• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 2
  • 1
  • Tagged with
  • 16
  • 16
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Etude structurale et fonctionnelle de la protéine à radical SAM Hyde / Structural and functional study of the proteins involved in the biosynthesis and insertion of the active site of FeFe-hydrogenases

Rohac, Roman 18 May 2016 (has links)
Les protéines à radical S-adénosyl-L-méthionine (SAM) utilisent un centre [Fe4S4] réduit pour initier le clivage réductive homolytique de la SAM et la formation d'une espèce hautement réactive - le radical 5'-déoxyadénosyl ou 5'-dA•. Dans la quasi-totalité de cas ce radical alkyl va arracher un atome d'hydrogène sur le substrat et déclencher ainsi sa conversion en produit. On trouve ces enzymes au niveau d'étapes clé de la synthèse de certaines vitamines, antibiotiques, précurseurs de l'ADN ou encore cofacteurs protéiques où elles sont souvent impliquées dans le clivage ou la formation des liaisons C-C, C-N, C-S ou encore C-P. Les travaux réalisés au cours de cette thèse ont été focalisés sur l'étude structurale et fonctionnelle de la protéine HydE ; une enzyme à radical SAM, qui intervient dans la biosynthèse du site actif organométallique de l'hydrogénase à [FeFe]. L'objectif principal était d'identifier le substrat de HydE et d'étudier les détails du fonctionnement d'une protéine à radical SAM. Nous avons réussi à identifier un groupe de molécules, dérivées de la cystéine, contentant un cycle thiazolidine avec un ou deux groupements carboxylates, qui ont une très bonne affinité pour le site actif de HydE. Certains de ces ligands se sont montrés d’être des substrats non physiologiques de l’enzyme. Grâce à ces substrats nous avons pu mettre en évidence un nouveau mécanisme d’attaque radicalaire dans les protéines à radical SAM. En effet, dans HydE nous avons observé une attaque directe du radical 5'-dA• sur l’atome soufre du thioéther appartenant au cycle thiazolidine. Cette réaction constitue un exemple pas comme les autres d’une insertion d’un atome de soufre (ou de sélénium) catalysée par une enzyme à radical SAM. Il s'agit également d'une première observation d'une réaction radicalaire dans les cristaux protéiques d'une enzyme à radical SAM et également un premier suivi en temps réel par la RMN du 13C et 1H de l'accumulation d'un des produits de la réaction catalysée par ces enzymes. Les résultats de calculs théoriques basés sur nos structures cristallographiques de haute résolution suggèrent que dans le cas de cette superfamille de protéines le radical 5'-dA• serait plutôt un état de transition et donc pas une espèce intermédiaire isolable. / Radical S-adenosyl-L-methionine (SAM) proteins use a reduced [Fe4S4] cluster to initiate homolytic reductive cleavage of SAM, which leads to the formation of highly reactive 5'-deoxyadenosyl radical species or 5'-dA•. In almost all cases this alkyl radical will abstract a hydrogen atom from the substrate and thus trigger its conversion into product. These enzymes are found in key steps of the synthesis of certain vitamins, antibiotics, DNA precursors or protein cofactors. They are often involved in the cleavage or formation of C-C, C-N, C-S or C-P bonds. The present thesis work has been focused on the structural and functional study of HydE protein; a radical SAM enzyme, involved in the biosynthesis of the organometallic active site of [FeFe]-hydrogenase. The main goal was to identify the substrate of HydE and to study details of how radical SAM proteins control the highly oxidizing 5'-dA• species. We managed to identify a group of molecules, derived from cysteine, containing a thiazolidine ring with one or two carboxylate groups, which have a very good affinity for the active site of HydE. We have demonstrated some of these ligands are non-physiological substrates of the enzyme. With these substrates we could highlight a new radical attack mechanism in radical SAM proteins. Indeed, in HydE we observed a direct attack on the 5'-dA • radical on the sulfur atom of the thioether belonging to the thiazolidine ring. This is an unprecedented reaction that contrasts with sulfur (or selenium) atom insertion reactions catalysed by some radical SAM enzymes. This is also the first observation of a radical reaction in the protein crystal of a radical SAM enzyme and also the first real-time monitoring by 1H- & 13C-NMR spectroscopy of the accumulation of products of the reaction catalysed by these enzymes. Theoretical calculations based on our high-resolution crystal structures suggest that in the case of this protein superfamily the 5'-dA• radical, which triggers the reaction in radical SAM enzymes, is a transition state and therefore not an isolable intermediate species.
12

Synthetic approaches to investigate the chemical mechanism in the biosynthesis of natural products

Choi, Sei Hyun 22 September 2014 (has links)
The study of the biosynthetic logic of natural products has established itself to be one of the more exciting areas of research and have become an important part of modern drug discovery and development efforts. Therefore, understanding the pathway and the chemical mechanism of the biosynthesis of natural products is important in that knowledge on these processes can be applied for combinatorial biosynthesis to generate new natural product derivatives with enhanced biological activities. In addition to the practical value, a lot of unprecedented chemical mechanisms can be found in the enzymes involved therein, which will significantly advance our understanding of enzyme catalysis. The works described in this dissertation focus on elucidating the chemical mechanism of a number of enzymes involved in natural product biosynthesis by utilizing the versatility of synthetic chemistry to prepare enzyme substrates and mechanistic probes. First, SpnF and SpnL responsible for constructing the tetracyclic architecture of spinosyn A have been investigated. In vitro assay revealed the importance of the highly conjugated system for the [4+2]cycloaddition catalyzed by SpnF. Biochemical studies strongly suggest that SpnL employs the Rauhut-Currier mechanism for the second cyclization step in the biosynthesis of spinosyn A. It was also demonstrated that SpnL requires SAM for its activity. Second, a radical SAM enzyme DesII involved in the desosamine pathway has been investigated. It has been demonstrated that DesII can catalyze the dehydrogenation of TDP-D-quinovose as well as the deamination of the natural substrate, which makes DesII unique among radical SAM enzymes. In vitro assays revealed that DesII requires stoichiometric amount of SAM, which. EPR study firmly established the intermediacy of a C-3 radical in the DesII-catalyzed dehydrogenation of TDP-D-quinovose. Finally, the chemical mechanism of AXS responsible for the biosynthesis of UDP-apiose has been investigated. In vitro activity assay using UDP-2F-glucuronic acid showed that the analog is a competitive inhibitor of AXS. A coupled assay strategy was also developed to investigate the chemical mechanism of AXS in the reverse direction. In addition, the stereospecificity of two separate hydride transfer steps of AXS reaction has been firmly established. / text
13

Insertion de soufre en biologie par voie radicalaire. Etude des méthylthiotransférases

Arragain, Simon 07 October 2011 (has links) (PDF)
Un des problèmes majeurs en enzymologie est la fonctionnalisation de liaisons C-H peu réactives. Ces réactions nécessitent des cofacteurs spécialisés tels que l'hème, des Fer-oxo ou encore la vitamine B12. En 2001, il a été montré que des centres Fe-S particuliers liant la S-Adénosyle méthionine (SAM) pouvaient activer des liaisons C-H non réactives. Les enzymes utilisant ce cofacteur constituent une super-famille appelée " Radical SAM ". Les thiométhyltransférases (MTTases) sont des enzymes " Radical SAM " qui catalysent l'insertion d'un groupe thiométhyle (-SCH3) dans des liaisons C-H non réactives. Par des expériences in vivo et in vitro, nous avons montré qu'on pouvait les regrouper en trois classes. La première classe (RimO) catalyse la formation du β-thiométhylaspartate 89 sur la protéine ribosomale S12 (β-ms-D89-S12) alors que les deux dernières (MiaB et MtaB/eMtaB) catalysent respectivement la thiométhylation des nucléosides 2-methylthio-N6-isopentenyladenosine 37 (ms2i6A-37) et 2-methylthio-N6-threoninecarbamoyl adenosine 37 (ms2t6A-37) de certains ARNts. L'étude in vitro du mécanisme de ces enzymes a permis de démontrer que les MTTases catalysent l'insertion d'un groupement -SCH3 de façon catalytique invalidant l'hypothèse généralement retenue dans la littérature que le soufre inséré dérive de la destruction d'un centre Fe-S.
14

Maturation de sites métalliques de protéines par les protéines à radical S-Adénosyl-L-méthionine et la machinerie de fabrication des centres fer-soufre

Marinoni, Elodie 09 December 2011 (has links) (PDF)
Les centres FeS sont un des cofacteurs protéiques majeurs, ils se trouvent aussi bien chez les bactéries que chez les eucaryotes. Ils ont des rôles essentiels de transfert d'électron, liaison de substrat et son activation, régulation d'expression de gènes, donneur de soufre etc. Leur agencement est très varié, allant du centre [2Fe-2S] à l'agrégat plus complexe MoFe7S9X (X = C, N ou O) de la nitrogénase. L'assemblage de ces centres se fait par des machineries protéiques. Nous avons étudié le système ISC (Iron-Sulfur Cluster) chez les bactéries, qui fabrique des centres [2Fe-2S] et [4Fe-4S]. Il est composé des protéines IscS, IscU, IscA, HscA, HscB et d'une ferrédoxine. Deux de ces protéines, IscS, qui est une cystéine désulfurase et IscU, protéine dite échafaudage, sont le cœur de la machinerie puisque IscS apporte le soufre sur la protéine IscU, qui, avec le fer qu'elle aura obtenu d'une autre protéine (non clairement identifiée à ce jour), fabriquera le centre fer-soufre et le transfèrera à une apoprotéine. Nous avons isolé un complexe stable (IscS-D35A-IscU)2 contenant un centre [2Fe-2S] dans des conditions anaérobie. Différentes formes du complexe ont été obtenues et cristallisées afin d'obtenir leurs structures, résolues par remplacement moléculaire. Ces structures nous ont permis de proposer un mécanisme d'assemblage des centres [2Fe-2S] à l'échelle atomique et électronique. Nous avons d'autre part étudié la protéine HmdB probablement impliquée dans la maturation de l'hydrogénase à fer. HmdB fait partie de la superfamille des protéines à radical SAM. Des cristaux de l'apoprotéine ont été obtenus et sa structure a été résolue par remplacement moléculaire. Même si une partie de la structure n'est pas visible du fait de l'absence de centre [4Fe-4S], elle donne une première vue du site actif de la protéine.
15

Réparation de l'ADN par une protéine « Radical-SAM » : Etude de la Spore Photoproduct Lyase

Chandor-Proust, Alexia 28 November 2008 (has links) (PDF)
Chez les spores de bactéries, le photoproduit le plus abondant formé dans l'ADN irradié par les UV est un dimère de thymines appelé Photoproduit des spores (SP, 5-(a-thyminyl)-5,6-dihydrothymine). Au début de la germination, ce photoproduit est spécifiquement réparé par une enzyme, la Spore Photoproduct Lyase (SPL), régénérant les deux résidus thymine originaux. Cette enzyme est une protéine Fe-S qui appartient à la famille des « Radical-SAM ». Les protéines de cette famille d'enzymes possèdent un centre [4Fe-4S], coordiné par 3 cystéines conservées organisées selon le motif CxxxCxxC, et utilisent la SAdénosylméthionine comme cofacteur. Elles fonctionnent toutes selon un mécanisme <br />radicalaire, initié par la formation du radical 5'-désoxyadénosyle issu de la coupure homolytique de la S-Adénosylméthionine par le centre [4Fe-4S] réduit. Dans ce travail, nous avons effectué une caractérisation biochimique et spectroscopique des SPL de Clostridium acetobutylicum et Bacillus subtilis. Par ailleurs, nous avons synthétisé un substrat minimum sous la forme d'un dinucléoside monophosphate appelé SPTpT, pour lequel une caractérisation structurale par RMN a été réalisée. Le SPTpT est reconnu et efficacement réparé par l'enzyme, ce qui nous a permis d'obtenir de nouvelles informations sur le mécanisme enzymatique de réparation. Enfin, la séquence primaire des SPL contient une 4e cystéine conservée, essentielle à la réparation, mais qui n'est pas impliquée dans la coordination du centre [Fe-S]. Nous nous sommes intéressés au rôle de cette cystéine dans le mécanisme de réparation grâce à l'étude biochimique et enzymatique du mutant SPLC141A.
16

Post-translational generation of Cá-formylglycine in Prokaryotic Sulfatsases by Radical SAM-Proteins / Posttranslationale Bildung von Cá-formylglycine in Prokaryotischen bakterieller Sulfatasen durch Radikal-SAM-Proteine

Fang, Qinghua 22 January 2004 (has links)
No description available.

Page generated in 0.0322 seconds