• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular mechanisms of the TGFβ1 Arg25Pro polymorphism related to acute radiotherapy-induced toxicity

Filonenko, Kateryna 25 March 2015 (has links)
No description available.
2

Multi-Recycling of Transuranic Elements in a Modified PWR Fuel Assembly

Chambers, Alex 2011 August 1900 (has links)
The nuclear waste currently generated in the United States is stored in spent fuel pools and dry casks throughout the country awaiting a permanent disposal solution. One efficient solution would be to remove the actinides from the waste and transmute these isotopes in a fast spectrum reactor. Currently this technology is unavailable on a commercial scale and a considerable amount of research and development is still required. An alternate solution is to reprocess and recycle the used fuel in thermal reactors, creating new fuel while reducing the amount of waste and its impact to the environment. This thesis examines the possibility of multi-recycling the transuranics (Pu, Np, Am, and Cm) in a standard pressurized water reactor (PWR). Two types of recycling strategies will be examined: one where Pu, Np, and Am are recycled (TRU-Cm) and a second where the previous isotopes as well as Cm are recycled (TRU+Cm). To offset the hardened neutron spectrum that results from the inclusion of the transuranics, a smaller fuel pin is employed to provide additional moderation. Computer simulations are used to model the in-reactor physics and long-term isotopic decay. Each fuel type is assessed based on the required U-235 enrichment, void coefficient, transuranic production/destruction, and radiotoxicity reduction as compared to a UOX and MOX assembly. It is found that the most beneficial recycling strategy is the one where all of the transuranics are recycled. The inclusion of Cm reduces the required U-235 enrichment, compared to the other multi-recycled fuel and, after a significant number of recycles, can result in the required enrichment to decrease. This fuel type also maintains a negative void coefficient for each recycle. The void coefficient of the fuel type without Cm becomes positive after the third cycle. The transmutation destruction of the two multi-recycled assemblies is less than that of a MOX assembly, but the transmutation efficiency of the multi-recycled assemblies exceeds the MOX assemblies. The radiotoxicity of both multi-recycled assemblies is significantly lower than the UOX and MOX with the TRU+Cm fuel being the lowest. When Curium is recycled only 28,000 years are required for the radiotoxicity of the waste to reach that of natural Uranium and when Cm is not recycled, the amount of time increases to 57,000 years.
3

Assessment of Low-Dose Radiotoxicity in Microorganisms and Higher Organisms

Obeid, Muhammad Hassan 18 January 2016 (has links) (PDF)
This work was dedicated to quantify and distinguish the radio- and chemitoxic effects of environmentally relevant low doses of uranium on the metabolism of microorganisms and multicellular organisms by a modern and highly sensitive microcalorimetry. In such low-dose regime, lethality is low or absent. Therefore, quantitative assays based on survival curves cannot be employed, particularly for multicellular organisms. Even in the case of microbial growth, where individual cells may be killed by particle radiation, classical toxicity assessments based on colony counting are not only extremely time-consuming but also highly error-prone. Therefore, measuring the metabolic activity of the organism under such kinds of conditions would give an extremely valuable quantitative measure of viability that is based on life cell monitoring, rather than determining lethality at higher doses and extrapolating it to the low dose regime. The basic concept is simple as it relies on the metabolic heat produced by an organism during development, growth or replication as an inevitable byproduct of all biochemical processes. A metabolic effect in this concept is defined as a change in heat production over time in the presence of a stressor, such as a heavy metal. This approach appeared to be particular versatile for the low dose regime. Thus, the thesis attempted in this case to measure the enthalpy production of a bacterial population as a whole to derive novel toxicity concepts. In the following chapters, an introduction about the properties of ionizing radiation will be briefly presented, in addition to a review about the isothermal calorimetry and its application in studying the bacterial growth. Later in chapter 2, the effect of uranium on the metabolic activity of three different bacterial strains isolated form a uranium mining waste pile together with a reference strain that is genetically related to them will be investigated. Due to the lack of published dedicated calibration techniques for the interpretation of heat production of bacterial cells under the conditions of calorimetric recordings, additional experiments, thorough investigations of the effects of experimental conditions, have been carried out in order to guide the interpretation of calorimetric results. In chapter 3, the differentiation between chemi- and radiotoxicity of uranium has been addressed by isotope exchange, which was a key effort in this thesis as it opens new experimental approaches in radioecology. In chapter 4, through investigating the role of the tripeptide glutathione (GSH) in detoxifying uranium, it will be shown to which degree the intrinsically unspecific signal provided by metabolic heat can be related to highly specific metabolic pathways of an organism, when combined with genetic engineering. The demonstration of gaining molecule-specific information by life metabolic monitoring was another experimental challenge of this thesis and provides proof of principle that can be extended to many organisms. Finally in chapter 5, an attempt has been undertaken to establish a minimal food chain, in order to study the effects of the exposure of a multicellular organism to uranium through its diet.
4

Assessment of Low-Dose Radiotoxicity in Microorganisms and Higher Organisms

Obeid, Muhammad Hassan 11 January 2016 (has links)
This work was dedicated to quantify and distinguish the radio- and chemitoxic effects of environmentally relevant low doses of uranium on the metabolism of microorganisms and multicellular organisms by a modern and highly sensitive microcalorimetry. In such low-dose regime, lethality is low or absent. Therefore, quantitative assays based on survival curves cannot be employed, particularly for multicellular organisms. Even in the case of microbial growth, where individual cells may be killed by particle radiation, classical toxicity assessments based on colony counting are not only extremely time-consuming but also highly error-prone. Therefore, measuring the metabolic activity of the organism under such kinds of conditions would give an extremely valuable quantitative measure of viability that is based on life cell monitoring, rather than determining lethality at higher doses and extrapolating it to the low dose regime. The basic concept is simple as it relies on the metabolic heat produced by an organism during development, growth or replication as an inevitable byproduct of all biochemical processes. A metabolic effect in this concept is defined as a change in heat production over time in the presence of a stressor, such as a heavy metal. This approach appeared to be particular versatile for the low dose regime. Thus, the thesis attempted in this case to measure the enthalpy production of a bacterial population as a whole to derive novel toxicity concepts. In the following chapters, an introduction about the properties of ionizing radiation will be briefly presented, in addition to a review about the isothermal calorimetry and its application in studying the bacterial growth. Later in chapter 2, the effect of uranium on the metabolic activity of three different bacterial strains isolated form a uranium mining waste pile together with a reference strain that is genetically related to them will be investigated. Due to the lack of published dedicated calibration techniques for the interpretation of heat production of bacterial cells under the conditions of calorimetric recordings, additional experiments, thorough investigations of the effects of experimental conditions, have been carried out in order to guide the interpretation of calorimetric results. In chapter 3, the differentiation between chemi- and radiotoxicity of uranium has been addressed by isotope exchange, which was a key effort in this thesis as it opens new experimental approaches in radioecology. In chapter 4, through investigating the role of the tripeptide glutathione (GSH) in detoxifying uranium, it will be shown to which degree the intrinsically unspecific signal provided by metabolic heat can be related to highly specific metabolic pathways of an organism, when combined with genetic engineering. The demonstration of gaining molecule-specific information by life metabolic monitoring was another experimental challenge of this thesis and provides proof of principle that can be extended to many organisms. Finally in chapter 5, an attempt has been undertaken to establish a minimal food chain, in order to study the effects of the exposure of a multicellular organism to uranium through its diet.
5

Transmutation of Transuranic Elements in Advanced MOX and IMF Fuel Assemblies Utilizing Multi-recycling Strategies

Zhang, Yunhuang 2009 December 1900 (has links)
The accumulation of spent nuclear fuel may be hindering the expansion of nuclear electricity production. However, the reprocessing and recycling of spent fuel may reduce its volume and environmental burden. Although fast spectrum reactors are the preferred modality for transuranic element transmutation, such fast spectrum systems are in very short supply. It is therefore legitimate to investigate the recycling potential of thermal spectrum systems, which constitute the overwhelming majority of nuclear power plants worldwide. To do so efficiently, several new fuel assembly designs are proposed in this Thesis: these include (1) Mixed Oxide Fuel (MOX), (2) MOX fuel with Americium coating, (3) Inert-Matrix Fuel (IMF) with UOX as inner zone, and (4) IMF with MOX as inner zone. All these designs are investigated in a multi-recycling strategy, whereby the spent fuel from a given generation is re-used for the next generation. The accumulation of spent nuclear fuel may be hindering the expansion of nuclear electricity production. However, the reprocessing and recycling of spent fuel may reduce its volume and environmental burden. Although fast spectrum reactors are the preferred modality for transuranic element transmutation, such fast spectrum systems are in very short supply. It is therefore legitimate to investigate the recycling potential of thermal spectrum systems, which constitute the overwhelming majority of nuclear power plants worldwide. To do so efficiently, several new fuel assembly designs are proposed in this Thesis: these include (1) Mixed Oxide Fuel (MOX), (2) MOX fuel with Americium coating, (3) Inert-Matrix Fuel (IMF) with UOX as inner zone, and (4) IMF with MOX as inner zone. All these designs are investigated in a multi-recycling strategy, whereby the spent fuel from a given generation is re-used for the next generation.
6

Plynné výpusti 14C z ETE / Gasseous effluents of 14C from NPP Temelín

JANOVSKÝ, Daniel January 2007 (has links)
Within the presented thesis there were collected data of effluents of 14C chemical forms from ventilation stacks of the Unit 1, the Unit 2 and the Auxiliary Building of the Temelin NPP for the period from 2001 to 2006. These data are compared to power of both reactors and concentration of ammonium ions in coolant of the primary circuit of the Unit 1 and Unit 2.
7

Untersuchungen zur Radiotoxizität von Tc-99m-markierten Radiotracern in vitro an FRTL-5- und A431-Zellen

Maucksch, Ute 08 November 2016 (has links) (PDF)
Einleitung/ Zielstellung Zusätzlich zur Gammastrahlung emittiert 99mTc ca. 5 niederenergetische Auger-Elektronen mit Reichweiten von wenigen Nanometern im Gewebe. Diese haben für die nuklear-medizinische Diagnostik keine Bedeutung. Es wird jedoch über eine therapeutische Nutzung diskutiert, wofür eine Anreicherung der Auger-Elektronen-Emitter in einem strahlensensitiven Zellkompartiment erforderlich ist. Ziel der Arbeit war es, verschiedene [99mTc]Tc-Radiopharmaka hinsichtlich ihres Uptakeverhaltens, der subzellulärer Verteilung und des Retentionsverhaltens in vitro zu untersuchen, sowie die mutmaßlich durch den Auger-Effekt hervorgerufene Radiotoxizität der [99mTc]Tc-markierten Radiopharmaka zu vergleichen und die gewonnenen Ergebnisse in Hinblick auf potentielle extranukleäre strahlensensitive Targets zu interpretieren. Material und Methode Durchgeführt wurden die Versuche im ersten Abschnitt der Arbeit an Natrium-Iodid-Symporter (NIS)-positiven FRTL-5-Schilddrüsenzellen. Von [99mTc] Pertechnetat ([99mTc]TcO4-), [99mTc]TcO4- nach Vorinkubation von Perchlorat ([99mTc]TcO4-/ ClO4-), [99mTc]Tc-Hexakis-2-Methoxyisobutylisonitril ([99mTc]Tc-MIBI), [99mTc]Tc-Hexamethyl-Propylenaminoxim ([99mTc]Tc-HMPAO) und [99mTc]TcO4- nach Vorinkubation von Zinn-Pyrophosphat (Sn- PYP/ [99mTc]TcO4-) wurden die intrazelluläre Radio¬nuklid¬aufnahme und die subzelluläre Verteilung untersucht. Basierend auf den Ergebnissen dieser Versuche wurde die mittlere absorbierte Zellkerndosis kalkuliert. Zur Beurteilung der strahlenbiologischen Wirkung wurde das klonogene Zellüberleben mit der Anzahl residualer gH2AX-Foci (DNA-Schaden) verglichen und die Wirkung der [99mTc]Tc Tracer auf den Zellzyklus von FRTL-5-Zellen untersucht. Im zweiten Abschnitt der Arbeit wurde an EGFR-positiven A431-Zellen die radiotoxische Wirkung in Abhängigkeit von der intra¬zellulären Lokalisation von [99mTc]Alexa(488)-C225-Cyclooctin-Dpa-Tc(CO)3 ([99mTc]Tc-C225), [99mTc]Tc-HMPAO und [99mTc]TcO4- auf das klonogene Zellüberleben untersucht. Ergebnisse und Diskussion Aufgrund verschiedener Uptakemechanismen zeigte jedes der untersuchten [99mTc]Tc-Radiopharmaka Unterschiede im zeitlichen Verlauf der Uptakekinetik. Durch Blockierung des NIS durch ClO4- konnte eine intrazelluläre Aufnahme von [99mTc]TcO4- verhindert werden, wogegen durch Vorinkubation mit Sn-PYP die zelluläre Aufnahme von [99mTc]TcO4- um das 22-fache gesteigert wurde. [99mTc]Tc-MIBI und [99mTc]Tc-HMPAO wurden aufgrund ihrer lipophilen Eigenschaften unabhängig vom NIS passiv in die Zelle transportiert. Die Untersuchung der intrazellulären Verteilung ergab für [99mTc]Tc-HMPAO und Sn-PYP/ [99mTc]TcO4- eine vergleichbar hohe Anreicherung in der Membran/Organellen-Fraktion sowie in der Zellkernfraktion. Von [99mTc]TcO4- und [99mTc]Tc-MIBI wurde die Hauptaktivität in der Zytosol-Fraktion und nur geringe Anteile in der Membran/Organellen-Fraktion sowie in der Zellkernfraktion nachgewiesen. In guter Übereinstimmung zur subzellulären Verteilung zeigten Sn-PYP/ [99mTc]TcO4- und [99mTc]Tc-HMPAO eine fast vollständige, hingegen [99mTc]Tc-MIBI und [99mTc]TcO4- nur eine geringe Retention. Aufgrund der genannten Unterschiede wurde bei gleicher inkubierter Aktivitätskonzentration folgende Reihenfolge der resultierenden Zellkerndosis ermittelt: [99mTc]TcO4- < [99mTc]Tc-MIBI < [99mTc]Tc-HMPAO < Sn-PYP/ [99mTc]TcO4-. [99mTc]TcO4- und [99mTc]Tc-HMPAO zeigten eine ähnliche Wirkung auf das klonogene Zellüberleben und auf den Zellzyklus. Jedoch bewirken sie eine wesentlich stärkere Reduzierung des Überlebens und einen stärkeren G2-Arrest als [99mTc]Tc-MIBI und Sn-PYP/ [99mTc]TcO4-, wobei [99mTc]Tc-MIBI bei allen drei untersuchten biologischen Endpunkten die geringste Wirkung zeigte. Bei einer vergleichbaren Reduktion des Zellüberlebens von [99mTc]TcO4- und [99mTc]Tc-HMPAO induzierte [99mTc]Tc-HMPAO lediglich die Hälfte der gH2AX-Foci im Vergleich zu [99mTc]TcO4-. Die trotz geringerem DNA-Schaden vergleichbare radiotoxische Wirkung zeigte, dass das klonogene Zellüberleben nicht allein vom DNA-Schaden abhängt. Daraus folgt, dass es außer der Kern-DNA noch weitere strahlensensitive Kompartimente gibt, die durch [99mTc]Tc-HMPAO stärker geschädigt wurden als von den anderen untersuchten [99mTc]Tc Tracern. Ein mögliches extranukleäres strahlensensitives Target ist die Zellmembran, so dass im zweiten Teil der Arbeit zur Überprüfung der Radiosensitivität der Zellmembran die radiotoxische Wirkung von [99mTc]Tc-C225 an EGFR-positiven A431-Zellen untersucht wurde. [99mTc]Tc-C225 wurde über den EGFR und [99mTc]Tc-HMPAO aufgrund seiner Lipophilie durch Diffusion intrazellulär aufgenommen. [99mTc]TcO4- dagegen zeigte keine intrazelluläre Aufnahme in die NIS-negativen Zellen und wurde als Referenz für eine extrazelluläre Bestrahlung verwendet. [99mTc]Tc-C225 wies nach einstündiger Inkubation eine Membranbindung von lediglich 10 % auf, die im Laufe von 24 h auf 1,9 % absank. Dies zeigte, dass [99mTc]Tc-C225 rasch in den A431-Zellen internalisiert wurde und dass nur bei sehr kurzen Inkubationszeiten von einer spezifischen Zellmembranmarkierung gesprochen werden kann. [99mTc]Tc-HMPAO ging keine Bindung an die Zellmembran ein. Weiterhin wurde bei der Inkubation steigender Aktivitäts- und Antikörperkonzentrationen von [99mTc]Tc C225 eine Sättigung des EGFR beobachtet, woraus eine wesentlich geringere Zellkerndosis als bei Inkubation von [99mTc]Tc-HMPAO resultierte. Im Vergleich des klonogenen Zellüberlebens zeigten [99mTc]Tc-C225 und [99mTc]Tc-HMPAO bei gleicher Zellkerndosis keine Unterschiede in der radiobiologischen Wirkung. Somit konnte lediglich eine Verstärkung der radiotoxischen Effekte von [99mTc]Tc-C225 an A431-Zellen im Vergleich zur ausschließlich extrazellulären Verteilung von [99mTc]TcO4- gezeigt werden. Schlussfolgerung Die Untersuchung der radiotoxischen Wirkung von [99mTc]Tc-C225 ermöglichte bei den angewendeten Versuchsbedingungen keine Rückschlüsse auf die Strahlensensitivität der Zellmembran. Weiterführende Arbeiten zur Entwicklung eines 99mTc-markierbaren spezifischen Membranmarkers wären notwendig, um klären zu können, ob die Zellmembran ein ähnlich strahlensensitives Target wie die nukleäre DNA ist. Dosimetrische Betrachtungen an den als Modellsystemen dienenden FRTL-5- und A431-Zellen deuten darauf hin, dass aufgrund ungenügender Anreicherung eine therapeutische Wirkung der Auger-Elektronen im Tumorgewebe eher unrealistisch ist. Damit sollte aus gegenwärtiger Sicht die klinische Anwendung von 99mTc auf den diagnostischen Einsatz beschränkt bleiben. Jedoch könnte 99mTc als Auger-Elektronen-Emitter bei spezifischer Anreicherung in definierten Zellkompartimenten als Nano-Tool zur Erforschung der Strahlensensitivität einzelner Zellbestandteile eingesetzt werden. / Introduction In addition to gamma radiation, 99mTc emits approximately 5 low energy Auger and internal conversion electrons per decay, resulting in high ionization density proximal to the radionuclide’s decay position. Low-energy Auger electrons with path lengths of only nanometers cannot be utilized for diagnostic procedures; however, they have frequently been discussed for therapeutic applications. To achieve a radiobiological effect, an intracellular accumulation and distribution in relevant cell compartments of the Auger electron emitter is required. Aim The aim of the thesis was the comparison of different [99mTc]Tc-labeled compounds concerning their intracellular uptake, subcellular distribution and retention in vitro. Furthermore the radiotoxicity caused by the Auger effect has to be investigated. Material and Methods The intracellular radionuclide uptake, subcellular distribution (ProteoExtract®-Kit) and retention of [99mTc] pertechnetate ([99mTc]TcO4-), [99mTc]TcO4- after pre-incubation of perchlorate ([99mTc]TcO4-/ClO4-), [99mTc]TcO4- after pre-incubation of stannous pyrophosphate ([99mTc]TcO4-/Sn-PYP), [99mTc]Tc-hexamethyl-propylene-aminoxime ([99mTc]Tc-HMPAO) and [99mTc]Tc-hexakis-2-methoxyisobutylisonitrile ([99mTc]Tc-MIBI) were quantified in sodium-iodide symporter (NIS)-positive rat thyroid FRTL-5 cells. Basing on these results the mean absorbed nucleus dose was calculated. Radiotoxicity was investigated using phosphorylated histone H2AX (gH2AX foci), clonogenic cell survival and cell cycle analyzes. Additionally the radiotoxicity of [99mTc]Alexa(488)-C225-Cyclooctin-Dpa-Tc(CO)3 ([99mTc]Tc-C225) was compared with the one of [99mTc]TcO4- and [99mTc]Tc -HMPAO depending on the subcellular distribution in EGFR-positive A431 cells. Results and Discussion For the analyzed [99mTc]Tc-labeled compounds we detected differences in the time courses of the uptake kinetics caused by different uptake mechanisms into the FRTL-5 cells. The radionuclide uptake of [99mTc]TcO4- was blocked in the presence of perchlorate and increased by a factor of approximately 22 after pre-incubation of Sn-PYP. The lipophilic complexes [99mTc]Tc-MIBI and [99mTc]Tc-HMPAO crossed the cell membrane through passive transport via diffusion. The compartmental analysis indicated that [99mTc]Tc-HMPAO and [99mTc]TcO4-/Sn-PYP revealed a comparable high uptake in the nucleus and in the membrane/organelle fraction. [99mTc]TcO4- and [99mTc]Tc-MIBI were preferentially distributed in the cytosol, with lower amounts of the accumulated activity in both the membranes/organelles and the nucleus compared with the other compounds. In good agreement with the subcellular distribution [99mTc]Tc-HMPAO, [99mTc]TcO4-/Sn-PYP showed a nearly complete retention and [99mTc]TcO4-, [99mTc]Tc-MIBI a low retention. Due to the differences mentioned above the following sequence of the calculated mean nucleus dose for identical activity concentrations was determined: [99mTc]TcO4- < [99mTc]Tc-MIBI < [99mTc]Tc-HMPAO < Sn PYP/ [99mTc]TcO4-. [99mTc]TcO4- and [99mTc]Tc-HMPAO caused a similar reduction of the cell survival and a dose dependent G2-arrest. [99mTc]Tc-MIBI and Sn-PYP/ [99mTc]TcO4- are both less radiotoxic in terms of the estimated nucleus dose compared with [99mTc]TcO4- and [99mTc]Tc-HMPAO. Despite the similar effect on the cell survival [99mTc]Tc-HMPAO induced only half of the residual gH2AX foci than [99mTc]TcO4-. These findings reveal that clonogenic cellular survival is not solely determined by the DNA-DSB response, which may suggest the involvement of extra-nuclear radiosensitive targets in cell inactivation. A possible extra-nuclear radiosensitive target is the cell membrane. That’s why the aim of the second part of the thesis is the investigation of the radiosensitivity of the cell membrane. Therefore the radiotoxic influence of [99mTc]Tc-C225 was analyzed at EGFR-positive A431 cells. [99mTc]Tc-C225 was taken up over the EGFR and the lipophilic [99mTc]Tc-HMPAO was transported via diffusion over the cell membrane. In contrast, [99mTc]TcO4- did not show any intracellular uptake into the NIS-negative cells and therefore was used as extracellular reference. An incubation of [99mTc]Tc-C225 for one hour resulted to a membrane binding of only 10 %, which was reduced to 1.9 % after 24 hours. This demonstrated a fast internalization into A431-cell. Therefore only in the case of a very short incubation time [99mTc]Tc-C225 leads to a specific targeting of the cell membrane. [99mTc]Tc-HMPAO did not bind to the cell membrane. Furthermore the incubation of increasing concentrations of activity and antibody resulted in a saturation of the EGFR, leading to a significant lower nucleus dose in comparison to the incubation of [99mTc]Tc-HMPAO. Concerning the clonogenic cell survival no differences in the radiotoxicity of [99mTc]Tc-C225 and [99mTc]Tc-HMPAO were observed for equal nucleus dose. Thus only an amplification of the radiotoxic effects of [99mTc]Tc-C225 in comparison to the extracellular distribution in A431 cells of 99mTc-pertechnetate was observed. Conclusion The investigation of the radiotoxic effect of [99mTc]Tc-C225 did not allow any conclusions about the radiosensitivity of the cell membrane under the given experimental conditions. For clarifying if the radiosensitivity of the cell membrane is comparable to the one of the nucleus DNA further experiments for the development of a [99mTc]Tc-labeled specific target for the cell membrane are necessary. On the basis of the dosimetric considerations of the FRTL-5 cells and A431 cells used as model systems it can be concluded that because of an insufficient accumulation a therapeutic radiotoxic effect of the Auger electrons is not realistic. Therefore the clinical use of 99mTc should be limited to the diagnostics. Nevertheless specific accumulated Auger electrons of 99mTc could be applied in the field of investigation as nano-tools for the subcellular analysis of radiotoxicity.
8

Neutronic study of the mono-recycling of americum in PWR and of the core conversion INMNSR using the MURE code

Sogbadji, Robert 11 July 2012 (has links) (PDF)
The MURE code is based on the coupling of a Monte Carlo static code and the calculation of the evolution of the fuel during irradiation and cooling periods. The MURE code has been used to analyse two different questions, concerning the mono-recycling of Am in present French Pressurized Water Reactor, and the conversion of high enriched uranium (HEU) used in the Miniature Neutron Source Reactor in Ghana into low enriched uranium (LEU) due to proliferation resistance issues. In both cases, a detailed comparison is made on burnup and the induced radiotoxicity of waste or spent fuel. The UOX fuel assembly, as in the open cycle system, was designed to reach a burn-up of 46GWd/T and 68GWd/T. The spent UOX was reprocessed to fabricate MOX assemblies, by the extraction of Plutonium and addition of depleted Uranium to reach burn-ups of 46GWd/T and 68GWd/T, taking into account various cooling times of the spent UOX assembly in the repository. The effect of cooling time on burnup and radiotoxicity was then ascertained. Spent UOX fuel, after 30 years of cooling in the repository required higher concentration of Pu to be reprocessed into a MOX fuel due to the decay of Pu-241. Americium, with a mean half-life of 432 years, has high radiotoxic level, high mid-term residual heat and a precursor for other long lived isotope. An innovative strategy consists of reprocessing not only the plutonium from the UOX spent fuel but also the americium isotopes which dominate the radiotoxicity of present waste. The mono-recycling of Am is not a definitive solution because the once-through MOX cycle transmutation of Am in a PWR is not enough to destroy all the Am. The main objective is to propose a "waiting strategy" for both Am and Pu in the spent fuel so that they can be made available for further transmutation strategies. The MOXAm (MOX and Americium isotopes) fuel was fabricated to see the effect of americium in MOX fuel on the burn-up, neutronic behavior and on radiotoxicity. The MOXAm fuel showed relatively good indicators both on burnup and on radiotoxicity. A 68GWd/T MOX assembly produced from a reprocessed spent 46GWd/T UOX assembly showed a decrease in radiotoxicity as compared to the open cycle. All fuel types understudy in the PWR cycle showed good safety inherent feature with the exception of the some MOXAm assemblies which have a positive void coefficient in specific configurations, which could not be consistent with safety features. The core lifetimes of the current operating 90.2% HEU UAl fuel and the proposed 12.5% LEU UOX fuel of the MNSR were investigated using MURE code. Even though LEU core has a longer core life due to its higher core loading and low rate of uranium consumption, the LEU core will have it first beryllium top up to compensate for reactivity at earlier time than the HEU core. The HEU and LEU cores of the MNSR exhibited similar neutron fluxes in irradiation channels, negative feedback of temperature and void coefficients, but the LEU is more radiotoxic after fission product decay due to higher actinides presence at the end of its core lifetime.
9

Untersuchungen zur Radiotoxizität von Tc-99m-markierten Radiotracern in vitro an FRTL-5- und A431-Zellen

Maucksch, Ute 28 October 2016 (has links)
Einleitung/ Zielstellung Zusätzlich zur Gammastrahlung emittiert 99mTc ca. 5 niederenergetische Auger-Elektronen mit Reichweiten von wenigen Nanometern im Gewebe. Diese haben für die nuklear-medizinische Diagnostik keine Bedeutung. Es wird jedoch über eine therapeutische Nutzung diskutiert, wofür eine Anreicherung der Auger-Elektronen-Emitter in einem strahlensensitiven Zellkompartiment erforderlich ist. Ziel der Arbeit war es, verschiedene [99mTc]Tc-Radiopharmaka hinsichtlich ihres Uptakeverhaltens, der subzellulärer Verteilung und des Retentionsverhaltens in vitro zu untersuchen, sowie die mutmaßlich durch den Auger-Effekt hervorgerufene Radiotoxizität der [99mTc]Tc-markierten Radiopharmaka zu vergleichen und die gewonnenen Ergebnisse in Hinblick auf potentielle extranukleäre strahlensensitive Targets zu interpretieren. Material und Methode Durchgeführt wurden die Versuche im ersten Abschnitt der Arbeit an Natrium-Iodid-Symporter (NIS)-positiven FRTL-5-Schilddrüsenzellen. Von [99mTc] Pertechnetat ([99mTc]TcO4-), [99mTc]TcO4- nach Vorinkubation von Perchlorat ([99mTc]TcO4-/ ClO4-), [99mTc]Tc-Hexakis-2-Methoxyisobutylisonitril ([99mTc]Tc-MIBI), [99mTc]Tc-Hexamethyl-Propylenaminoxim ([99mTc]Tc-HMPAO) und [99mTc]TcO4- nach Vorinkubation von Zinn-Pyrophosphat (Sn- PYP/ [99mTc]TcO4-) wurden die intrazelluläre Radio¬nuklid¬aufnahme und die subzelluläre Verteilung untersucht. Basierend auf den Ergebnissen dieser Versuche wurde die mittlere absorbierte Zellkerndosis kalkuliert. Zur Beurteilung der strahlenbiologischen Wirkung wurde das klonogene Zellüberleben mit der Anzahl residualer gH2AX-Foci (DNA-Schaden) verglichen und die Wirkung der [99mTc]Tc Tracer auf den Zellzyklus von FRTL-5-Zellen untersucht. Im zweiten Abschnitt der Arbeit wurde an EGFR-positiven A431-Zellen die radiotoxische Wirkung in Abhängigkeit von der intra¬zellulären Lokalisation von [99mTc]Alexa(488)-C225-Cyclooctin-Dpa-Tc(CO)3 ([99mTc]Tc-C225), [99mTc]Tc-HMPAO und [99mTc]TcO4- auf das klonogene Zellüberleben untersucht. Ergebnisse und Diskussion Aufgrund verschiedener Uptakemechanismen zeigte jedes der untersuchten [99mTc]Tc-Radiopharmaka Unterschiede im zeitlichen Verlauf der Uptakekinetik. Durch Blockierung des NIS durch ClO4- konnte eine intrazelluläre Aufnahme von [99mTc]TcO4- verhindert werden, wogegen durch Vorinkubation mit Sn-PYP die zelluläre Aufnahme von [99mTc]TcO4- um das 22-fache gesteigert wurde. [99mTc]Tc-MIBI und [99mTc]Tc-HMPAO wurden aufgrund ihrer lipophilen Eigenschaften unabhängig vom NIS passiv in die Zelle transportiert. Die Untersuchung der intrazellulären Verteilung ergab für [99mTc]Tc-HMPAO und Sn-PYP/ [99mTc]TcO4- eine vergleichbar hohe Anreicherung in der Membran/Organellen-Fraktion sowie in der Zellkernfraktion. Von [99mTc]TcO4- und [99mTc]Tc-MIBI wurde die Hauptaktivität in der Zytosol-Fraktion und nur geringe Anteile in der Membran/Organellen-Fraktion sowie in der Zellkernfraktion nachgewiesen. In guter Übereinstimmung zur subzellulären Verteilung zeigten Sn-PYP/ [99mTc]TcO4- und [99mTc]Tc-HMPAO eine fast vollständige, hingegen [99mTc]Tc-MIBI und [99mTc]TcO4- nur eine geringe Retention. Aufgrund der genannten Unterschiede wurde bei gleicher inkubierter Aktivitätskonzentration folgende Reihenfolge der resultierenden Zellkerndosis ermittelt: [99mTc]TcO4- < [99mTc]Tc-MIBI < [99mTc]Tc-HMPAO < Sn-PYP/ [99mTc]TcO4-. [99mTc]TcO4- und [99mTc]Tc-HMPAO zeigten eine ähnliche Wirkung auf das klonogene Zellüberleben und auf den Zellzyklus. Jedoch bewirken sie eine wesentlich stärkere Reduzierung des Überlebens und einen stärkeren G2-Arrest als [99mTc]Tc-MIBI und Sn-PYP/ [99mTc]TcO4-, wobei [99mTc]Tc-MIBI bei allen drei untersuchten biologischen Endpunkten die geringste Wirkung zeigte. Bei einer vergleichbaren Reduktion des Zellüberlebens von [99mTc]TcO4- und [99mTc]Tc-HMPAO induzierte [99mTc]Tc-HMPAO lediglich die Hälfte der gH2AX-Foci im Vergleich zu [99mTc]TcO4-. Die trotz geringerem DNA-Schaden vergleichbare radiotoxische Wirkung zeigte, dass das klonogene Zellüberleben nicht allein vom DNA-Schaden abhängt. Daraus folgt, dass es außer der Kern-DNA noch weitere strahlensensitive Kompartimente gibt, die durch [99mTc]Tc-HMPAO stärker geschädigt wurden als von den anderen untersuchten [99mTc]Tc Tracern. Ein mögliches extranukleäres strahlensensitives Target ist die Zellmembran, so dass im zweiten Teil der Arbeit zur Überprüfung der Radiosensitivität der Zellmembran die radiotoxische Wirkung von [99mTc]Tc-C225 an EGFR-positiven A431-Zellen untersucht wurde. [99mTc]Tc-C225 wurde über den EGFR und [99mTc]Tc-HMPAO aufgrund seiner Lipophilie durch Diffusion intrazellulär aufgenommen. [99mTc]TcO4- dagegen zeigte keine intrazelluläre Aufnahme in die NIS-negativen Zellen und wurde als Referenz für eine extrazelluläre Bestrahlung verwendet. [99mTc]Tc-C225 wies nach einstündiger Inkubation eine Membranbindung von lediglich 10 % auf, die im Laufe von 24 h auf 1,9 % absank. Dies zeigte, dass [99mTc]Tc-C225 rasch in den A431-Zellen internalisiert wurde und dass nur bei sehr kurzen Inkubationszeiten von einer spezifischen Zellmembranmarkierung gesprochen werden kann. [99mTc]Tc-HMPAO ging keine Bindung an die Zellmembran ein. Weiterhin wurde bei der Inkubation steigender Aktivitäts- und Antikörperkonzentrationen von [99mTc]Tc C225 eine Sättigung des EGFR beobachtet, woraus eine wesentlich geringere Zellkerndosis als bei Inkubation von [99mTc]Tc-HMPAO resultierte. Im Vergleich des klonogenen Zellüberlebens zeigten [99mTc]Tc-C225 und [99mTc]Tc-HMPAO bei gleicher Zellkerndosis keine Unterschiede in der radiobiologischen Wirkung. Somit konnte lediglich eine Verstärkung der radiotoxischen Effekte von [99mTc]Tc-C225 an A431-Zellen im Vergleich zur ausschließlich extrazellulären Verteilung von [99mTc]TcO4- gezeigt werden. Schlussfolgerung Die Untersuchung der radiotoxischen Wirkung von [99mTc]Tc-C225 ermöglichte bei den angewendeten Versuchsbedingungen keine Rückschlüsse auf die Strahlensensitivität der Zellmembran. Weiterführende Arbeiten zur Entwicklung eines 99mTc-markierbaren spezifischen Membranmarkers wären notwendig, um klären zu können, ob die Zellmembran ein ähnlich strahlensensitives Target wie die nukleäre DNA ist. Dosimetrische Betrachtungen an den als Modellsystemen dienenden FRTL-5- und A431-Zellen deuten darauf hin, dass aufgrund ungenügender Anreicherung eine therapeutische Wirkung der Auger-Elektronen im Tumorgewebe eher unrealistisch ist. Damit sollte aus gegenwärtiger Sicht die klinische Anwendung von 99mTc auf den diagnostischen Einsatz beschränkt bleiben. Jedoch könnte 99mTc als Auger-Elektronen-Emitter bei spezifischer Anreicherung in definierten Zellkompartimenten als Nano-Tool zur Erforschung der Strahlensensitivität einzelner Zellbestandteile eingesetzt werden. / Introduction In addition to gamma radiation, 99mTc emits approximately 5 low energy Auger and internal conversion electrons per decay, resulting in high ionization density proximal to the radionuclide’s decay position. Low-energy Auger electrons with path lengths of only nanometers cannot be utilized for diagnostic procedures; however, they have frequently been discussed for therapeutic applications. To achieve a radiobiological effect, an intracellular accumulation and distribution in relevant cell compartments of the Auger electron emitter is required. Aim The aim of the thesis was the comparison of different [99mTc]Tc-labeled compounds concerning their intracellular uptake, subcellular distribution and retention in vitro. Furthermore the radiotoxicity caused by the Auger effect has to be investigated. Material and Methods The intracellular radionuclide uptake, subcellular distribution (ProteoExtract®-Kit) and retention of [99mTc] pertechnetate ([99mTc]TcO4-), [99mTc]TcO4- after pre-incubation of perchlorate ([99mTc]TcO4-/ClO4-), [99mTc]TcO4- after pre-incubation of stannous pyrophosphate ([99mTc]TcO4-/Sn-PYP), [99mTc]Tc-hexamethyl-propylene-aminoxime ([99mTc]Tc-HMPAO) and [99mTc]Tc-hexakis-2-methoxyisobutylisonitrile ([99mTc]Tc-MIBI) were quantified in sodium-iodide symporter (NIS)-positive rat thyroid FRTL-5 cells. Basing on these results the mean absorbed nucleus dose was calculated. Radiotoxicity was investigated using phosphorylated histone H2AX (gH2AX foci), clonogenic cell survival and cell cycle analyzes. Additionally the radiotoxicity of [99mTc]Alexa(488)-C225-Cyclooctin-Dpa-Tc(CO)3 ([99mTc]Tc-C225) was compared with the one of [99mTc]TcO4- and [99mTc]Tc -HMPAO depending on the subcellular distribution in EGFR-positive A431 cells. Results and Discussion For the analyzed [99mTc]Tc-labeled compounds we detected differences in the time courses of the uptake kinetics caused by different uptake mechanisms into the FRTL-5 cells. The radionuclide uptake of [99mTc]TcO4- was blocked in the presence of perchlorate and increased by a factor of approximately 22 after pre-incubation of Sn-PYP. The lipophilic complexes [99mTc]Tc-MIBI and [99mTc]Tc-HMPAO crossed the cell membrane through passive transport via diffusion. The compartmental analysis indicated that [99mTc]Tc-HMPAO and [99mTc]TcO4-/Sn-PYP revealed a comparable high uptake in the nucleus and in the membrane/organelle fraction. [99mTc]TcO4- and [99mTc]Tc-MIBI were preferentially distributed in the cytosol, with lower amounts of the accumulated activity in both the membranes/organelles and the nucleus compared with the other compounds. In good agreement with the subcellular distribution [99mTc]Tc-HMPAO, [99mTc]TcO4-/Sn-PYP showed a nearly complete retention and [99mTc]TcO4-, [99mTc]Tc-MIBI a low retention. Due to the differences mentioned above the following sequence of the calculated mean nucleus dose for identical activity concentrations was determined: [99mTc]TcO4- < [99mTc]Tc-MIBI < [99mTc]Tc-HMPAO < Sn PYP/ [99mTc]TcO4-. [99mTc]TcO4- and [99mTc]Tc-HMPAO caused a similar reduction of the cell survival and a dose dependent G2-arrest. [99mTc]Tc-MIBI and Sn-PYP/ [99mTc]TcO4- are both less radiotoxic in terms of the estimated nucleus dose compared with [99mTc]TcO4- and [99mTc]Tc-HMPAO. Despite the similar effect on the cell survival [99mTc]Tc-HMPAO induced only half of the residual gH2AX foci than [99mTc]TcO4-. These findings reveal that clonogenic cellular survival is not solely determined by the DNA-DSB response, which may suggest the involvement of extra-nuclear radiosensitive targets in cell inactivation. A possible extra-nuclear radiosensitive target is the cell membrane. That’s why the aim of the second part of the thesis is the investigation of the radiosensitivity of the cell membrane. Therefore the radiotoxic influence of [99mTc]Tc-C225 was analyzed at EGFR-positive A431 cells. [99mTc]Tc-C225 was taken up over the EGFR and the lipophilic [99mTc]Tc-HMPAO was transported via diffusion over the cell membrane. In contrast, [99mTc]TcO4- did not show any intracellular uptake into the NIS-negative cells and therefore was used as extracellular reference. An incubation of [99mTc]Tc-C225 for one hour resulted to a membrane binding of only 10 %, which was reduced to 1.9 % after 24 hours. This demonstrated a fast internalization into A431-cell. Therefore only in the case of a very short incubation time [99mTc]Tc-C225 leads to a specific targeting of the cell membrane. [99mTc]Tc-HMPAO did not bind to the cell membrane. Furthermore the incubation of increasing concentrations of activity and antibody resulted in a saturation of the EGFR, leading to a significant lower nucleus dose in comparison to the incubation of [99mTc]Tc-HMPAO. Concerning the clonogenic cell survival no differences in the radiotoxicity of [99mTc]Tc-C225 and [99mTc]Tc-HMPAO were observed for equal nucleus dose. Thus only an amplification of the radiotoxic effects of [99mTc]Tc-C225 in comparison to the extracellular distribution in A431 cells of 99mTc-pertechnetate was observed. Conclusion The investigation of the radiotoxic effect of [99mTc]Tc-C225 did not allow any conclusions about the radiosensitivity of the cell membrane under the given experimental conditions. For clarifying if the radiosensitivity of the cell membrane is comparable to the one of the nucleus DNA further experiments for the development of a [99mTc]Tc-labeled specific target for the cell membrane are necessary. On the basis of the dosimetric considerations of the FRTL-5 cells and A431 cells used as model systems it can be concluded that because of an insufficient accumulation a therapeutic radiotoxic effect of the Auger electrons is not realistic. Therefore the clinical use of 99mTc should be limited to the diagnostics. Nevertheless specific accumulated Auger electrons of 99mTc could be applied in the field of investigation as nano-tools for the subcellular analysis of radiotoxicity.
10

Neutronic study of the mono-recycling of americum in PWR and of the core conversion INMNSR using the MURE code / Étude neutronique du mono-recyclage de l'Américium en REP et la conversion du coeur MNSR à l'aide du code MURE

Sogbadji, Robert 11 July 2012 (has links)
Le code MURE est basé sur le couplage d’un code Monte Carlo statique et le calcul de l’évolution pendant l’irradiation et les différentes périodes du cycle (refroidissement, fabrication). Le code MURE est ici utilisé pour analyser deux différentes questions : le mono-recyclage de l’Am dans les réacteurs français de type REP et la conversion du coeur du MNSR (Miniature Neutron Source Reactor) au Ghana d’un combustible à uranium hautement enrichi (HEU) vers un combustible faiblement enrichi (LEU), dans le cadre de la lutte contre la prolifération. Dans les deux cas, une comparaison détaillée est menée sur les taux d’irradiation et les radiotoxicités induites (combustibles usés, déchets).Le combustible UOX envisagé est enrichi de telle sorte qu’il atteigne un taux d’irradiation de 46 GWj/t et 68 GWj/t. Le combustible UOX usé est retraité, et le retraitement standard consiste à séparer le plutonium afin de fabriquer un combustible MOX sur base d’uranium appauvri. La concentration du Pu dans le MOX est déterminée pour atteindre un taux d’irradiation du MOX de 46 et 68 GWj/t. L’impact du temps de refroidissement de l’UOX usé est étudié (5 à 30 ans), afin de quantifier l’impact de la disparition du 241PU (fissile) par décroissance radioactive (T=14,3 ans). Un refroidissement de 30 ans demande à augmenter la teneur en Pu dans le MOX. L’241Am, avec une durée de vie de 432 ans, jour un rôle important dans le dimensionnement du site de stockage des déchets vitrifiés et dans leur radiotoxicité à long terme. Il est le candidat principal à la transmutation, et nous envisageons donc son recyclage dans le MOX, avec le plutonium. Cette stratégie permet de minimiser la puissance résiduelle et la radiotoxicité des verres, en laissant l’Am disponible dans les MOX usés pour une transmutation éventuelle future dans les réacteurs rapides. Nous avons étudié l’impact neutronique d’un tel recyclage. Le temps de refroidissement de l’UOX est encore plus sensible ici car l’241Am recyclé est un fort poison neutronique qui dégrade les performances du combustible (taux d’irradiation, coefficients de vide et de température). Néanmoins, à l’exception de quelques configurations, le recyclage de l’Am ne dégrade pas les coefficients de sûreté de base. Le réacteur MNSR du Ghana fonctionne aujourd’hui avec de l’uranium enrichi à 90,2% (HEU), et nous étudions ici la possibilité de le faire fonctionner avec de l’uranium enrichi à 12,5%, en passant d’un combustible sur base d’aluminium à un oxyde. Les simulations ont été menées avec le code MURE, et montrent que le coeur LEU peut-être irradié plus longtemps, mais demande d’intervenir plus tôt sur le pilotage en jouant sur la quantité de béryllium en coeur. Les flux de neutrons dans les canaux d’irradiation sont similaires pour les coeurs HEU et LEU, de même pour les coefficients de vide. Le combustible LEU usé présente cependant une radiotoxicité et une chaleur résiduelle plus élevée, du fait de la production plus importante de transuraniens pendant l’irradiation. / The MURE code is based on the coupling of a Monte Carlo static code and the calculation of the evolution of the fuel during irradiation and cooling periods. The MURE code has been used to analyse two different questions, concerning the mono-recycling of Am in present French Pressurized Water Reactor, and the conversion of high enriched uranium (HEU) used in the Miniature Neutron Source Reactor in Ghana into low enriched uranium (LEU) due to proliferation resistance issues. In both cases, a detailed comparison is made on burnup and the induced radiotoxicity of waste or spent fuel. The UOX fuel assembly, as in the open cycle system, was designed to reach a burn-up of 46GWd/T and 68GWd/T. The spent UOX was reprocessed to fabricate MOX assemblies, by the extraction of Plutonium and addition of depleted Uranium to reach burn-ups of 46GWd/T and 68GWd/T, taking into account various cooling times of the spent UOX assembly in the repository. The effect of cooling time on burnup and radiotoxicity was then ascertained. Spent UOX fuel, after 30 years of cooling in the repository required higher concentration of Pu to be reprocessed into a MOX fuel due to the decay of Pu-241. Americium, with a mean half-life of 432 years, has high radiotoxic level, high mid-term residual heat and a precursor for other long lived isotope. An innovative strategy consists of reprocessing not only the plutonium from the UOX spent fuel but also the americium isotopes which dominate the radiotoxicity of present waste. The mono-recycling of Am is not a definitive solution because the once-through MOX cycle transmutation of Am in a PWR is not enough to destroy all the Am. The main objective is to propose a “waiting strategy” for both Am and Pu in the spent fuel so that they can be made available for further transmutation strategies. The MOXAm (MOX and Americium isotopes) fuel was fabricated to see the effect of americium in MOX fuel on the burn-up, neutronic behavior and on radiotoxicity. The MOXAm fuel showed relatively good indicators both on burnup and on radiotoxicity. A 68GWd/T MOX assembly produced from a reprocessed spent 46GWd/T UOX assembly showed a decrease in radiotoxicity as compared to the open cycle. All fuel types understudy in the PWR cycle showed good safety inherent feature with the exception of the some MOXAm assemblies which have a positive void coefficient in specific configurations, which could not be consistent with safety features. The core lifetimes of the current operating 90.2% HEU UAl fuel and the proposed 12.5% LEU UOX fuel of the MNSR were investigated using MURE code. Even though LEU core has a longer core life due to its higher core loading and low rate of uranium consumption, the LEU core will have it first beryllium top up to compensate for reactivity at earlier time than the HEU core. The HEU and LEU cores of the MNSR exhibited similar neutron fluxes in irradiation channels, negative feedback of temperature and void coefficients, but the LEU is more radiotoxic after fission product decay due to higher actinides presence at the end of its core lifetime.

Page generated in 0.0529 seconds