• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 23
  • 17
  • 13
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 135
  • 135
  • 41
  • 37
  • 37
  • 25
  • 21
  • 20
  • 20
  • 19
  • 19
  • 19
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Hydrological modeling as a tool for sustainable water resources management: a case study of the Awash River Basin

Tessema, Selome M. January 2011 (has links)
The growing pressure on the world‘s fresh water resources is enforced by population growth that leads to conflicts between demands for different purposes. A main concern on water use is the conflict between the environment and other purposes like hydropower, irrigation for agriculture and domestic and industry water supply, where total flows are diverted without releasing water for ecological conservation. As a consequence, some of the common problems related to water faced by many countries are shortage, quality deterioration and flood impacts. Hence, utilization of integrated water resources management in a single system, which is built up by river basin, is an optimum way to handle the question of water. However, in many areas, when planning for balancing water demands major gaps exist on baseline knowledge of water resources. In order to bridge these gaps, hydro-logical models are among the available tools used to acquire adequate understanding of the characteristics of the river basin. Apart from forecasting and predicting the quantity and quality of water for decision makers, some models could also help in predicting the impacts of natural and anthropogenic changes on water resources and also in quantifying the spatial and temporal availability of the resources. However, main challenges lie in choosing and utilizing these models for a specific basin and managerial plan. In this study, an analysis of the different types of models and application of a selected model to characterize the Awash River basin, located in Ethiopia, is presented. The results from the modeling procedure and the performance of the model are discussed. The different possible sources of uncertainties in the modeling process are also discussed. The results indicate dissimilar predictions in using different methods; hence proper care must be taken in selecting and employing available methods for a specific watershed prior to presenting the results to decision makers. / QC 20110516
102

Development and Application of a Spatially Distributed Travel Time Model for Risk Screening and Parameter Influence Evaluation in Rainfall-Runoff Response : Ensemble Approach to Risk Screening in Urban Watersheds / Utveckling en avrinningsmodell med tillämpande spatialt fördelade rinntider för översiktlig riskanalys och utvärdering av parameterinflytande

Pöldma, Sofia Stone January 2024 (has links)
In recent years, climate change has intensified the frequency of severe rainfall events, raising concerns, particularly in urban areas where impervious surfaces dominate. The resultant reliance on man-made drainage increases pluvial flooding risks, threatening infrastructure and urban resilience. As the global population increasingly shifts to urban living, the vulnerability to flooding grows. Understanding how areas respond to rainfall is crucial for proactive flood risk mitigation. Available hydrological models offer insights and predictions, but are often linked with long simulation times and high computational cost. Semi-distributed models, like the Spatially Distributed Travel Time (SDTT) approach, offer simplified model formulations suitable for screening applications. This thesis extends Ekeroth's (2022) SDTT model for watershed delineation and travel time formulations, focusing on ensemble runs of multi-input rainfall/infiltration scenarios. As there is often many uncertain factors in hydrological modeling, there is a need for faster models capable of generating a distribution of scenarios to represent the uncertainty of real systems. Even a quick and simple model should account for the multifaceted aspects of urban flooding, including rainfall-infiltration dynamics and the variations in rainfall intensity. Script modules were developed to analyze rainfall severity, peak discharge distribution, and parameter impact efficiently. In three urban watersheds with an average size of 0.45 km2, 120 scenarios distinguished by intensity distribution, rainfall duration, soil composition of pervious areas, and antecedent moisture conditions, were simulated within approximately 3.5 minutes, enabling comprehensive hydrological analysis. The successful implementation of the new modules implicate a promising tool for hydrological risk-screening analysis in urban environments, although further research should investigate incorporating probability-based scenarios and bigger input rainfall datasets. / Under senare år har klimatförändringarna intensifierat förekomsten av skyfall, något som är särskilt oroväckande i stadsområden där marktäckningen huvudsakligen består av hårdgjorda ytor. Genom att asfaltera och bygga försvinner markens naturliga infiltrationsförmåga. Detta leder till ett ökat beroende av konstgjorda dräneringssystem som sällan är dimensionerade för särskilt intensiva regnhändelser. Urbana översvämningar innebär inte bara ett hot mot infrastruktur och den bebyggda miljön, men den globala befolkningens ökade bosättning i urbana områden medför att sårbarheten vid översvämningar ökar även den. För att kunna hantera översvämningsrisken i ett urbant område är förståelse för avrinningsområdets respons till ett skyfall viktigt. Det finns hydrologiska modeller på marknaden som erbjuder prognoser, men dessa är oftast baserade på komplexa fysiska beskrivningar som medför långa processtider och beräkningskostnader. Samtidigt finns nytänkande modeller som skär ner på processtiderna genom att minska den spatiala upplösningen på beräkningarna, såsom SDTT (Spatially Distributed Travel Time) formuleringen, som erbjuder förenklade analyser lämpliga som screeningverktyg. Denna studie utvidgar Ekeroths (2022) SDTT-modell med fokus på ensemblekörningar av regn- och infiltrationsscenarier. Eftersom det ofta finns flertalet osäkra faktorer i hydrologisk modellering finns ett behov av snabbare modeller som kan genera en fördelning av möjliga utfall givet olika scenarier. Samtidigt behöver även en snabb och enkel modell beakta de mångfacetterade aspekterna av urbana översvämningar, exempelvis gällande dynamiken mellan regn och infiltration och skyfallsegenskaper. Kodmoduler utvecklades för att effektivt analysera utfallen av regnscenarierna och att finna de mest allvarliga händelserna, fördelningen av värden inom de simulerade utfallen, samt inflytandet från parametrarna som definierar scenarierna. I tre urbana avrinningsområden med en genomsnittlig storlek på 0.45 km2 simulerades 120 scenarier inom 3,5 minuter, vilket möjliggör hydrologisk analys på en hanterbar tid. Implementeringen av de nya modulerna pekar mot ett lovande verktyg för hydrologisk risk-screeninganalys i urbana miljöer. Samtidigt bör framtida studier fortsatt undersöka möjligheten att inkludera sannolikhetsbaserade scenarier och körning av större dataset.
103

Large-scale hydrological modelling in the semi-arid north-east of Brazil

Güntner, Andreas January 2002 (has links)
Semi-arid areas are, due to their climatic setting, characterized by small water resources. An increasing water demand as a consequence of population growth and economic development as well as a decreasing water availability in the course of possible climate change may aggravate water scarcity in future, which often exists already for present-day conditions in these areas. Understanding the mechanisms and feedbacks of complex natural and human systems, together with the quantitative assessment of future changes in volume, timing and quality of water resources are a prerequisite for the development of sustainable measures of water management to enhance the adaptive capacity of these regions. For this task, dynamic integrated models, containing a hydrological model as one component, are indispensable tools.<br /> The main objective of this study is to develop a hydrological model for the quantification of water availability in view of environmental change over a large geographic domain of semi-arid environments.<br /> The study area is the Federal State of Ceará (150 000 km2) in the semi-arid north-east of Brazil. Mean annual precipitation in this area is 850 mm, falling in a rainy season with duration of about five months. Being mainly characterized by crystalline bedrock and shallow soils, surface water provides the largest part of the water supply. The area has recurrently been affected by droughts which caused serious economic losses and social impacts like migration from the rural regions. <br /> The hydrological model Wasa (Model of Water Availability in Semi-Arid Environments) developed in this study is a deterministic, spatially distributed model being composed of conceptual, process-based approaches. Water availability (river discharge, storage volumes in reservoirs, soil moisture) is determined with daily resolution. Sub-basins, grid cells or administrative units (municipalities) can be chosen as spatial target units. The administrative units enable the coupling of Wasa in the framework of an integrated model which contains modules that do not work on the basis of natural spatial units.<br /> The target units mentioned above are disaggregated in Wasa into smaller modelling units within a new multi-scale, hierarchical approach. The landscape units defined in this scheme capture in particular the effect of structured variability of terrain, soil and vegetation characteristics along toposequences on soil moisture and runoff generation. Lateral hydrological processes at the hillslope scale, as reinfiltration of surface runoff, being of particular importance in semi-arid environments, can thus be represented also within the large-scale model in a simplified form. Depending on the resolution of available data, small-scale variability is not represented explicitly with geographic reference in Wasa, but by the distribution of sub-scale units and by statistical transition frequencies for lateral fluxes between these units.<br /> Further model components of Wasa which respect specific features of semi-arid hydrology are: <br /> (1) A two-layer model for evapotranspiration comprises energy transfer at the soil surface (including soil evaporation), which is of importance in view of the mainly sparse vegetation cover. Additionally, vegetation parameters are differentiated in space and time in dependence on the occurrence of the rainy season. <br /> (2) The infiltration module represents in particular infiltration-excess surface runoff as the dominant runoff component. <br /> (3) For the aggregate description of the water balance of reservoirs that cannot be represented explicitly in the model, a storage approach respecting different reservoirs size classes and their interaction via the river network is applied. <br /> (4) A model for the quantification of water withdrawal by water use in different sectors is coupled to Wasa. <br /> (5) A cascade model for the temporal disaggregation of precipitation time series, adapted to the specific characteristics of tropical convective rainfall, is applied for the generating rainfall time series of higher temporal resolution.<br /> All model parameters of Wasa can be derived from physiographic information of the study area. Thus, model calibration is primarily not required.<br /> Model applications of Wasa for historical time series generally results in a good model performance when comparing the simulation results of river discharge and reservoir storage volumes with observed data for river basins of various sizes. The mean water balance as well as the high interannual and intra-annual variability is reasonably represented by the model. Limitations of the modelling concept are most markedly seen for sub-basins with a runoff component from deep groundwater bodies of which the dynamics cannot be satisfactorily represented without calibration.<br /> Further results of model applications are:<br /> (1) Lateral processes of redistribution of runoff and soil moisture at the hillslope scale, in particular reinfiltration of surface runoff, lead to markedly smaller discharge volumes at the basin scale than the simple sum of runoff of the individual sub-areas. Thus, these processes are to be captured also in large-scale models. The different relevance of these processes for different conditions is demonstrated by a larger percentage decrease of discharge volumes in dry as compared to wet years.<br /> (2) Precipitation characteristics have a major impact on the hydrological response of semi-arid environments. In particular, underestimated rainfall intensities in the rainfall input due to the rough temporal resolution of the model and due to interpolation effects and, consequently, underestimated runoff volumes have to be compensated in the model. A scaling factor in the infiltration module or the use of disaggregated hourly rainfall data show good results in this respect.<br /> The simulation results of Wasa are characterized by large uncertainties. These are, on the one hand, due to uncertainties of the model structure to adequately represent the relevant hydrological processes. On the other hand, they are due to uncertainties of input data and parameters particularly in view of the low data availability. Of major importance is:<br /> (1) The uncertainty of rainfall data with regard to their spatial and temporal pattern has, due to the strong non-linear hydrological response, a large impact on the simulation results.<br /> (2) The uncertainty of soil parameters is in general of larger importance on model uncertainty than uncertainty of vegetation or topographic parameters.<br /> (3) The effect of uncertainty of individual model components or parameters is usually different for years with rainfall volumes being above or below the average, because individual hydrological processes are of different relevance in both cases. Thus, the uncertainty of individual model components or parameters is of different importance for the uncertainty of scenario simulations with increasing or decreasing precipitation trends.<br /> (4) The most important factor of uncertainty for scenarios of water availability in the study area is the uncertainty in the results of global climate models on which the regional climate scenarios are based. Both a marked increase or a decrease in precipitation can be assumed for the given data.<br /> Results of model simulations for climate scenarios until the year 2050 show that a possible future change in precipitation volumes causes a larger percentage change in runoff volumes by a factor of two to three. In the case of a decreasing precipitation trend, the efficiency of new reservoirs for securing water availability tends to decrease in the study area because of the interaction of the large number of reservoirs in retaining the overall decreasing runoff volumes. / Semiaride Gebiete sind auf Grund der klimatischen Bedingungen durch geringe Wasserressourcen gekennzeichnet. Ein zukünftig steigender Wasserbedarf in Folge von Bevölkerungswachstum und ökonomischer Entwicklung sowie eine geringere Wasserverfügbarkeit durch mögliche Klimaänderungen können dort zu einer Verschärfung der vielfach schon heute auftretenden Wasserknappheit führen. Das Verständnis der Mechanismen und Wechselwirkungen des komplexen Systems von Mensch und Umwelt sowie die quantitative Bestimmung zukünftiger Veränderungen in der Menge, der zeitlichen Verteilung und der Qualität von Wasserressourcen sind eine grundlegende Voraussetzung für die Entwicklung von nachhaltigen Maßnahmen des Wassermanagements mit dem Ziel einer höheren Anpassungsfähigkeit dieser Regionen gegenüber künftigen Änderungen. Hierzu sind dynamische integrierte Modelle unerlässlich, die als eine Komponente ein hydrologisches Modell beinhalten. <br /> Vorrangiges Ziel dieser Arbeit ist daher die Erstellung eines hydrologischen Modells zur großräumigen Bestimmung der Wasserverfügbarkeit unter sich ändernden Umweltbedingungen in semiariden Gebieten.<br /> Als Untersuchungsraum dient der im semiariden tropischen Nordosten Brasiliens gelegene Bundestaat Ceará (150 000 km2). Die mittleren Jahresniederschläge in diesem Gebiet liegen bei 850 mm innerhalb einer etwa fünfmonatigen Regenzeit. Mit vorwiegend kristallinem Grundgebirge und geringmächtigen Böden stellt Oberflächenwasser den größten Teil der Wasserversorgung bereit. Die Region war wiederholt von Dürren betroffen, die zu schweren ökonomischen Schäden und sozialen Folgen wie Migration aus den ländlichen Gebieten geführt haben. <br /> Das hier entwickelte hydrologische Modell Wasa (Model of Water Availability in Semi-Arid Environments) ist ein deterministisches, flächendifferenziertes Modell, das aus konzeptionellen, prozess-basierten Ansätzen aufgebaut ist. Die Wasserverfügbarkeit (Abfluss im Gewässernetz, Speicherung in Stauseen, Bodenfeuchte) wird mit täglicher Auflösung bestimmt. Als räumliche Zieleinheiten können Teileinzugsgebiete, Rasterzellen oder administrative Einheiten (Gemeinden) gewählt werden. Letztere ermöglichen die Kopplung des Modells im Rahmen der integrierten Modellierung mit Modulen, die nicht auf der Basis natürlicher Raumeinheiten arbeiten.<br /> Im Rahmen eines neuen skalenübergreifenden, hierarchischen Ansatzes werden in Wasa die genannten Zieleinheiten in kleinere räumliche Modellierungseinheiten unterteilt. Die ausgewiesenen Landschaftseinheiten erfassen insbesondere die strukturierte Variabilität von Gelände-, Boden- und Vegetationseigenschaften entlang von Toposequenzen in ihrem Einfluss auf Bodenfeuchte und Abflussbildung. Laterale hydrologische Prozesse auf kleiner Skala, wie die für semiaride Bedingungen bedeutsame Wiederversickerung von Oberflächenabfluss, können somit auch in der erforderlichen großskaligen Modellanwendung vereinfacht wiedergegeben werden. In Abhängigkeit von der Auflösung der verfügbaren Daten wird in Wasa die kleinskalige Variabilität nicht räumlich explizit sondern über die Verteilung von Flächenanteilen subskaliger Einheiten und über statistische Übergangshäufigkeiten für laterale Flüsse zwischen den Einheiten berücksichtigt.<br /> Weitere Modellkomponenten von Wasa, die spezifische Bedingungen semiarider Gebiete berücksichtigen, sind: <br /> (1) Ein Zwei-Schichten-Modell zur Bestimmung der Evapotranspiration berücksichtigt auch den Energieumsatz an der Bodenoberfläche (inklusive Bodenverdunstung), der in Anbetracht der meist lichten Vegetationsbedeckung von Bedeutung ist. Die Vegetationsparameter werden zudem flächen- und zeitdifferenziert in Abhängigkeit vom Auftreten der Regenzeit modifiziert. <br /> (2) Das Infiltrationsmodul bildet insbesondere Oberflächenabfluss durch Infiltrationsüberschuss als dominierender Abflusskomponente ab. <br /> (3) Zur aggregierten Beschreibung der Wasserbilanz von im Modell nicht einzeln erfassbaren Stauseen wird ein Speichermodell unter Berücksichtigung verschiedener Größenklassen und ihrer Interaktion über das Gewässernetz eingesetzt. <br /> (4) Ein Modell zur Bestimmung der Entnahme durch Wassernutzung in verschiedenen Sektoren ist an Wasa gekoppelt. <br /> (5) Ein Kaskadenmodell zur zeitlichen Disaggregierung von Niederschlagszeitreihen, das in dieser Arbeit speziell für tropische konvektive Niederschlagseigenschaften angepasst wird, wird zur Erzeugung höher aufgelöster Niederschlagsdaten verwendet.<br /> Alle Modellparameter von Wasa können von physiographischen Gebietsinformationen abgeleitet werden, sodass eine Modellkalibrierung primär nicht erforderlich ist. <br /> Die Modellanwendung von Wasa für historische Zeitreihen ergibt im Allgemeinen eine gute Übereinstimmung der Simulationsergebnisse für Abfluss und Stauseespeichervolumen mit Beobachtungsdaten in unterschiedlich großen Einzugsgebieten. Die mittlere Wasserbilanz sowie die hohe monatliche und jährliche Variabilität wird vom Modell angemessen wiedergegeben. Die Grenzen der Anwendbarkeit des Modell-konzepts zeigen sich am deutlichsten in Teilgebieten mit Abflusskomponenten aus tieferen Grundwasserleitern, deren Dynamik ohne Kalibrierung nicht zufriedenstellend abgebildet werden kann.<br /> Die Modellanwendungen zeigen weiterhin:<br /> (1) Laterale Prozesse der Umverteilung von Bodenfeuchte und Abfluss auf der Hangskala, vor allem die Wiederversickerung von Oberflächenabfluss, führen auf der Skala von Einzugsgebieten zu deutlich kleineren Abflussvolumen als die einfache Summe der Abflüsse der Teilflächen. Diese Prozesse sollten daher auch in großskaligen Modellen abgebildet werden. Die unterschiedliche Ausprägung dieser Prozesse für unterschiedliche Bedingungen zeigt sich an Hand einer prozentual größeren Verringerung der Abflussvolumen in trockenen im Vergleich zu feuchten Jahren.<br /> (2) Die Niederschlagseigenschaften haben einen sehr großen Einfluss auf die hydrologische Reaktion in semiariden Gebieten. Insbesondere die durch die grobe zeitliche Auflösung des Modells und durch Interpolationseffekte unterschätzten Niederschlagsintensitäten in den Eingangsdaten und die daraus folgende Unterschätzung von Abflussvolumen müssen im Modell kompensiert werden. Ein Skalierungsfaktor in der Infiltrationsroutine oder die Verwendung disaggregierter stündlicher Niederschlagsdaten zeigen hier gute Ergebnisse.<br /> Die Simulationsergebnisse mit Wasa sind insgesamt durch große Unsicherheiten gekennzeichnet. Diese sind einerseits in Unsicherheiten der Modellstruktur zur adäquaten Beschreibung der relevanten hydrologischen Prozesse begründet, andererseits in Daten- und Parametersunsicherheiten in Anbetracht der geringen Datenverfügbarkeit. Von besonderer Bedeutung ist: <br /> (1) Die Unsicherheit der Niederschlagsdaten in ihrem räumlichen Muster und ihrer zeitlichen Struktur hat wegen der stark nicht-linearen hydrologischen Reaktion einen großen Einfluss auf die Simulationsergebnisse.<br /> (2) Die Unsicherheit von Bodenparametern hat im Vergleich zu Vegetationsparametern und topographischen Parametern im Allgemeinen einen größeren Einfluss auf die Modellunsicherheit.<br /> (3) Der Effekt der Unsicherheit einzelner Modellkomponenten und -parameter ist für Jahre mit unter- oder überdurchschnittlichen Niederschlagsvolumen zumeist unterschiedlich, da einzelne hydrologische Prozesse dann jeweils unterschiedlich relevant sind. Die Unsicherheit einzelner Modellkomponenten- und parameter hat somit eine unterschiedliche Bedeutung für die Unsicherheit von Szenarienrechnungen mit steigenden oder fallenden Niederschlagstrends.<br /> (4) Der bedeutendste Unsicherheitsfaktor für Szenarien der Wasserverfügbarkeit für die Untersuchungsregion ist die Unsicherheit der den regionalen Klimaszenarien zu Grunde liegenden Ergebnisse globaler Klimamodelle. Eine deutliche Zunahme oder Abnahme der Niederschläge bis 2050 kann gemäß den hier vorliegenden Daten für das Untersuchungsgebiet gleichermaßen angenommen werden.<br /> Modellsimulationen für Klimaszenarien bis zum Jahr 2050 ergeben, dass eine mögliche zukünftige Veränderung der Niederschlagsmengen zu einer prozentual zwei- bis dreifach größeren Veränderung der Abflussvolumen führt. Im Falle eines Trends von abnehmenden Niederschlagsmengen besteht in der Untersuchungsregion die Tendenz, dass auf Grund der gegenseitigen Beeinflussung der großen Zahl von Stauseen beim Rückhalt der tendenziell abnehmenden Abflussvolumen die Effizienz von neugebauten Stauseen zur Sicherung der Wasserverfügbarkeit zunehmend geringer wird.
104

The Use of a Realistic Rainfall Simulator to Determine Relative Infiltration Rates of Contributing Watersheds to the Lower Gila Below Painted Rock Dam

Cluff, C. B., Boyer, D. G. 23 April 1971 (has links)
From the Proceedings of the 1971 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 22-23, 1971, Tempe, Arizona / The rotadisk rainulator is a recently developed rainfall simulator utilizing a full-cone-spray type nozzle. Its unique feature is the rotation of disks of various size openings that makes it possible to produce intensities from close to zero up to full nozzle capacity. Disks may be quickly changed, making it possible to study the effects of various intensities on infiltration rates, such as occur in natural storms. For all intensities above 1.0 in/hr, the instrument comes closer to duplicating kinetic energies and momenta of natural rainfall than any other type of rainfall simulator. Little rainfall-runoff data are available on most of the Lower Gila watersheds. Infiltration rates were therefore determined using the rotadisk rainulator on recompacted soil samples from the watershed. The results permitted a ranking of the watersheds on the basis of infiltration rates, which supports an independent flood frequency analysis indicating that the flood threat from subwatersheds along the Gila is much lower than had previously been projected. When the instrument is taken into the field, it should be possible to directly determine the infiltration rates of different soil and vegetation types, which will be of more use to hydrologists than data from recompacted samples
105

Converting Chaparral to Grass to Increase Streamflow

Ingebo, Paul A. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / Chaparral covers 4 million acres in Arizona. There is interest in determining how much these lands contribute to surface water supply, and how this contribution could be changed by conversion of chaparral cover to grass or grass forb. Results from treatment in the Whitespar watersheds are interpreted. Live oak and true mountain mahogany dominate the study area, which averages 22.7 inches of annual precipitation. Whitespar B watershed was converted to grasses in 1967, and litter was not disturbed. The 246 acre watershed produced more streamflow than the untreated, 303-acre control which tended to remain intermittent. Prior to treatment, streamflow in both watersheds was quite well synchronized. Watershed b has since had continual flow. Winter flows contribute about 77 percent of the increased streamflow volume. The degree of effect is still under study, but a new rainfall-runoff relationship for the treated watershed is necessitated.
106

Significance of Antecedent Soil Moisture to a Semiarid Watershed Rainfall-Runoff Relation

Chery, D. L., Jr. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / Numerous reports from the southwest claim that soil moisture prior to rainfall-runoff event has no influence on the resulting flow volumes and peak rates. Runoff occurs from many storms that would not be expected to produce runoff, and an explanation lies in the occurrence of antecedent rains. This hypothesis is tested by dividing runoff events into 2 subsets--one with no rain within the preceding 120 hours, and the other with some rain within the preceding 24 hours--and to test the null hypothesis. The hypothesis was tested with rainfall and runoff data from a 40-acre agricultural research service watershed west of Albuquerque, New Mexico, using the Wilcoxon's rank sum test. Various levels of statistical significance are discussed, and shown graphically, to conclude conclusively that antecedent rainfall influences runoff from a semiarid watershed.
107

Effect of Urbanization on Runoff from Small Watersheds

Kao, Samuel E., Fogel, Martin M., Resnick, Sol D. 05 May 1973 (has links)
From the Proceedings of the 1973 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 4-5, 1973, Tucson, Arizona / Hydrologic data collected from three small urban watersheds and one rural watershed were analyzed for the purpose of investigating the effect of urbanization on runoff. A procedure developed by the Soil Conservation Service was used to explain the relationship between the amount of rainfall and runoff. It was noted that the runoff curve number, a parameter of the method, increased as the percentage of impervious area increased. Also, there was evidence that a linear relationship existed between the runoff volume and its corresponding peak rate.
108

Thunderstorm Precipitation Effects on the Rainfall-Erosion Index of the Universal Soil Loss Equation

Renard, Kenneth G., Simanton, J. Roger 12 April 1975 (has links)
From the Proceedings of the 1975 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 11-12, 1975, Tempe, Arizona / The universal soil loss equation (USLE) is widely used for estimating annual and individual storm erosion from field-sized watersheds. Records from a single precipitation gage in climatic areas dominated by thunderstorms can be used to estimate the erosion index (EI) only for the point in question on individual storms or for a specific annual value. Extrapolating the results for more than about a mile leads to serious error in estimating the erosion by the use of the USLE. Short time intervals must be used to obtain an adequate estimate of the EI when using the USLE. The variability of the annual EI can be approximated with a log-normal distribution. All studies indicated that investigations are needed to facilitate estimating the average annual EI from precipitation data as reported by state climatological summaries for states west of the 104th meridian. Additional work is needed to facilitate estimating the EI value from the precipitation data available in most areas of the southwest where thunderstorms dominate the rainfall pattern.
109

Residual Waxes for Water Harvesting

Fink, Dwayne H. 16 April 1977 (has links)
From the Proceedings of the 1977 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 15-16, 1977, Las Vegas, Nevada / This study was undertaken to compare the water harvesting potential of several residual waxes with that of refined paraffin. These residual waxes could possibly have advantages over refined paraffin as a soil treatment for water-harvesting catchments in that they are byproducts rather than an end product (constituting an energy savings), are slightly cheaper, and are more adhesive and less brittle. However, these residual waxes have high physical - chemical property variability which complicates testing for utility in water-harvesting. The lack of an easily obtainable ' characterization index ' is a particular deficiency. Upon laboratory testing, several of the residual waxes were found to be superior to refined paraffin in water-repellancy, structural stability, erosion and freeze-thaw resistance and ozone and ultraviolet radiation effects. The need for further laboratory and field testing was noted.
110

Effects of Rainfall Intensity on Runoff Curve Numbers

Hawkins, R. H. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / The runoff curve number rainfall- runoff relationships may be defined in two ways: (1) by formula, which uses total storm rainfall and a curve number, but not intensity or duration descriptors; and (2) rainfall loss accounting using a 4, rate and a specific intensity duration distribution of the function i(t) = 1.5P(5(1 +24t /T)-(1/2)-1) /T, where i(t) is the intensity at time t for a storm of duration T. Thus, the curve number method is found to be a special case of φ index loss accounting. The two methods are reconciled through the identity 1.2S = φT, leading to the relationship CN - 1200/(12 +φT). The effects of rainfall intensity on curve number are felt through deviations from the necessary causative intensity - duration curve. Some sample alternate distributions are explored and the effects on curve number shown. Limitations are discussed.

Page generated in 0.0347 seconds