Spelling suggestions: "subject:"fandom variables."" "subject:"handom variables.""
111 |
Distribuição de autovalores de matrizes aleatórias. / Eigenvalues distribution of random matrices.Roberto da Silva 18 May 2000 (has links)
Em uma detalhada revisão nós obtemos a lei do semi-círculo para a densidade de estados no ensemble gaussiano de Wigner. Também falamos sobre a analogia eletrostática de Dyson, enxergando os autovalores como cargas que se repelem no círculo unitário, mostrando que nesse caso a densidade de estados é uniforme. Em um contexto mais geral nós obtemos a lei do semicírculo, provando o teorema de Glivenko-Cantelli para variáveis fortemente correlacionadas usando um método combinatorial de contagem de trajetos, o que nos dá subsídios para falar em estabilidade da lei do semi-círculo. Também, nesta dissertação nós estudamos as funções de correlação nos ensembles gaussiano e circular, mostrando que sob um adequado reescalamento elas são idênticas. Outros ensembles nesta dissertação foram investigados usando o Método de Gram para o caso em que os autovalores são limitados em um intervalo. Computamos a densidade de estados para cada um desses ensembles. Mais precisamente no ensemble de Chebychev, os resultados foram obtidos analiticamente e nesse ensemble além da densidade de estados, também traçamos grá
cos da função de correlação truncada. / In a detailed review we obtain a semi-circle law for the density of states in theWigners Gaussian Ensemble. Also we talk about Dysons Analogy, seeing the eigenvalues like charges that repulse themselves in the unitary circle, showing that this case the density of states is uniform. In a more general context we obtain the semi-circle law, proving the Glivenko-Cantelli Theorem to strongly correlated variables, using a combinatorial method of Paths' Counting. Thus we are showing the stability of the semi-circle Law. Also, in this dissertation we study the correlation functions in the Gaussian and Circular ensembles showing that using the Gram's Method in the case that eigenvalues are limited in a interval. In these ensembles we computed the density of states. More precisely, in a Chebychev ensemble the results were obtained analytically. In this ensemble, we also obtain graphics of the truncated correlation function.
|
112 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 1)Paditz, Ludwig 27 May 2013 (has links) (PDF)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden. / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).
|
113 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 2)Paditz, Ludwig 27 May 2013 (has links) (PDF)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden. / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).
|
114 |
Abschätzungen der Konvergenzgeschwindigkeit im zentralen GrenzwertsatzPaditz, Ludwig 27 May 2013 (has links) (PDF)
Der Beitrag stellt eine Verallgemeinerung der Ergebnisse dar, die in den Informationen/07; 1976,05 veröffentlicht wurden.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und nicht notwendig identisch verteilte Zufallsgrößen mit endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_m derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsatz explizit angeben können. Als Spezialfall ergibt sich die ungleichmäßige Fehlerschranke von A.BIKELIS (1966) im Fall der Existenz dritter absoluter Momente.
Weiterhin werden Grenzwertsätze unter Voraussetzung einseitiger Momente betrachtet. Es werden einige Literaturhinweise angegeben. / The paper is a generalization of the results, published by the author in Informationen/07; 1976,05.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are non iid random variables with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_m are computed such that we have some error estimates in the nonuniform central limit theorem. A special case is the nonuniform error bound by A.BIKELIS (1966) in the case of existence of third absolute moments. Furthermore limit theorems with assumption of onesided moments are considered. Some references are given.
|
115 |
Über eine Fehlerabschätzung im zentralen GrenzwertsatzPaditz, Ludwig 27 May 2013 (has links) (PDF)
Es wird eine Folge unabhängiger zentrierter Zufallsgrößen betrachtet, die absolute Momente der Ordnung m, 2<m<3, besitzen mögen. Dann gelten für die normierte Verteilungsfunktion der Zufallssumme X_1+X_2+...+X_n der zentrale Grenzwertsatz und insbesondere eine ungleichmäßige Fehlerabschätzung von A.BIKELIS (1966). In der vorliegenden Note werden die analytische Struktur der in dieser Fehlerabschätzung auftretenden Konstanten L=L(m) genauer untersucht sowie dazu erzielte numerische Resultate vorgelegt. Abschließend werden einige Literaturhinweise angegeben. Der Fall m=3 wurde bereits in der Dissertation (TU Dresden 1977) des Autors untersucht. / We consider a sequence of centered and independent random variables with moments of order m, 2<m<3. Now the central limit theorem for the distribution function of the normed sum X_1+X_2+...+X_n and especially a nonuniform error estimate by A.BIKELIS (1966) hold. In this paper the analytical structure of the appearing constant L=L(m) of the error bound and numerical results are presented. Finally some references are given. The case m=3 was already studied in the thesis (Dissertation TU Dresden, 1977) by the author.
|
116 |
Poisson type approximations for sums of dependent variables / Priklausomų atsitiktinių dydžių sumų aproksimavimas Puasono tipo mataisPetrauskienė, Jūratė 07 March 2011 (has links)
Our aim is to investigate Poisson type approximations to the sums of dependent integer-valued random variables. In this thesis, only one type of dependence is considered, namely m-dependent random variables. The accuracy of approximation is measured in the total variation, local, uniform (Kolmogorov) and Wasserstein metrics.
Results can be divided into four parts. The first part is devoted to 2-runs, when pi=p. We generalize Theorem 5.2 from A.D. Barbour and A. Xia “Poisson perturbations” in two directions: by estimating the second order asymptotic expansion and asymptotic expansion in the exponent. Moreover, lower bound estimates are established, proving the optimality of upper bound estimates. Since, the method of proof does not allow to get small constants, in certain cases, we calculate asymptotically sharp constants.
In the second part, we consider sums of 1-dependent random variables, concentrated on nonnegative integers and satisfying analogue of Franken's condition. All results of this part are comparable to the known results for independent summands.
In the third part, we consider Poisson type approximations for sums of 1-dependent symmetric three-point distributions. We are unaware about any Poisson-type approximation result for dependent random variables, when symmetry of the distribution is taken into account.
In the last part, we consider 1-dependent non-identically distributed Bernoulli random variables. It is shown, that even for this simple... [to full text] / Disertacijoje tiriamas diskrečių m-priklausomų atsitiktinių dydžių aproksimavimo Puasono tipo matais tikslumas. Silpnai priklausomų atsitiktinių dydžių sumos yra natūralus nepriklausomų atsitiktinių dydžių sumų apibendrinimas. Vis dėlto atsitiktinių dydžių priklausomybė žymiai pasunkina tokių sumų tyrimą. Disertacijoje pagrindinis dėmesys skiriamas dviparametrėms ir triparametrėms diskrečiosioms aproksimacijoms.
Gautus rezultatus galima suskirstyti į keturias dalis. Pirmoje dalyje nagrinėjant dviejų narių serijų statistikos aproksimaciją Puasono ir sudėtiniais Puasono skirstiniais buvo nustatyta, kad dviparametrė sudėtinė Puasono aproksimacija yra tikslesnė už Puasono dėsnio asimptotinį skleidinį su vienu asimptotikos nariu. Aproksimacijos tikslumas įvertintas pilnosios variacijos ir lokalioje metrikoje. Specialiu atveju apskaičiuotos asimptotiškai tikslios konstantos. Taip pat nustatyta, kad gautieji įverčiai iš apačios yra tos pačios eilės, kaip ir įverčiai iš viršaus.
Antroje dalyje buvo gauta, kad sveikaskaičiai atsitiktiniai dydžiai, tenkinantys Frankeno sąlygos analogą, gali būti naudojami perėjimui nuo m-priklausomų prie 1-priklausomų atsitiktinių dydžių. Nustatyta, kad ženklą keičiančios sudėtinės Puasono aproksimacijos yra tokios pačios tikslumo eilės, kaip žinomi rezultatai nepriklausomų atsitiktinių dydžių sumoms.
Trečioje dalyje nustatyta, kad kai atsitiktiniai dydžiai yra simetriniai, tuomet sudėtinio Puasono aproksimacijos tikslumas yra daug geresnis nei... [toliau žr. visą tekstą]
|
117 |
Estimadores do tipo n?cleo para Vari?vei s I.I.D. com espa?o de estados geralSilva, Mariana Barbosa da 31 May 2012 (has links)
Made available in DSpace on 2014-12-17T15:26:39Z (GMT). No. of bitstreams: 1
MarianaBS_DISSERT.pdf: 5316617 bytes, checksum: 4fb0344851aa8f373aa2dab90bb6d3c5 (MD5)
Previous issue date: 2012-05-31 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In this work, the paper of Campos and Dorea [3] was detailed. In that article a
Kernel Estimator was applied to a sequence of random variables with general
state space, which were independent and identicaly distributed. In chapter 2, the
estimator?s properties such as asymptotic unbiasedness, consistency in quadratic
mean, strong consistency and asymptotic normality were verified. In chapter 3,
using R software, numerical experiments were developed in order to give a visual
idea of the estimate process / Neste trabalho estudamos um dos m?todos n?o-param?trico: os Estimadores do
Tipo N?cleo associado a uma sequ?ncia de vari?veis aleat?rias independentes
e identicamente distribu?das com espa?o de estados geral, mais precisamente o
trabalho de Campos e Dorea [3]. No Cap?tulo 2 verificamos as boas qualidades
dessa classe de estimadores como n?o v?cio assint?tico, converg?ncia em m?dia
quadr?tica, consist?ncia forte e normalidade assint?tica. No Cap?tulo 3 com o
auxilio do software R temos uma id?ia visual do que ocorre no processo de
estima??o
|
118 |
Alocação de Medidores para a Estimação de Estado em Redes Elétricas InteligentesRaposo, Antonio Adolpho Martins 26 February 2016 (has links)
Made available in DSpace on 2016-08-17T14:52:40Z (GMT). No. of bitstreams: 1
Dissertacao-AntonioAdolphoMartinsRaposo.pdf: 6219934 bytes, checksum: 92f0e1fb7c3d703fcf27aae305b549f2 (MD5)
Previous issue date: 2016-02-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / To plan and operate properly a Smart Grid (SG), many new technical considerations in the context of distribution systems, must be considered, for example: stability (due to installation of Distributed Generation (DG), the load and generation dispatch, management of energy storage devices and the assessment of the impact of electric vehicle connection on the distribution system. The main prerequisite for many of these new functions in the distribution system control center is to determine the electrical network state (magnitude and angle of nodal voltages) in real time from measurement devices installed in it. In the transmission system control centers, this task is performed by the state estimation tool. Thus, the Distribution System State Estimation (DSSE) is one of the cornerstones for the implementation of a SG. The presence of a small number of measurements can make the grid unobservable in the context of the DSSE. That is, the state variables (magnitude and angle of the node voltages of all bus) can not be determined from a set of measurements by a state estimator. Due to this, it is usually added a large number of pseudo measurements to the existing measurement plan to ensure observability and to enable the DSSE. A drawback with this strategy is that the accuracy of the estimated state is compromised due to the fact that the errors associated with the pseudo measurements are considerably higher than those relating to real measurements. Consequently, it is necessary to allocate meters (voltage magnitude, active and reactive power flows, current magnitudes, etc.) to guarantee the accuracy of the DSEE. The meter placement problem for the state estimation in the transmission networks is usually carried out with the objective of assuring the observability. On the other hand, the meter placement for the EERD aims to minimize probabilistic index associated with the errors between the true and estimated state vectors. An important component of the method used to solve the meters placement problem is a probabilistic technique used to estimate the objective function. Due to the nonlinear nature of DSSE problem, the best option has been to use the Monte Carlo Simulation (MCS). A disadvantage of the MCS to estimate the objective function of the allocation problem is its high computational cost due to the need to solve a nonlinear state estimation problem for each sample element. The main objective of this dissertation is to propose a probabilistic techniques to improve the computational performance of existing methodologies for meter placement without reducing the accuracy of the estimated ix state. This compromise has been established using two strategies. In the first one, a linear model is used to estimate the state and the MCS is applied to determine the risks of the objective function. In the second one, a closed analytical formula is used to determine the risks based on the linearized model. Furthermore, the improved versions of the meter placement algorithms proposed in this dissertation consider the effect of the correlation among the measurements. The proposed meter placement algorithms were tested in the British distribution system of 95 bus. The tests results demonstrate that the introduction of the proposed strategies in a meter placement algorithm significantly reduced its computational cost. Moreover, it can be observed that there were improvements in accuracy in some cases, because the risk estimates provided by MCS are not accurate with small samples. / Para planejar e operar adequadamente uma Rede Elétrica Inteligente (REI), muitas novas considerações técnicas, no âmbito de sistemas de distribuição, devem ser apreciadas, por exemplo: a estabilidade devido a instalação de Geração Distribuída (GD), o despacho de carga e geração, o gerenciamento de dispositivos de armazenamento de energia e a avaliação do impacto da conexão de veículos elétricos na rede de distribuição. O principal pré-requisito para muitas destas novas funções do centro de controle do sistema de distribuição é a determinação do estado da rede elétrica (módulo e a fase das tensões nodais) em tempo real a partir de dispositivos de medição nela instalados. Em centros de controle de sistemas de transmissão esta tarefa é realizada por ferramentas de estimação de estado. Desta forma, a Estimação de Estado em Redes de Distribuição (EERD) é um dos alicerces para a implantação de uma REI. A presença de um número reduzido de medições pode tornar a rede elétrica não observável no âmbito da EERD. Isto é, as variáveis de estado (módulo e fase das tensões nodais em todas as barras) não podem ser determinadas a partir de um conjunto de medições por um estimador de estado. Devido a isto, geralmente adiciona-se um grande número de pseudo-medições ao plano de medição existente para assegurar a observabilidade e viabilizar a EERD. Um problema com esta estratégia é que a precisão do estado estimado é comprometida devido ao fato de que os erros associados com as pseudo-medições são consideravelmente maiores do que aqueles referentes às medições reais. Consequentemente é necessário alocar medidores (magnitude das tensões, fluxos de potência ativa e reativa, magnitude das correntes, etc.) para garantir a precisão do EERD. O problema de alocação de medidores para a estimação de estado em redes de transmissão é, geralmente, realizado com o objetivo de assegurar a observabilidade. Por outro lado, a alocação de medidores para EERD é realizada visando minimizar índices probabilísticos associados com os erros entre os vetores de estado estimado e verdadeiro. Um componente importante do método usado para resolver o problema de alocação de medidores é a técnica probabilística usada para estimar a função objetivo. Devido à natureza não-linear do problema de EERD, a melhor opção tem sido utilizar a Simulação Monte Carlo (SMC). Uma desvantagem da SMC para estimar a função objetivo do problema de alocação é o seu alto custo computacional devido a necessidade de resolver um problema de estimação de estado não-linear para cada vii elemento da amostra. O principal objetivo desta dissertação é propor técnicas probabilísticas para melhorar o desempenho computacional de metodologias existentes para alocação de medidores sem sacrificar a precisão do estado estimado. Este compromisso foi estabelecido usando-se duas estratégias. Na primeira, um modelo linearizado é usado para estimar o estado e a SMC para determinar os riscos da função objetivo. Na segunda, uma fórmula analítica fechada é usada para determinar os riscos com base no modelo linearizado. Além disso, as versões melhoradas dos algoritmos de alocação propostos nesta dissertação consideram o efeito da correlação entre as medições. As metodologias de alocação propostas foram testadas no sistema de distribuição britânico de 95 barras. Os resultados dos testes demonstraram que a introdução das estratégias propostas em um algoritmo de alocação de medidores reduziu significativamente o seu custo computacional. Além disso, pode-se observar que ocorreram melhorias na precisão em alguns casos, pois as estimativas dos riscos fornecidas pela SMC não são precisas com pequenas amostras.
|
119 |
Técnicas de diagnóstico para modelos lineares generalizados com medidas repetidas / Diagnostics for generalized linear models for repeated measures data with missing valuesLucas Petri Damiani 10 May 2012 (has links)
A literatura dispõe de métodos de diagnóstico para avaliar o ajuste de modelos lineares generalizados (MLGs) para medidas repetidas baseado em equações de estimação generalizada (EEG). No entanto, tais métodos não contemplam a distribuição binomial nem bancos de dados com observações faltantes. O presente trabalho generalizou os métodos já desenvolvidos para essas duas situações. Na construção de gráficos de probabilidade meio-normal com envelope simulado para a distribuição binomial, foi proposto um método para geração de variáveis aleatórias com distribuição marginal binomial correlacionadas, baseado na convolução de variáveis com distribuição de Poisson independentes. Os métodos de diagnóstico desenvolvidos foram aplicados em dados reais e simulados. / Literature provides diagnostic methods to assess the fit of generalized linear models (GLM) for repeated measures based on generalized estimating equations (GEE). Still, such methods do not include the binomial distribution or databases with missing observations. This work generalizes the methods already developed for these two situations. A method for generating random variables with correlated marginal binomial distributions based on convolution of independent Poisson random variables has been proposed for the construction of half-normal probability plots. The diagnostic methods developed were applied to real and simulated data.
|
120 |
Timing-Driven Routing in VLSI Physical Design Under UncertaintySamanta, Radhamanjari January 2013 (has links) (PDF)
The multi-net Global Routing Problem (GRP) in VLSI physical design is a problem of routing a set of nets subject to limited resources and delay constraints. Various state-of-the-art routers are available but their main focus is to optimize the wire length and minimize the over ow. However optimizing wire length do not necessarily meet timing constraints at the sink nodes. Also, in modern nano-meter scale VLSI process the consideration of process variations is a necessity for ensuring reasonable yield at the fab. In this work, we try to nd a fundamental strategy to address the timing-driven Steiner tree construction (i.e., the routing) problem subject to congestion constraints and process variation.
For congestion mitigation, a gradient based concurrent approach (over all nets) of Erzin et. al., rather than the traditional (sequential) rip-and-reroute is adopted in or- der to propagate the timing/delay-driven property of the Steiner tree candidates. The existing sequential rip-up and reroute methods meet the over ow constraint locally but cannot propagate the timing constraint which is non-local in nature. We build on this approach to accommodate the variation-aware statistical delay/timing requirements.
To further reduce the congestion, the cost function of the tree generation method is updated by adding history based congestion penalty to the base cost (delay). Iterative use of the timing-driven Steiner tree construction method and history based tree construction procedure generate a diverse pool of candidate Steiner trees for each net. The gradient algorithm picks one tree for each net from the pool of trees such that congestion is e ciently controlled.
As the technology scales down, process variation makes process dependent param- eters like resistance, capacitance etc non-deterministic. As a result, Statistical Static Timing Analysis or SSTA has replaced the traditional static timing in nano-meter scale VLSI processes. However, this poses a challenge regarding the max/min-plus algebra of Dijkstra like approximation algorithm that builds the Steiner trees. A new approach based on distance between distributions for nding maximum/minimum at the nodes is presented in this thesis. Under this metric, the approximation algorithm for variation aware timing driven congestion constrained routing is shown to be provably tight and one order of magnitude faster than existing approaches (which are not tight) such as the MVERT.
The results (mean value) of our variation aware router are quite close to the mean of the several thousand Monte Carlo simulations of the deterministic router, i.e the results converge in mean. Therefore, instead of running so many deterministic Monte Carlo simulations, we can generate an average design with a probability distribution reasonably close to that of the actual behaviour of the design by running the proposed statistical router only once and at a small fraction of the computational e ort involved in physical design in the nano regime VLSI.
The above approximation algorithm is extended to local routing, especially non- Manhattan lambda routing which is increasingly being allowed by the recent VLSI tech- nology nodes. Here also, we can meet delay driven constraints better and keep related wire lengths reasonable.
|
Page generated in 0.1107 seconds