Spelling suggestions: "subject:"radar polarimetry"" "subject:"radar colarimetry""
1 |
New target detector based on geometrical perturbation filters for polarimetric Synthetic Aperture Radar (POL-SAR)Marino, Armando January 2010 (has links)
Synthetic Aperture Radar (SAR) is an active microwave remote sensing system able to acquire high resolution images of the scattering behaviour of an observed scene. The contribution of SAR polarimetry (POLSAR) in detection and classification of objects is described and found to add valuable information compared to previous approaches. In this thesis, a new target detection/classification methodology is developed that makes novel use of the polarimetric information of the backscattered field from a target. The detector is based on a geometrical perturbation filter which correlates the target of interest with its perturbed version. Specifically, the operation is accomplished with a polarimetric coherence representing a weighted and normalised inner product between the target and its perturbed version, where the weights are extracted from the observables. The mathematical formulation is general and can be applied to any deterministic (point) target. However, in this thesis the detection is primarily focused on multiple reflections and oriented dipoles due to their extensive availability in common scenarios. An extensive validation against real data is provided exploiting different datasets. They include one airborne system: E-SAR L-band (DLR, German Aerospace Centre); and three satellite systems: ALOS-PALSAR L-band (JAXA, Japanese Aerospace Exploration Agency), RADARSAT-2 C-band (Canadian Space Agency) and TerraSAR-X X-band (DLR). The attained detection masks reveal significant agreement with the expected results based on the theoretical description. Additionally, a comparison with another widely used detector, the Polarimetric Whitening Filter (PWF) is presented. The methodology proposed in this thesis appears to outperform the PWF in two significant ways: 1) the detector is based on the polarimetric information rather than the amplitude of the return, hence the detection is not restricted to bright targets; 2) the algorithm is able to discriminate among the detected targets (i.e. target recognition).
|
2 |
A Comparison of Radar Polarimetry Data of the Moon From the LRO Mini-RF Instrument and Earth-Based SystemsCarter, Lynn M., Campbell, Bruce A., Neish, Catherine D., Nolan, Michael C., Patterson, G. Wesley, Jensen, J. Robert, Bussey, D. B. J. 04 1900 (has links)
The Mini-RF radar, launched on the Lunar Reconnaissance Orbiter, imaged the lunar surface using hybrid-polarimetric, transmitting one circular polarization and receiving linear H and V polarizations. Earth-based radar operating at the same frequency has acquired data of the same terrains using circular-polarized transmit waves and sampling circular polarizations. For lunar targets where the viewing geometry is nearly the same, the polarimetry derived from Mini-RF and the earth-based data should be very similar. However, we have discovered that there is a considerable difference in circular polarization ratio (CPR) values between the two data sets. We investigate possible causes for this discrepancy, including cross-talk between channels, sampling, and the ellipticity of the Mini-RF transmit wave. We find that none of these can reproduce the observed CPR differences, though a nonlinear block adaptive quantization function used to compress the data will significantly distort some other polarimetry products. A comparison between earth-based data sets acquired using two different sampling modes (sampling received linear polarizations and sampling circular polarizations) suggests that the CPR differences may be partially due to sampling the data in a different receive polarimetry bases.
|
3 |
Polarimetric RADARSAT-2 and ALOS PALSAR multi-frequency analysis over the archaeological site of Gebel Barkal (Sudan) / Analyse multi-fréquentielle polarimétrique du site archéologique de Gebel Barkal (Soudan) à partir des capteurs spatiaux RADARSAT-2 et ALOS PALSARPatruno, Jolanda 10 April 2014 (has links)
L'analyse de la Polarimétrie SAR pour la détection des structures archéologiques de surface et de subsurface du site de Gebel Barkal (Sudan), inscrit dans la Liste du Patrimoine Mondial depuis 2003, est l'objectif des travaux de recherche effectués dans le cadre de cette thèse de doctorat. En particulier, les capacités de pénétration dans le sol des bandes C et L ont été analysées grâce à l'utilisation des images des capteurs ALOS PALSAR (archivées) et RADARSAT-2 (spécifiquement acquises). En outre, l'activité de recherche illustre les potentialités de l'intégration des données satellitaires polSAR et optiques dans un projet SIG dédié, réalisé grâce à une collaboration avec les Universités de Turin et de Venise (Italie). La surveillance des sites archéologiques au moyen des images satellitaires polSAR représente un avantage considérable pour la recherche archéologique, alors que les anomalies détectées peuvent concerner les opérations de fouille ou être vérifiées au sol, comme démontré dans ce manuscrit, ou encore elles peuvent contribuer à la réalisation des plans d'intervention pour les sites archéologiques en péril. / Aim of PhD research is to exploit SAR Polarimetry technique for the identification of surface and subsurface archaeological features in the site of Gebel Barkal (Sudan), inscribed in the UNESCO World Heritage List since 2003. Sand penetration capability of both C-band and L-band sensors are discussed analysing archived ALOS PALSAR and RADARSAT-2 specifically acquired (2012-2013) images. Moreover, the research activity illustrates the potential of integrating SAR polarimetric and optical satellite data in a dedicated GIS project, realised in collaboration with the Universities of Turin and Venice (Italy). The monitoring of ancient sites by means of remotely acquired polarimetric SAR data represents a benefit for the archaeological research, where detected anomalies can address archaeological excavations or ground truth verification, as shown in the PhD dissertation, and where threatening factors affect the integrity of a cultural site.
|
4 |
Polarimetric multi-incidence angle analysis over the archaeological site of Samarra by means of RADARSAT-2 and ALOS PALSAR satellites datasets / Analyse multi-angulaire polarimétrique du site archéologique de Samarra à partir des capteurs spatiaux RADARSAT-2 et ALOS PALSARDore, Nicole 10 April 2014 (has links)
Cette recherche a pour objectif d'étudier l'impact des micro-ondes sur des structures archéologiques toujours visibles de l'ancienne cité de Samarra, la capitale de l'ancien Abbasside Califat situé en Iraq. Trois zones ont été sélectionnées pour cette recherche Doctorale : une cité octogonale, trois champs de courses et la cité de al-Mutawakkiliyya. Les menaces à lesquelles le site est exposé et son importance historique ont permis d'inscrire la cité sur la liste UNESCO des sites en danger (2007). Cela a donné une raison de plus pour enquêter sur cette zone au moyen des capteurs SAR RADARSAT-2 et ALOS PALSAR. Le potentiel de l'imagerie SAR, en fait, est bien connu, en particulier pour les régions du Monde où des enquêtes in situ ne sont pas autorisées en raison de l'instabilité politique (comme dans le cas de Samarra) et en raison de la possibilité d'acquérir quelque soit la couverture nuageuse et dans tout genre d'illumination (jour / nuit). / This work has as goal to study the microwaves behavior over the archaeological structures still visible in the historical city of Samarra, the capital of the ancient Abbasid Caliphate located in Iraq. Three areas were taken into account for the Ph.D. research: an octagonal city, three racecourses stadiums and the city of al-Mutawakkiliyya. Threats to which the site is exposed and its historical importance let the city to be inscribed in the list of UNESCO sites in danger (2007). This gave a reason more to investigate this area by means of SAR RADARSAT-2 and ALOS PALSAR satellites. SAR potentiality, in fact, is well known, in particular for those areas of the World where surveys in situ are not allowed because of political instability (as in the case of Samarra) and because of the possibility of acquiring with any cloud cover conditions and in any kind of illumination (day/night).
|
5 |
The Relationship Between Cloud Microphysics and Electrification in Southeast U.S. Storms Investigated Using Polarimetric, Cold Pool, and Lightning CharacteristicsMilind Sharma (13169010) 28 July 2022 (has links)
<p> </p>
<p>Rapid intensification of low-level rotation in non-classic tornadic storms in southeastern United States, often at time scales shorter than the volume updates from existing opera- tional radars, calls for a deeper understanding of storm-scale processes. There is growing evidence that the highly nonlinear interactions between vertical wind shear and cold pools regulate the intensity of downdrafts, low- and mid-level updrafts, and thus tornadic poten- tial in supercells. Tornado-strength circulations are more likely associated with cold pools of intermediate strength. The microphysical pathway leading to storm electrification also plays a major role in the regulation of cold pool intensity. Storm electrification and subsequent lightning initiation are a by-product of charging of ice hydrometeors in the mixed-phase updrafts. Lightning flashes frequently initiate along the periphery of turbulent updrafts and total flash rate is controlled by the updraft speed and volume.</p>
<p><br></p>
<p>In the first part of this work, polarimetric fingerprints like ZDR and KDP columns (proxies for mixed-phase updraft strength) are objectively identified to track rapid fluctuations in updraft intensity. We quantify the volume of ZDR and KDP columns to evaluate their utility in predicting temporal variability in lightning flash characteristics and the onset of severe weather. Using observational data from KTLX radar and Oklahoma Lightning Mapping Array, we had previously found evidence of temporal covariance between ZDR column volume and the total lightning flash rate in a tornadic supercell in Oklahoma. </p>
<p><br></p>
<p> Here, we extend our analysis to three high-shear low-CAPE (HSLC) cases observed during the 2016-17 VORTEX-SE field campaign in Northern Alabama. In all three scenarios (one tornadic and one nontornadic supercell, and a quasi-linear convective system), the KDP column volume had a stronger correlation with total flash rates than the ZDR column volume. We also found that all three storms maintained a normal tripole charge structure, with majority of the cloud-to-ground (CG) strikes lowering negative charge to the ground. The tornadic storm’s CG polarity changed from negative to positive at the same time it entered a region with higher surface equivalent potential temperature. In contrast to the Oklahoma storm, lightning flash initiations in HSLC storms occurred primarily outside the footprint of ZDR and KDP column objects.</p>
<p><br></p>
<p>Storm dynamics coupled with microphysical processes such as diabatic heating/cooling and advection/sedimentation of hydrometeors also plays a significant role in electrification of thunderstorms. Simulation of deep convection, therefore, needs to account for the feedback of microphysics to storm dynamics. In the second part of this work, the NSSL microphysics scheme is used to simulate ice mass fluxes, cold pool intensity, and noninductive charging rates. The scheme is run in its triple-moment configuration in order to provide a more realis- tic size-sorting process that avoids pathologies that arise in double-moment representations.</p>
<p><br></p>
<p>We examine the possible tertiary linkage between noninductive charging rates and cold pool through their dependence on mixed-phase microphysical processes. The Advanced Re- gional Prediction System (ARPS) model is used to simulate the same three HSLC cases from VORTEX-SE 2016-17 IOPs. WSR-88D radar reflectivity and Doppler velocity observations are assimilated in a 40-member ensemble using an ensemble Kalman filter (EnKF) filter.</p>
<p><br></p>
<p>In all three cases, the simulated charge separation is consistent with the observed normal tripole. Greater updraft mass flux, supercooled liquid water concentration, and nonprecip- itation mass flux explain the nontornadic supercell’s higher total flash rate compared to the tornadic supercell. Positive and negative graupel charging rates were found to have the greatest linear correlation with updraft mass flux, followed by precipitation mass flux in all three cases. At zero time lag, horizontal buoyancy gradients associated with a surface cold pool were not found to be correlated with either the charging rates or the updraft and precipitation mass flux. Total flash rate based on empirical relationships between simulated ice mass fluxes was lower than the observed values.</p>
|
6 |
Fully Polarimetric Analysis of Weather Radar SignaturesGalletti, Michele 04 March 2010 (has links) (PDF)
Diese (Doktor)arbeit beschäftigt sich mit Radar-Polarimetrie, insbesondere mit der Untersuchung der Eigenschaften von polarimetrischen Variablen, die potenziellen Nutzen für die Radar-Meteorologie haben.
Für den Einsatz in Dual-Polarisations-Radargeräten wird der Polarisationsgrad analysiert. Diese Variable wird in künftigen operationellen Radargeräten verfügbar sein. Der Polarisationsgrad hängt vom transmittierten Polarisationszustand und in weiterer Folge auch vom Betriebsmodus des Radargeräts ab. Der Hauptbetriebsmodus von operationellen Radargeräten sendet und empfängt gleichzeitig sowohl die horizontale als auch die vertikale Komponente. Der sekundäre Betriebsmodus sendet und empfängt simultan die horizontal polarisierte Komponente. In dieser Arbeit werden beide Polarisationsgrade untersucht.
Da operationelle Systeme derzeit auf den Dual-Polarisationsmodus aufgerüstet werden, sollte künftig die Anwendungsmöglichkeiten von vollpolarimetrischen Wetterradarsystemen untersucht werden. Aus allen Variablen, die in diesem Betriebsmodus zur Verfügung stehen, wurde die Entropie (des gemessen Objektes) ausgewählt und wegen seiner engen Beziehung zum Polarisationsgrad näher untersucht. / The present doctoral thesis deals with radar polarimetry, namely with the investigation of properties of polarimetric variables potentially useful in radar meteorology.
For use with dual-polarization radars, the degree of polarization is analyzed. This variable is available to planned operational radars. The degree of polarization is dependent on transmit polarization state and, consequently, it is dependent on the radar system operating mode. The primary operating mode of operational radars consists in simultaneous transmission and simultaneous receive of both horizontal and vertical components. The secondary operating mode consists of horizontal transmission and simultaneous receive. Both degrees of polarization are investigated in this thesis.
Also, as operational systems are being updated to dual-polarization, research should start investigating the capabilities of fully polarimetric weather radar systems. Among the numerous variables available from this operating mode, the target entropy was chosen for investigation, also because of its close relation to the degree of polarization
|
7 |
Propagation effects influencing polarimetric weather radar measurements / Ausbreitungseffekte beeinflussen polarimetrische WetterradarmessungenOtto, Tobias 10 August 2011 (has links) (PDF)
Ground-based weather radars provide information on the temporal evolution and the spatial distribution of precipitation on a macroscopic scale over a large area. However, the echoes measured by weather radars are always a superposition of forward and backward scattering effects which complicates their interpretation. The use of polarisation diversity enhances the number of independent observables measured simultaneously. This allows an effective separation of forward and backward scattering effects. Furthermore, it extends the capability of weather radars to retrieve also microphysical information about the precipitation. The dissertation at hand introduces new aspects in the field of polarimetric, ground-based, monostatic weather radars at S-, C-, and X-band. Relations are provided to change the polarisation basis of reflectivities. A fully polarimetric weather radar measurement at circular polarisation basis is analysed. Methods to check operationally the polarimetric calibration of weather radars operating at circular polarisation basis are introduced. Moreover, attenuation correction methods for weather radar measurements at linear horizontal / vertical polarisation basis are compared to each other, and the robustly working methods are identified. / Bodengebundene Wetterradare bieten Informationen über die zeitliche Entwicklung und die räumliche Verteilung von Niederschlag in einer makroskopischen Skala über eine große Fläche. Die Interpretation der Wetterradarechos wird erschwert, da sie sich aus einer Überlagerung von Vorwärts- und Rückwärtsstreueffekten ergeben. Die Anzahl der unabhängigen Wetterradarmessgrößen kann durch den Einsatz von Polarisationsdiversität erhöht werden. Dies ermöglicht eine effektive Trennung von Vorwärts- und Rückwärtsstreueffekten. Desweiteren erlaubt es die Bestimmung von mikrophysikalischen Niederschlagsparametern. Die vorliegende Dissertation betrachtet neue Aspekte für polarimetrische, bodengebundene, monostatische Wetterradare im S-, C- und X-Band. Gleichungen zur Polarisationsbasistransformation von Reflektivitätsmessungen werden eingeführt. Eine vollpolarimetrische Wetterradarmessung in zirkularer Polarisationsbasis wird analysiert. Neue Methoden, die eine Überprüfung der polarimetrischen Kalibrierung von Wetterradarmessungen in zirkularer Polarisationsbasis erlauben, werden betrachtet. Weiterhin werden Methoden zur Dämpfungskorrektur von Wetterradarmessungen in linearer horizontaler / vertikaler Polarisationsbasis miteinander verglichen und Empfehlungen von zuverlässigen Methoden gegeben.
|
8 |
Optimum Polarization States & their Role in UWB Radar Identification of TargetsFaisal Aldhubaib Unknown Date (has links)
Although utilization of polarimetry techniques for recognition of military and civilian targets is well established in the narrowband context, it is not yet fully established in a broadband sense as compared to planetary area of research. The concept of combining polarimetry together with certain areas of broadband technology and thus forming a robust signature and feature set has been the main theme of this thesis. This is important, as basing the feature set on multiple types of signatures can increase the accuracy of the recognition process. In this thesis, the concept of radar target recognition based upon a polarization signature in a broadband context is examined. A proper UWB radar signal can excite the target dominant resonances and, consequently, reveal information about the target principle dimensions; while diversity in the polarization domain revealed information about the target shape. The target dimensions are used to classify the target, and then information about its shape is used to identify it. Fused together and inferred from the target characteristic polarization states, it was verified that the polarization information at dominant resonant frequencies have both a physical interpretation and attributes (as seen in section 3.4.3) related to the target symmetry, linearity, and orientation. In addition, this type of information has the ability to detect the presence of major scattering mechanisms such as strong specular reflection as in the case of the cylinder flat ends. Throughout the thesis, simulated canonical targets with similar resonant frequencies were used, and thus identification of radar targets was based solely on polarization information. In this framework, the resonant frequencies were merely identified as peaks in the frequency response for simple or low damping targets such as thin metal wires, or alternatively identified as the imaginary parts of the complex poles for complex or high damping targets with significant diameter and dielectric properties. Therefore, the main contribution of this thesis originates from the ability to integrate the optimum polarization states in a broadband context for improved target recognition performance. In this context, the spectral dispersion originating from the broad nature of the radar signal, the lack of accuracy in extracting the target resonances, the robustness of the polarization feature set, the representation of these states in time domain, and the feature set modelling with spatial variation are among the important issues addressed with several approaches presented to overcome them. The general approach considered involved a subset of “representative” times in the time domain, or correspondingly, “representative frequencies” in the frequency domain with which to associate optimum polarization states with each member of the subset are used. The first approach in chapter 3 involved the polarization representation by a set of frequency bands associated with the target resonant frequencies. This type of polarization description involved the formulation of a wideband scattering matrix to accommodate the broad nature of the signal presentation with appropriate bandwidth selection for each resonance; good estimation of the optimum polarization states in this procedure was achievable even for low signal-to-noise ratios. The second approach in chapter 4 extended the work of chapter 3 and involved the modification of the optimum polarization states by their associated powers. In addition, this approach included an identification algorithm based on the nearest neighbour technique. To identify the target, the identification algorithm involved the states at a set of resonant frequencies to give a majority vote. Then, a comparison of the performance of the modified polarization states and the original states demonstrated good improvement when the modified set is used. Generally, the accuracy of the resonance set estimate is more reliable in the time domain than the frequency domain, especially for resonances well localized in time. Therefore, the third approach in chapter 5 deals with the optimum states in the time domain where the extension to a wide band context was possible by the virtue of the polarization information embodied in the energy of the resonances. This procedure used a model-based signature to model the target impulse response as a set of resonances. The relevant resonance parameters, in this case, the resonant frequency and its associated energy, were extracted using the Matrix Pencil of Function algorithm. Again, this approach of sparse representation is necessary to find descriptors from the target impulse response that are time-invariant, and at the same time, can relate robustly to the target physical characteristics. A simple target such as a long wire showed that indeed polarization information contained in the target resonance energies could reflect the target physical attributes. In addition, for noise-corrupted signals and without any pulse averaging, the accuracy in estimating the optimum states was sufficiently good for signal to noise ratios above 20dB. Below this level, extraction of some members of the resonance set are not possible. In addition, using more complex wire models of aircraft, these time-based optimum states could distinguish between similar dimensional targets with small structural differences, e.g. different wing dihedral angles. The results also showed that the dominant resonance set has members belonging to different structural sections of the target. Therefore, incorporation of a time-based polarization set can give the full target physical characteristics. In the final procedure, a statistical Kernel function estimated the feature set derived previously in chapter 3, with aspect angle. After sampling the feature set over a wide set of angular aspects, a criterion based on the Bayesian error bisected the target global aspect into smaller sectors to decrease the variance of the estimate and, subsequently, decrease the probability of error. In doing so, discriminative features that have acceptable minimum probability of error were achievable. The minimum probability of error criterion and the angular bisection of the target could separate the feature set of two targets with similar resonances.
|
9 |
On Fast, Polarimetric Non-Reciprocal Calibration and Multipolarization Measurements on Weather Radars / Schnelle polarimetrische, nicht-reziproke Kalibrierung und Mehrpolarisationsmessungen an WetterradarenReimann, Jens 05 February 2014 (has links) (PDF)
In this study a calibration concept for a multi-polarimetric weather radar is developed. Several common calibration techniques are analysed, but many are insufficient due to the non-reciprocal behaviour of the employed radar. Hence, an electronic calibration device was developed, which was designed for fast polarization determination of any polarization (including elliptical ones). The non-reciprocal behaviour was overcome by splitting receive and transmit calibration, which virtually uses the radar as a communication system. Beside the calibration a new and exible signal processing system was implemented on that radar which allows interleaved measurements using several polarimetric modes. This capability was used to analyse the STAR (hybrid basis with linear 45° transmit and horizontal/vertical receive) mode and the alternating H/V mode with respect to depolarization. Although it is known that depolarization causes errors in STAR mode, it is used in most commercial weather radars. / In dieser Arbeit wird ein Kalibrierkonzept für ein Multipolarisation-Radar entwickelt. Dazu wurden verschiedene gebräuchliche Techniken untersucht. Dabei stellte sich heraus, dass dieses Verfahren für das untersuchte nichtreziproke Radar unzureichend sind. Deshalb wurde ein elektronisches Kalibriergerät entwickelt, welches speziell der schnellen Messung von beliebigen Polarisationen - einschließlich Elliptischer - dient. Das nichtreziproke Verhalten wurde durch die Aufteilung in eine Sende- und eine Empfangskalibrierung umgangen, wodurch das Radar praktisch als Kommunikationssystem verwendet wird. Des Weiteren wurde eine neue, fexible Signalverarbeitung an dem Radar entwickelt, welches gemischte Messungen mit mehreren Polarisationsmoden erlaubt. Diese neuartige Möglichkeit wurde benutzt um den STAR-Modus, welches eine hybride Polarisationsbasis (linear 45° senden, horizontal/vertikal empfangen) benutzt, mit dem alternierende H/V-Modus zu vergleichen. Dabei wurde speziell das Verhalten des STAR-Modus im Hinblick auf Depolarisation untersucht, da dies bekanntermaßen zu Fehlern in den Messgrößenführen kann. Dies ist von besonderem Interesse, da der STAR-Modus in den meisten kommerziellen Wetterradarsystemen eingesetzt wird.
|
10 |
Informação polarimétrica PALSAR/ALOS aplicada à discriminação de espécies e estimação de parâmetros morfológicos de macrófitasSartori, Lauriana Rúbio [UNESP] 20 April 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:31Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-04-20Bitstream added on 2014-06-13T20:21:13Z : No. of bitstreams: 1
sartori_lr_dr_prud.pdf: 4148637 bytes, checksum: 5616600e595cbbe65fef21b03cd5309c (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O propósito deste trabalho foi avaliar o potencial dos dados PALSAR polarimétricos para discriminar e mapear espécies de macrófitas (vegetação aquática) de uma área alagável da Amazônia, a planície de inundação do Lago Grande de Monte Alegre, no estado do Pará. A coleta de dados foi realizada quase simultaneamente à aquisição dos dados de radar. Três principais espécies de macrófitas foram encontradas na área: Paspalum repens (PR), Hymenachne amplexicaulis (HA) e Paspalum elephantipes (PE). Variáveis morfológicas foram medidas em campo e usadas para derivar outras variáveis tais como a biomassa. Atributos foram gerados a partir da matriz de covariância [C] extraída da imagem ALOS/PALSAR em modo SLC (single look complex). Os atributos polarimétricos foram analisados para as três espécies e identificados aqueles capazes de discriminar as espécies. Foram aplicadas as seguintes abordagens de classificação: baseada em regras, baseada em modelos de decomposição (Decomposições de Freeman-Durden e Cloude-Pottier), baseada em estatística (Classificação supervisionada baseada na distância Wishart) e híbrida (Classificador Wishart com classes de entrada baseadas na decomposição de Cloude-Pottier). Finalmente, a variável morfológica “volume da haste” foi modelada por regressão múltipla em função de alguns atributos polarimétricos. Os resultados sugerem que a imagem polarimétrica banda L possui potencial para discriminar as espécies de macrófitas, sendo os principais atributos para isso sigma zero HH ( ), sigma zero HV ( ) e sigma zero VV ( ), índice de estrutura da copa... / The purpose of this work was to evaluate the potential of fully polarimetric PALSAR data to discriminate and map macrophyte species in the Amazon floodplain, more specifically in the Monte Alegre Lake, in the state of Pará, Brazil. Fieldwork was carried out almost simultaneously to the radar acquisition. Three main species were found in the study area: Paspalum repens (PR), Hymenachne amplexicaulis (HA) and Paspalum elephantipes (PE). Macrophyte morphological variables were measured on the field and used to derive others variables, like the biomass. Attributes were calculated from the covariance matrix [C] derived from the SLC (single look complex) data. The polarimetric attributes were analyzed for the three species and it was identified that ones capable of discriminating them. The following classification approaches were applied: a rule-based classification, model-based classifications (Freeman-Durden and Cloude-Pottier), a statistical-based classification (supervised classification using Wishart distance measure) and a hybrid classification (Wishart classifier with the input classes based on the H/a plane). Finally, the morphological variable “stem volume” was modeled using multiple regression. The findings suggest that the fully polarimetric image has potential for discriminating plant species, being the main attributes sigma-nought HH ( ), sigma-nought HV ( ) and sigma-nought VV ( ), canopy structure index ( ), HH-VV polarimetric coherence ( ), helicity of the third scattering mechanism (τ ), orientation angle of the first scattering mechanism ( ) and scattering type phase of the first mechanism ( ); among the different classifications, only the supervised (Wishart) and the rule-based discriminated the species, with overall accuracy of 75,04% and 87,18%, respectively; the stem volume was modeled using the following attributes: biomass index ( ), volumetric scattering ... (Complete abstract click electronic access below)
|
Page generated in 0.0601 seconds