstrained AlN to a hexagonal cone, and eventually becomes a hyperboloid of one sheet. The spin-splitting energies of first conduction band for A-plane and M-plane wurtzite are calculated by the sp3 linear combination of atomic orbital (LCAO). The results show the spin-splitting energies are dominated by linear-k term but contribution of cubic-k terms can not be neglected for larger k//. The parameter of linear-k and cubic-k terms are evaluated from the LCAO calculated spin-splitting energies fitting to two band k¡Ep model as increasing well width. The coefficients of linear-k and cubic-k terms decrease.
43

Study of Carrier Cooling in Zn0.91Cd0.09Se/ZnSe Multiple Quantum Wells

Chung, Yung-Hsien 14 July 2004 (has links)
The hot carrier dynamics of Zn0.91Cd0.09Se/ZnSe multi-quantum wells were studied using the femtosecond time-resolved photoluminescence upconversion technique. The carrier cooling behavior was investigated for different compositions at various lattice temperatures. The hot carriers generated photoexcitation by 405nm Ti:sapphire laser pulses release their excess energy primarily through carrier-LO-phonon interaction. As the excess energy reduce to the amount that lower than the energy of LO phonon, the excess energy was released by carrier-TA-phonon scattering before radiative recombination occurs. We have determined the scattering times of carrier-LO-phonon scattering at different lattice temperatures. No hot phonon effects was found at low photoexcited carrier density. The dependence of photoluminescence lifetime on wavelength was also discussed.
44

Unsymmetry Spiked-Quantum Well Design and Electroabsorption Modulators Based on the InAlAs/InGaAlAs Material System

Li, Jheng-jian 28 June 2005 (has links)
Multiple-quantum-well (M.Q.W.) and quantum-confined-stark-effect (Q.C.S.E.) have been widely used in designing and fabricating electroabsorption modulators. In this paper, material InAlAs/InGaAlAs near 1500nm transition is used to be our target for designing and fabricating EAM due to its high band-offset ratio (electron to hole) and the strong exciton effect. A calculation model for quantum well absorption has been developed to design EAM active region. Asymmetrically inserting a thin-spiked potential barrier into wide Q.W. structure, the Q.W. can have high efficiency of Q.C.S.E. without lowing the electron-hole wave function overlap integral, causing high electroabsorption coefficient and optical modulation. Tuning material composition (~-0.4% tensile strain ) is also used for polarization independence characteristics. Traveling-wave EAM based on InAlAs / InGaAlAs material system is also fabricated and measured. Polarization independence 2~5 dB operation, low voltage swing of 1V for 15 dB extinction ratio, high-speed electrical-to-optical response with ¡V3dB bandwidth of >20GHz at 50£[ termination have been achieved showing high potential in broad band fiber optical communication.
45

Ensemble Monte Carlo Modeling Of Quantum Well Infrared Photodetectors

Memis, Sema 01 March 2006 (has links) (PDF)
Quantum well infrared photodetectors (QWIPs) have recently emerged as a potential alternative to the conventional detectors utilizing low bandgap semiconductors for infrared applications. There has been a considerable amount of experimental and theoretical work towards a better understanding of QWIP operation, whereas there is a lack of knowledge on the underlying physics. This work provides a better understanding of QWIP operation and underlying physics through particle simulations using the ensemble Monte Carlo method. The simulator incorporates Gamma, L, and X valleys of conduction band as well as the size quantization in the quantum wells. In the course of this work, the dependence of QWIP performance on different device parameters is investigated for the optimization of the QWIP structure. The simulations on AlGaAs/GaAs QWIPs with the typical Al mole fraction of 0.3 have shown that the L valley of the conduction band plays an important role in the electron capture. A detailed investigation of the important scattering mechanisms indicates that the capture of the electrons through the L valley quantum well (L-QW) affects the device performance significantly when Gamma and L valley separation is small. The characteristics of electron capture have been further investigated by repeating the simulations on QWIPs for quantum well widths of 36 and 44 &Aring / . The results suggest that the gain in the shorter well width device is considerably higher, which is attributed to the much longer lifetime of the photoexcited electrons as a result of lower capture probability (pc) in the device. The effects of the L-QW height on the QWIP characteristics have also been studied by artificially increasing this height from 63 to 95 meV in Al0.3Ga0.7As/GaAs QWIPs. The increase in the L valley (L-QW) height resulted in higher pc and lower gain due to high rate of capturing of these electrons when Gamma and L valley separation is small.
46

Photoluminescence excitation spectroscopy on InGaN/GaN multiple quantum wells grown on silicon substrates

Hsieh, Meng-hsueh 11 September 2007 (has links)
We study the optical properties of InGaN/GaN multiple quantum wells grown on silicon (111) substrate with different buffer layers. Because of the lattice mismatch and mismatch in thermal expansion coefficient, there exists stresses in the nitride sample grown on silicon substrates, which influence the growth properties and optical properties. A set of buffer layers was proposed in order to reduce the stress in our samples. The influence on optical properties is investigated in our work. In Raman spectra, we observed the characteristic phonon mode of GaN. According to the variation of E2 mode, the stress can be estimated. From our results, growing buffer layers can effectively reduce the stress in the sample. From temperature dependent and power dependent photoluminescence¡]PL) measurement, we found that appropriate buffer layers bring about less stress and better efficiency of luminescence. There are absorption of GaN and some vibrational behaviors in PLE spectra. According to the stokes shift calculated from temperature dependence PL and PLE spectra, we infer that the mechanism of recombination is not only carrier localization. The recombination is involved with the interaction of carriers and longitudinal optical phonons, and the stokes shift is independence on temperature.
47

MOVPE Growth of AlN and AlGaN/AlN Quantum Wells and their Optical Polarization Properties / AlNおよびAlGaN/AlN量子井戸の有機金属気相エピタキシャル成長とそれらの光学偏光特性 / AlN オヨビ AlGaN/AlN リョウシ イド ノ ユウキ キンゾク キソウ エピタキシャル セイチョウ ト ソレラ ノ コウガク ヘンコウ トクセイ

BANAL, RYAN GANIPAN 23 March 2009 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第14627号 / 工博第3095号 / 新制||工||1460(附属図書館) / 26979 / UT51-2009-D339 / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 川上 養一, 教授 髙岡 義寛, 准教授 須田 淳 / 学位規則第4条第1項該当
48

Luminescence Studies On Some Technologically Important III-V Ternary Pseudomorphic Heterostructures

Naika, K Gopalakrishna 08 1900 (has links) (PDF)
No description available.
49

Linear, Nonlinear Optical and Transport Properties of Quantum Wells Composed of Short Period Strained InAs/GaAs Superlattices

Huang, Xuren 12 1900 (has links)
In this work, ordered all-binary short-period strained InAs/GaAs superlattice quantum wells were studied as an alternative to strained ternary alloy InGaAs/GaAs quantum wells. InGaAs quantum wells QWs have been of great interest in recent years due to the great potential applications of these materials in future generations of electronic and optoelectronic devices. The all binary structures are expected to have all the advantages of their ternary counterparts, plus several additional benefits related to growth, to the elimination of alloy disorder scattering and to the presence of a higher average indium content.
50

Micro-structure Engineering of InGaN/GaN Quantum Wells for High Brightness Light Emitting Devices

Shen, Chao 05 1900 (has links)
With experimental realization of micro-structures, the feasibility of achieving high brightness, low efficiency droop blue LED was implemented based on InGaN/GaN micro-LED-pillar design. A significantly high current density of 492 A/cm2 in a 20 μm diameter (D) micro-LED-pillar was achieved, compared to that of a 200 μm diameter LED (20 A/cm2), both at 10 V bias voltage. In addition, an increase in sustained quantum efficiency from 70.2% to 83.7% at high injection current density (200 A/cm2) was observed in micro-LED-pillars in conjunction with size reduction from 80 μm to 20 μm. A correlation between the strain relief and the electrical performance improvement was established for micro-LED-pillars with D < 50 μm, apart from current spreading effect. The degree of strain relief and its distribution were further studied in micro-LED-pillars with D ranging from 1 μm to 15 μm. Significant wavenumbers down-shifts for E2 and A1 Raman peaks, together with the blue shifted PL peak emission, were observed in as-prepared pillars, reflecting the degree of strain relief. A sharp transition from strained to relaxed epitaxy region was discernible from the competing E2 phonon peaks at 572 cm-1 and 568 cm-1, which were attributed to strain residue and strain relief, respectively. A uniform strain relief at the center of micro-pillars was achieved, i.e. merging of the competing phonon peaks, after Rapid Thermal Annealing (RTA) at 950℃ for 20 seconds, phenomenon of which was observed for the first time. The transition from maximum strain relief to a uniform strain relief was found along the narrow circumference (< 2.5 μm) of the pillars from the line-map of Raman spectroscopy. The extent of strain relief is also examined considering the height (L) of micro-LED-pillars fabricated using FIB micro-machining technique. The significant strain relief of up to 70% (from -1.4 GPa to -0.37 GPa), with a 71 meV PL peak blue shift, suggested that micro-LED-pillar with D < 3 μm and L > 3 μm in the array configuration would allow the building of practical devices. Overall, this work demonstrated a novel top-down approach to manufacture large effective-area, high brightness emitters for solid-state lighting applications.

Page generated in 0.054 seconds