• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 10
  • 8
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 20
  • 15
  • 15
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Phase formation and mechanical properties of metastable Cu-Zr-based alloys / Phasenbildung und mechanische Eigenschaften metastabiler Legierungen auf Cu-Zr-Basis

Pauly, Simon 10 August 2010 (has links) (PDF)
In the course of this PhD thesis metastable Cu50Zr50-xTix (0≤ x ≤ 10) and (Cu0.5Zr0.5)100-xAlx (5 ≤ x ≤ 8) alloys were prepared and characterised in terms of phase formation, thermal behaviour, crystallisation kinetics and most importantly in terms of mechanical properties. The addition of Al clearly enhances the glass-forming ability although it does not affect the phase formation. This means that the Cu-Zr-Al system follows the characteristics of the binary Cu-Zr phase diagram, at least for Al additions up to 8 at.%. Conversely, the presence of at least 6 at.% Ti changes the crystallisation sequence of Cu50Zr50-xTix metallic glasses and a metastable C15 CuZrTi Laves phase (Fd-3m) precipitates prior to the equilibrium phases, Cu10Zr7 and CuZr2. A structurally related phase, i.e. the “big cube” phase (Cu4(Zr,Ti)2O, Fd-3m), crystallises in a first step when a significant amount of oxygen, on the order of several thousands of mass-ppm (parts per million), is added. Both phases, the C15 Laves as well as the big cube phase, contain pronounced icosahedral coordination and their formation might be related to an icosahedral-like short-range order of the as-cast glass. However, when the metallic glasses obey the phase formation as established in the binary Cu-Zr phase diagram, the short-range order seems to more closely resemble the coordination of the high-temperature equilibrium phase, B2 CuZr. During the tensile deformation of (Cu0.5Zr0.5)100-xAlx bulk metallic glasses where B2 CuZr nanocrystals precipitate polymorphically in the bulk and some of them undergo twinning, which is due to the shape memory effect inherent in B2 CuZr. Qualitatively, this unique deformation process can be understood in the framework of the potential energy landscape (PEL) model. The shear stress, applied by mechanically loading the material, softens the shear modulus, thus biasing structural rearrangements towards the more stable, crystalline state. One major prerequisite in this process is believed to be a B2-like short-range order of the glass in the as-cast state, which could account for the polymorphic precipitation of the B2 nanocrystals at a comparatively small amount of shear. Diffraction experiments using high-energy X-rays suggest that there might be a correlation between the B2 phase and the glass structure on a length-scale less than 4 Å. Additional corroboration for this finding comes from the fact that the interatomic distances of a Cu50Zr47.5Ti2.5 metallic glass are reduced by cold-rolling. Instead of experiencing shear-induced dilation, the atoms become more closely packed, indicating that the metallic glass is driven towards the more densely packed state associated with the more stable, crystalline state. It is noteworthy, that two Cu-Zr intermetallic compounds were identified to be plastically deformable. Cubic B2 CuZr undergoes a deformation-induced martensitic phase transformation to monoclinic B19’and B33 structures, resulting in transformation-induced plasticity (TRIP effect). On the other hand, tetragonal CuZr2 can also be deformed in compression up to a strain of 15%, yet, exhibiting a dislocation-borne deformation mechanism. The shear-induced nanocrystallisation and twinning seem to be competitive phenomena regarding shear band generation and propagation, which is why very few shear offsets, due to shear banding, can be observed at the surface of the bulk metallic glasses tested in quasistatic tension. The average distance between the crystalline precipitates is on the order of the typical shear band thickness (10 - 50 nm) meaning that an efficient interaction between nanocrystals and shear bands becomes feasible. Macroscopically, these microscopic processes reflect as an appreciable plastic strain combined with work hardening. When the same CuZr-based BMGs are tested in tension at room temperature and at high strain rate (10-2 s-1) there seems to be a “strain rate sensitivity”, which could be related to a crossover of the experimental time-scale and the time-scale of the intrinsic deformation processes (nanocrystallisation, twinning, shear band generation and propagation). However, further work is required to investigate the reasons for the varying slope in the elastic regime. As B2 CuZr is the phase, that competes with vitrification, it precipitates in a glassy matrix if the cooling rate is not sufficient to freeze the structure of the liquid completely. The pronounced work hardening and the plasticity of the B2 phase, which are a result of the deformation-induced martensitic transformation, leave their footprints in the stress-strain curves of these bulk metallic glass matrix composites. The behaviour of the yield strength as a function of the crystalline volume fraction can be captured by the rule of mixtures at low crystalline volume fractions and by the load bearing model at high crystalline volume fractions. In between both of these regions there is a transition caused by percolation (impingement) of the B2 crystals. Furthermore, the fracture strain can be modelled as a function of the crystalline volume fraction by a three-microstructural-element body and the results imply that the interface between B2 crystals and glassy matrix determines the plastic strain of the composites. The combination of shape memory crystals and a glassy matrix leads to a material with a markedly high yield strength and an enhanced plastic strain. In the CuZr-based metastable alloys investigated, there is an intimate relationship between the microstructure and the mechanical properties. The insights gained here should prove useful regarding the optimisation of the mechanical properties of bulk metallic glasses and bulk metallic glass composites.
32

Tratamento superficial por refusão a laser em aços AISI H13 e AISI 420 / Laser surface melting of steels AISI H13 and AISI 420

Pereira, Elaine Cristina 17 February 2006 (has links)
Orientador: Maria Clara Filippini Ierardi / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-06T10:03:07Z (GMT). No. of bitstreams: 1 Pereira_ElaineCristina_M.pdf: 3869413 bytes, checksum: b9bfe02035758d11f3c1b43e411db4d4 (MD5) Previous issue date: 2006 / Resumo: A refusão superficial a laser é uma técnica muito promissora para a melhoria das propriedades mecânicas dos aços ferramentas através da homogeneização química e refino da estrutura. O tratamento a laser promove o aquecimento e resfriamento rápidos da camada superficial resultando em transformações microestruturais que promovem a melhoria do desempenho sem envolver o reprocessamento do material como um todo. Neste trabalho foram analisadas, além da microestrutura resultante do tratamento de refusão a laser, a resistência à corrosão e a resistência à flexão dos aços ferramenta para trabalho a quente AISI H13 e inoxidável martensítico AISI 420. Os resultados experimentais foram comparados com os mesmos aços sem tratamento. Observou-se que a microestrutura resultante do tratamento de refusão a laser é formada de martensita e austenita residual. A estrutura refinada e a presença de martensita resultaram em um aumento da dureza, apesar do grande volume de austenita residual. A dissolução de carbonetos e incorporação dos elementos de liga na matriz, como por exemplo o cromo, promoveu uma melhoria no comportamento em corrosão / Abstract: Laser surface melting is a very promising technique to improve the mechanical properties of tool steel by the chemical homogenization and refinement of the microstructure. Laser treatment promotes the rapid heating and cooling of the superficial layer resulting in microstructure transformations, which improve material performance without involving the reprocessing of the bulk material. In this work, besides the microstructure resulting from laser surface melting, corrosion resistance and deflection of hot-work tool steel AISI H13 and martensitic stainless steel AISI 420 were analyzed. The experimental results were compared to the same steels without treatment. The microstructure of the laser surface melting is formed by martensite and retained austenite. The refined structure and the presence of martensite increased hardness, despite the large volume of retained austenite. The carbides dissolution and incorporation of alloying elements into the matrix, for example chrome, improve the corrosion behavior / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
33

Solidificação rápida e avaliação de estabilidade de fases de ligas Ti-Si-B / Rapidly solidification and stability evaluation of Ti-Si-B system alloys

Katia Cristiane Gandolpho Candioto 03 December 2009 (has links)
Materiais com fases intermetálicas têm sido avaliados para aplicações estruturais em altas temperaturas devido à baixa massa específica e interessantes propriedades de resistência mecânica e resistência à oxidação de vários compostos. As ligas de Ti são reconhecidas pela sua excelente combinação de alta-resistência, baixa massa específica e alta resistência à corrosão. Tendo em vista a importância de estudos em temperaturas na faixa de 700 a 1000 oC para futuras aplicações, avaliou-se neste trabalho as relações de fases do sistema Ti-Si-B na região rica em Ti nesta faixa de temperatura. Sabendo-se que a utilização de técnicas de solidificação rápida permite a obtenção de ligas com maior homogeneidade química e microestruturas finas, utilizou-se a técnica \"splat-cooling\" de solidificação rápida para produção das amostras, no sentido de obter microestruturas de equilíbrio em tempos e temperaturas menores nos tratamentos térmicos. As técnicas de microscopia, difração de raios X, análise térmica e dureza foram utilizadas para caracterização dos materiais. O processo de solidificação rápida (\"splat cooling\") promoveu refinamento de microestrutura e formação de fase amorfa em diversas composições de liga com temperaturas de início de cristalização (Tx) na faixa de 524 a 641oC. Foram confirmadas a estabilidade das fases αTi, Ti6Si2B e Ti3Si a 700oC e 1000oC. Os valores de dureza dos discos solidificados rapidamente ficaram na faixa de 434 HV a 1207 HV. / Materials with intermetallic phases have been evaluated for structural applications at high temperatures due to low specific mass and attractive mechanical properties as high-strength and oxidation resistance of various compounds. Ti alloys are recognized for their excellent combination of high-strength, low specific mass and high oxidation resistance. About future applications, studies at temperatures ranging from 700 to 1000 oC are important, we evaluated in this work the phase relationships of the system Ti-Si-B in the Ti-rich region in this temperature range. Knowing that the use of rapid solidification techniques results in alloys with higher chemical homogeneity and fine microstructure, the \"splat-cooling\" technique was used to produce the samples, in order to obtain stable microstructures in lower times and temperatures at the heat treatment. Microscopy, X-ray diffraction, thermal analysis and hardness measurement techniques were used for the materials characterization. The rapid solidification - splat cooling promoted the refinement of microstructure and even the formation of amorphous phase in the microstructure of materials with initial temperatures of crystallization (Tx) in the range from 524 to 641oC. We confirmed the stability of the phases αTi, Ti6Si2B and Ti3Si at 700oC and 1000oC. The hardness of the rapidly solidified discs were in the range of 434 HV to 1207 HV.
34

Development of New High Strength Alloy in Cu-Fe-Si System through Rapid Solidification

Sarkar, Suman January 2016 (has links) (PDF)
Copper based alloys play important role in high heat flux applications, particularly in rocket technology, the liner of the combustion chamber, and also in other heat transfer vessels. In these applications, one needs excellent high-temperature strength without sacrificing the thermal conductivity significantly. However, it is a challenging and difficult task to significantly improve the balance between strength and conductivities (electrical and thermal) of Cu-based alloys. In general, microstructural attributes, responsible for increasing mechanical strength of the alloy, also affect the transport properties by creating scattering centers. Hence, delicate optimization is needed for developing balanced alloy system for better performance. A substantial amount of research efforts has therefore been focused on devising methodologies to synthesize copper based alloys with a good combination of strength and conductivity. The present thesis deals with the development of a newer class of high strength high conductivity copper base alloy through tuning of phase transformation and careful additions of ternary and quaternary alloying elements and ultimately by microstructural engineering. In this thesis, we report the development of novel high strength high conductivity Cu-based alloy series in the Cu-Fe-Si system through rapid solidification process using suction casting apparatus. We have also optimized the alloys by altering and fine tuning the alloy compositions in order to achieve balanced and optimum properties. The strength of copper can be increased by various strengthening mechanisms. In general, precipitation hardening, dispersion strengthening and solid solution strengthening are the three most effective mechanisms for improving the strength of copper. Among these, solid solution strengthening has the most detrimental effect on the transport properties due to the presence of solute atoms which act as prominent scattering centres. Precipitation hardened copper alloys are often unable to retain strength at high temperatures, due to the coarsening of the precipitates. Currently, efforts are being made to develop newer dispersion strengthened copper alloys. These alloys contain a fine dispersion of nanometer sized oxides or other intermetallic compounds in the copper matrix. Dispersion strengthened copper alloys show impressive mechanical strength as well as thermal stability. In this thesis, we have explored the possibility of obtaining structurally ordered intermetallic dispersions through exploiting immiscibility of solutes in copper based alloys. The immiscibility promotes precipitation and decrease the solid solubility of solute elements in the matrix which in turn minimizes the scattering process and thus offers the possibility of improved transport properties. These ordered and coherent dispersion of intermetallic particles in the continuous copper matrix, dispersed during solidification, are believed to be the main contributor to the improvement of mechanical strength of the alloy. Crystallographically ordered structure and the coherency strain associated with the intermetallic particles in the copper matrix, together contribute to the mechanical strength through the mechanism of order hardening and coherency strengthening. These also, promote a low interfacial energy between precipitates and matrix in the alloy. This low interfacial energy reduces the driving force for coarsening process and thus helps in retaining the mechanical strength at elevated temperatures. Releasing of coherency strain at the precipitate-matrix interface with increasing temperature also yields a dramatic effect on the enhancement of thermal conductivity at high service temperatures. In the current study, we have selected three alloy compositions in the Cu-Fe-Si system at the higher end of copper. These are Cu-20Fe-5Si (at%), Cu-2.5Fe-2.5Si (at%) and Cu-1.0Fe-1.0Si (at%) respectively. We have systematically increased the concentration of copper, and altered the ratio of Fe and Si in order to achieve the better combination of properties (mechanical and transport) through fine tuning the microstructure. The present sets of alloys have been chill cast by the suction casting technique. This rapid solidification process, associated with moderate undercooling, is capable of accessing the submerged metastable miscibility gap of the Cu-Fe binary system. The higher quenching rate moves the system far away from equilibrium and hence, the solidification process occurs at the non-equilibrium regime. Rapid solidification of a copper rich Fe-Cu melt promotes the precipitation of the γFe from copper solid solution due to the immiscibility of Fe and Cu. In this scenario, the addition of a small quantity of silicon as a ternary element leads to its partition to both copper and iron rich phases. However, the larger chemical affinity between Fe and Si, leads to the formation of an ordered structure. However, the FCC crystal field of the copper matrix tends to promote an FCC based novel L12 ordered structure of the Fe3Si intermetallic particles instead of the ordered DO3 structure of Fe3Si composition normally observed in the bulk alloy. This nano meter sized L12 ordered particles maintain a cube-on-cube orientation relationship with the surrounding copper matrix and are associated with large coherency strain. A good lattice matching between these L12 ordered particles and copper matrix will promote a low interfacial energy and thus, a low driving force for particle coarsening. The present thesis is divided into eight chapters. The first chapter introduces the present work and the organization of the thesis. In the second chapter, current status in the development of the copper alloys and the general principle of alloy developments has been described. This includes both experimental and theoretical developments that can be used for developing high strength Cu based alloys. Chapter three, titled as „experimental procedure‟, describes the detailed description of materials and experimental techniques, adopted for the current studies. There are three chapters that deal with the main results of the thesis. Chapter eight, describes the suggestion for future work. The fourth chapter, titled as „Chill cast Cu75Fe20Si5 alloy: Microstructural Evolution and Properties‟, explores the detailed microstructural evolution of the Cu75Fe20Si5 alloy. This chapter also discusses the microstructure-property correlations. The microstructure of the alloy exhibits a multi-scale hierarchical structure during rapid solidification. The solidified microstructure contains Fe-rich globules with DO3 ordered structure, embedded in the continuous Cu-rich matrix. The continuous copper matrix also contains nanometer sized (average diameter 12 nm) coherent particles that exhibit Ashby-Brown strain contrast. Characterization of these phases has been carried out by a combination of X-ray diffraction, electron probe microanalysis and transmission electron microscopy coupled with energy dispersive spectroscopy. This multi-scale complex copper alloy (Cu75Fe20Si5 ) has achieved a remarkable yield and ultimate tensile strength at both room temperature and elevated temperatures in comparison to other copper based alloys. The yield strength and ultimate tensile strength at room temperature are 516±17 MPa and 635±14 MPa respectively whereas yield strength and ultimate tensile strength at 6000C turn out to be 95±11 MPa and 105±12 MPa respectively. In spite of achieving good mechanical strength, this alloy suffers from deterioration of electrical and thermal conductivity due to the presence of high volume fraction of the second phase and alloying elements. The room temperature electrical resistivity of this alloy shows that it is 10 times higher than that of pure copper (alloy resistivity = 1.70E-05 Ohm-cm at 250C and pure Copper- 1.68 × 10-6 Ohm-cm at 200C ). The thermal conductivity of this alloy turns out to be 88 W/m.K at 500C and 161 W/m.K at 6000C respectively which is much smaller in comparison to pure copper ( pure copper ≈ 401 W/m.K at 50 to 6000C). Attempts have been made to overcome the lowering of the transport properties by careful alteration of alloy compositions and fine tuning the microstructure. A new alloy with composition Cu-2.5Fe-2.5Si (at %) has been synthesized in order to achieve better transport properties without significantly sacrificing the mechanical strength. In this new alloy, we have reduced the volume fraction of the second phase (Fe-rich DO3 ordered globules) by lowering the addition of the alloying elements. We have also tried to alter the Fe to Si ratio in such a way that we can retain nanometer sized coherent particles in the matrix that provides strengthening. We arrived at a Fe and Si atom ratio of 1:1. The study of this alloy is presented in chapter five titled as „Chill cast Cu95Fe2.5Si2.5 alloy: Microstructural Evolution and Properties‟. Microstructural characterization indicates that the alloy contains only the nano meter sized coherent L12 ordered particles in the copper matrix. These particles show the Ashby-Brown strain contrast and are rich in iron and silicon. The absence of the high volume fraction of DO3 ordered Fe-rich globular phase and the smaller addition of the alloying elements ensure an improvement in the transport properties. The average resistivity value of this alloy at 250C is 3.5053 × 10-6 (Ohm-cm). This value represents a dramatic improvement in electrical properties in comparison to the Cu75Fe20Si5 alloy (Cu75Fe20Si5 alloy: 1.70E-05 Ohm-cm at 250C). The result is even better when we consider the temperature dependent thermal conductivity of the Cu95Fe2.5Si2.5 alloy. The thermal conductivity of this alloy turns out to be 236 W/m.K at 500C and 313 W/m.K at 6000C respectively. Though the thermal conductivity at room temperature is lower than pure copper, the gap reduces with increasing temperature (pure copper ≈ 401 W/m.K at 50 to 6000C and Cu75Fe20Si5 alloy: 88 W/m.K at 500C and 161 W/m.K at 6000C). This trend of temperature dependent thermal conductivity has made this alloy as one of the potential candidates for high-temperature applications. In situ heating experiment using transmission electron microscope (up to 4500C) and the heat treatment analysis at 6000C confirm that these L12 ordered particles are structurally stable at high temperatures and believed to be the main contributor to high mechanical strength in the alloy through the mechanism of order hardening and coherency strengthening. Coherent nature of the interface between the ordered particles and copper matrix also promotes low interfacial energy in the alloy and thus offers resistance to coarsening at elevated temperatures. Along with the attractive transport properties, this alloy also exhibits its success of retaining mechanical strength at both ambient and high temperatures as compared to the earlier alloy. The room temperature yield strength and ultimate tensile strength of this alloy are recorded as 580±18 MPa and 690±16 MPa respectively whereas the yield strength and ultimate tensile strength at 6000C of this alloy obtained as 128±8 MPa and 150±10 MPa respectively. Thus newly modified alloy exhibits an excellent balance between mechanical strength and conductivity (electrical and thermal) and can be regarded as a promising alloy for high strength high heat flux applications. The possibilities of the Cu95Fe2.5Si2.5 alloy as a potential candidate for high strength high conductivity application has provided the motivation for further optimization of the composition of this class of alloy. Mechanical strength and transport properties of a precipitation strengthened alloy always depends on the structure, shape, volume fractions and the number densities of the precipitate particles. Electrical and thermal conductivity are also sensitive to the presence of third elements and the number densities of the precipitates in the alloy. Thus, optimization of the volume fraction and the number density of the precipitates can yield a better alloy. With this objective, we have further increased the concentration of copper while keeping the Fe and Si atom ratio fixed at 1:1. Chapter six, titled as „Chill cast Cu98Fe1.0Si1.0 alloy: Microstructural Evolution and Properties‟ describes the microstructural evolution and microstructure-property correlation of this new alloy. Characterization analysis (X-ray diffraction, electron probe microanalysis and transmission electron microscopy) confirms that the microstructure of this alloy contains similar kind of nanometer sized L12 ordered particles with lower number density as compared to Cu95Fe2.5Si2.5 alloy (Relative planar number density of the particles: Cu98Fe1.0Si1.0 = 0.13 and Cu95Fe2.5Si2.5 = 0.20). This nano sized coherently ordered particles show the similar Ashby-Brown strain contrast and are rich in iron and silicon similar to the Cu95Fe2.5Si2.5 alloy. This dilute alloy exhibits slight improvement in transport properties in comparison to the earlier Cu95Fe2.5Si2.5 alloy. The electrical resistivity of this alloy at 250C is 3.438E-6 Ohm-cm (Cu95Fe2.5Si2.5 = 3.5053 × 10-6 Ohm-cm at 250C). The thermal conductivity values of this alloy are 243 W/m.K and 338 W/m.K at 500C and 6000C respectively (Cu95Fe2.5Si2.5 = 236 W/m.K at 500C and 313 W/m.K at 6000C). This increase in transport properties is associated with further compositional dilution and the presence of lower number density of the ordered particles in the copper matrix. The mechanism of strengthening is similar to the earlier alloys. The only difference lies in the fact that this present alloy contains lower number density of the L12 ordered particles in the copper matrix. This lower number density is responsible for the loss in mechanical strength of this alloy. The room temperature yield strength and the ultimate tensile strength of this present alloy are 467±16 MPa and 558±12 MPa whereas yield strength and ultimate tensile strength at 6000C are recorded as 102±13 MPa and 110±12 MPa respectively. Though the alloy exhibits some loss in mechanical strength, the values are still attractive in comparison to other commercially available copper based alloys. Both the alloy Cu98Fe1.0Si1.0 and Cu95Fe2.5Si2.5 demonstrate an excellent balance of mechanical strength and transport properties and have the potential to become a high strength and high conductivity materials for high temperature applications. Chapter seven is entitled as „Comparison between the alloy systems‟. In this chapter, we have presented a comparison of our new alloys with other commercially available Cu-base alloys. The thesis ends with a chapter titled as “Suggestions for future work”. We have included a descriptive note for possible future extension of our current work in this chapter.
35

Fe-based composite materials with advanced mechanical properties

Werniewicz, Katarzyna 07 May 2010 (has links)
In this study a series of novel Fe-based materials derived from a bulk metallic glass-forming composition was investigated to improve the ductility of this high-strength glassy alloy. The interplay between the factors chemistry, structure and resulting mechanical properties was analyzed in detail. It has been recognized that subtle modifications of the chemical composition (carbon addition) lead to appreciable changes in the phase formation, which occurs upon solidification (from a single-phase structure to composite materials). As a consequence, significant differences in the mechanical response of the particular samples have been observed. The materials developed here were fabricated by centrifugal casting. To explore the structure features of the as-cast cylinders, manifold experimental techniques (X-ray diffraction, optical, as well as electron microscopy) were employed. The occurrence of the numerous reflections on the X-ray diffraction patterns has confirmed the crystalline nature of the studied Fe-based alloy systems. The subsequent extensive research on their deformation behavior (Vickers hardness and room temperature compression tests) has revealed that, although the glass-forming ability of the investigated compositions is not high enough to obtain a glassy phase as a product of casting, excellent mechanical characteristics (high strength - comparable to that of the reference bulk metallic glass (BMG) - associated with good ductility) were achieved for the “composite-like” alloys. In contrast, the single phase cylinders, subjected to compressive loading, manifested an amazing capacity for plastic deformation – no failure occurred. The fracture motives developed during deformation of the “composite-structured” samples were studied by scanning electron microscopy. The main emphasis has been put on understanding the mechanisms of crack propagation. Owing to the structural complexity of the deformed samples, it was crucial to elucidate the properties of the individual compounds. Based on the obtained results it was concluded that the coexistence of a soft f.c.c. γ-Fe phase in combination with a hard complex matrix is responsible for the outstanding mechanical response of the tested composites. While the soft particles of an austenite contribute to the ductility (they hinder the crack propagation and hence, cause unequivocal strain-hardening), the hard constituents of the matrix phase yield the strength.
36

Phase formation and mechanical properties of metastable Cu-Zr-based alloys

Pauly, Simon 30 June 2010 (has links)
In the course of this PhD thesis metastable Cu50Zr50-xTix (0≤ x ≤ 10) and (Cu0.5Zr0.5)100-xAlx (5 ≤ x ≤ 8) alloys were prepared and characterised in terms of phase formation, thermal behaviour, crystallisation kinetics and most importantly in terms of mechanical properties. The addition of Al clearly enhances the glass-forming ability although it does not affect the phase formation. This means that the Cu-Zr-Al system follows the characteristics of the binary Cu-Zr phase diagram, at least for Al additions up to 8 at.%. Conversely, the presence of at least 6 at.% Ti changes the crystallisation sequence of Cu50Zr50-xTix metallic glasses and a metastable C15 CuZrTi Laves phase (Fd-3m) precipitates prior to the equilibrium phases, Cu10Zr7 and CuZr2. A structurally related phase, i.e. the “big cube” phase (Cu4(Zr,Ti)2O, Fd-3m), crystallises in a first step when a significant amount of oxygen, on the order of several thousands of mass-ppm (parts per million), is added. Both phases, the C15 Laves as well as the big cube phase, contain pronounced icosahedral coordination and their formation might be related to an icosahedral-like short-range order of the as-cast glass. However, when the metallic glasses obey the phase formation as established in the binary Cu-Zr phase diagram, the short-range order seems to more closely resemble the coordination of the high-temperature equilibrium phase, B2 CuZr. During the tensile deformation of (Cu0.5Zr0.5)100-xAlx bulk metallic glasses where B2 CuZr nanocrystals precipitate polymorphically in the bulk and some of them undergo twinning, which is due to the shape memory effect inherent in B2 CuZr. Qualitatively, this unique deformation process can be understood in the framework of the potential energy landscape (PEL) model. The shear stress, applied by mechanically loading the material, softens the shear modulus, thus biasing structural rearrangements towards the more stable, crystalline state. One major prerequisite in this process is believed to be a B2-like short-range order of the glass in the as-cast state, which could account for the polymorphic precipitation of the B2 nanocrystals at a comparatively small amount of shear. Diffraction experiments using high-energy X-rays suggest that there might be a correlation between the B2 phase and the glass structure on a length-scale less than 4 Å. Additional corroboration for this finding comes from the fact that the interatomic distances of a Cu50Zr47.5Ti2.5 metallic glass are reduced by cold-rolling. Instead of experiencing shear-induced dilation, the atoms become more closely packed, indicating that the metallic glass is driven towards the more densely packed state associated with the more stable, crystalline state. It is noteworthy, that two Cu-Zr intermetallic compounds were identified to be plastically deformable. Cubic B2 CuZr undergoes a deformation-induced martensitic phase transformation to monoclinic B19’and B33 structures, resulting in transformation-induced plasticity (TRIP effect). On the other hand, tetragonal CuZr2 can also be deformed in compression up to a strain of 15%, yet, exhibiting a dislocation-borne deformation mechanism. The shear-induced nanocrystallisation and twinning seem to be competitive phenomena regarding shear band generation and propagation, which is why very few shear offsets, due to shear banding, can be observed at the surface of the bulk metallic glasses tested in quasistatic tension. The average distance between the crystalline precipitates is on the order of the typical shear band thickness (10 - 50 nm) meaning that an efficient interaction between nanocrystals and shear bands becomes feasible. Macroscopically, these microscopic processes reflect as an appreciable plastic strain combined with work hardening. When the same CuZr-based BMGs are tested in tension at room temperature and at high strain rate (10-2 s-1) there seems to be a “strain rate sensitivity”, which could be related to a crossover of the experimental time-scale and the time-scale of the intrinsic deformation processes (nanocrystallisation, twinning, shear band generation and propagation). However, further work is required to investigate the reasons for the varying slope in the elastic regime. As B2 CuZr is the phase, that competes with vitrification, it precipitates in a glassy matrix if the cooling rate is not sufficient to freeze the structure of the liquid completely. The pronounced work hardening and the plasticity of the B2 phase, which are a result of the deformation-induced martensitic transformation, leave their footprints in the stress-strain curves of these bulk metallic glass matrix composites. The behaviour of the yield strength as a function of the crystalline volume fraction can be captured by the rule of mixtures at low crystalline volume fractions and by the load bearing model at high crystalline volume fractions. In between both of these regions there is a transition caused by percolation (impingement) of the B2 crystals. Furthermore, the fracture strain can be modelled as a function of the crystalline volume fraction by a three-microstructural-element body and the results imply that the interface between B2 crystals and glassy matrix determines the plastic strain of the composites. The combination of shape memory crystals and a glassy matrix leads to a material with a markedly high yield strength and an enhanced plastic strain. In the CuZr-based metastable alloys investigated, there is an intimate relationship between the microstructure and the mechanical properties. The insights gained here should prove useful regarding the optimisation of the mechanical properties of bulk metallic glasses and bulk metallic glass composites.:Abstract/Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . vii Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 Metallic glasses and bulk metallic glasses . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Structure of metallic glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Glass formation and transformation kinetics . . . . . . . . . . . . . . . . . . 4 1.2.1 Crystallisation kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Glass-forming ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Fragility concept of metallic glasses . . . . . . . . . . . . . . . . . . . 10 1.3 Mechanical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 The potential energy landscape concept . . . . . . . . . . . . . . . . . 16 1.3.2 Role of the shear modulus upon flow of a glass . . . . . . . . . . . . . 20 1.3.3 Factors affecting plastic deformation of BMGs . . . . . . . . . . . . . 25 1.4 Metastable Cu-Zr-based alloys . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.4.1 Binary Cu-Zr glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.4.2 Minor additions of Al and Ti to glassy Cu-Zr . . . . . . . . . . . . . . 33 2 Synthesis and characterisation methods . . . . . . . . . . 35 2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1.1 Melt spinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.1.2 Cu-mould suction casting . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2 X-ray diffraction/in-situ experiments . . . . . . . . . . . . . . . . . . . . . . . 38 2.3 Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.1 Optical microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.2 Scanning electron microscopy . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.3 Transmission electron microscopy . . . . . . . . . . . . . . . . . . . . 39 2.4 Calorimetry/ Dilatometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5 Ultrasound velocity measurements . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6 Mechanical testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Effect of oxygen on Cu-Zr-(Ti) alloys . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1 Influence of casting parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Phase formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Effect of Ti and Al on Cu-Zr glasses . . . . . . . . . . . . . . . . . . . . . . . . 53 4.1 Phase formation and thermal stability . . . . . . . . . . . . . . . . . . . . . . 53 4.2 Crystallisation kinetics and fragility . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.1 Isothermal calorimetric measurements . . . . . . . . . . . . . . . . . . 64 4.2.2 Isochronal calorimetric measurements . . . . . . . . . . . . . . . . . . 67 4.3 Structure of Cu-Zr-(Al/Ti) glasses . . . . . . . . . . . . . . . . . . . . . . . . 71 5 Glassy Cu-Zr-(Al/Ti) alloys . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1 Deformation behaviour of glassy ribbons . . . . . . . . . . . . . . . . . . . . 79 5.2 Deformation behaviour of bulk metallic glasses . . . . . . . . . . . . . . . . . 83 5.2.1 Compression tests of Cu50Zr50 . . . . . . . . . . . . . . . . . . . . . . 83 5.2.2 Tensile tests of (Cu0.5Zr0.5)100-xAlx . . . . . . . . . . . . . . . . . . . . 85 5.2.3 Fractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.2.4 High-strain rate tensile tests . . . . . . . . . . . . . . . . . . . . . . . . 104 6 Cu-Zr intermetallic compounds . . . . . . . . . . . . . . . . . . . . . . . . 111 6.1 Deformation behaviour of Cu10Zr7 and CuZr2 . . . . . . . .. . . . . . . . 111 6.2 Deformation behaviour of B2 CuZr . . . . . . . . . . . . . . . . . . . . . . . . 113 6.3 Relation between intermetallics and BMGs . . . . . . . . . . . . . . . . . . . 119 7 Cu-Zr-(Al/Ti) BMG matrix composites . . . . . . . . . . . . . . . . . . . . . . . . 123 7.1 Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.2 Deformation behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 137 9 Outlook . . . . . . . . . . . . . . . . . . . . . . . . 139 10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . 143 10.1 Isochronal transformation kinetics (Kissinger) . . . . . . . . . . . . . . . . 143 10.2 Isothermal crystallisation kinetics (Johnson-Mehl-Avrami) . . . . . . . 144 10.3 The fragility concept of metallic glasses . . . . . . . . . . . . . . . . . . . . . 144 10.4 Flow of liquids in the PEL picture . . . . . . . . . . . . . . . . . . . . . . . . . 146 10.5 The interstitialcy theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 149 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . 151
37

Computational and Experimental Study of the Microstructure Evolution of Inconel 625 Processed by Laser Powder Bed Fusion

Mohammadpour, Pardis January 2023 (has links)
This study aims to improve the Additive Manufacturing (AM) design space for the popular multi-component Ni alloy Inconel 625 (IN625) thorough investigating the microstructural evolution, namely the solidification microstructure and the solid-state phase transformations during the Laser Powder Bed Fusion (LPBF) process. Highly non-equilibrium solidification and the complex reheating conditions during the LPBF process result in the formation of various types of solidification microstructures and grain morphologies which consequently lead to a wide range of mechanical properties. Understanding the melt’s thermal conditions, alloy chemistry, and thermodynamics during the rapid solidification and solid-state phase transformation in AM process will help to control material properties and even produce a material with specific microstructural features suited to a given application. This research helps to better understand the process-microstructure-property relationships of LPBF IN625. First, a set of simple but effective analytical solidification models were employed to evaluate their ability to predict the solidification microstructure in AM applications. As a case study, Solidification Microstructure Selection (SMS) maps were created to predict the solidification growth mode and grain morphology of a ternary Al-10Si-0.5Mg alloy manufactured by the LPBF process. The resulting SMS maps were validated against the experimentally obtained LPBF microstructure available in the literature for this alloy. The challenges, limitations, and potential of the SMS map method to predict the microstructural features in AM were comprehensively discussed. Second, The SMS map method was implemented to predict the solidification microstructure and grain morphology in an LPBF-built multi-component IN625 alloy. A single-track LPBF experiment was performed utilizing the EOSINT M280 machine to evaluate the SMS map predictions. The resulting microstructure was characterized both qualitatively and quantitatively in terms of the solidification microstructure, grain morphology, and Primary Dendrite Arm Spacing (PDAS). Comparing the experimentally obtained solidification microstructure to the SMS map prediction, it was found that the solidification mode and grain morphology were correctly predicted by the SMS maps. Although the formation of precipitates was predicted using the CALculation of PHAse Diagrams (CALPHAD) approach, it was not anticipated from the analytical solution results. Third, to further investigate the microsegregation and precipitation in IN625, Scanning Transmission Electron Microscopy (STEM) using Energy-Dispersive X-ray Spectroscopy (EDS), High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM), Scheil-Gulliver (with solute trapping) model, and DIffusion-Controlled TRAnsformations (DICTRA) method were employed. It was found that the microstructural morphology mainly consists of the Nickel-Chromium (gamma-FCC) dendrites and a small volume fraction of precipitates embedded into the interdendritic regions. The precipitates predicted with the computational method were compared with the precipitates identified via HAADF-STEM analysis inside the interdendritic region. The level of elemental microsegregation was overestimated in DICTRA simulations compared to the STEM-EDS results; however, a good agreement was observed between the Scheil and STEM-EDS microsegregation estimations. Finally, the spatial variations in mechanical properties and the underlying microstructural heterogeneity of a multi-layer as-built LPBF part were investigated to complete the process-structure-properties relationships loop of LPBF IN625. Towards this end, numerical thermal simulation, electron microscopy, nano hardness test, and a CALPHAD approach were utilized to investigate the mechanical and microstructural heterogeneity in terms of grain size and morphology, PDAS, microsegregation pattern, precipitation, and hardness along the build direction. It was found that the as-built microstructure contained mostly columnar (Nickel–Chromium) dendrites were growing epitaxially from the substrate along the build direction. The hardness was found to be minimum in the middle and maximum in the bottom layers of the build’s height. Smaller melt pools, grains, and PDAS and higher thermal gradients and cooling rates were observed in the bottom layers compared to the top layers. Microsegregation patterns in multiple layers were also simulated using DICTRA, and the results were compared with the STEM-EDS results. The mechanism of the formation of precipitates in different regions along the build direction and the precipitates’ corresponding effects on the mechanical properties were also discussed. / Thesis / Doctor of Philosophy (PhD)
38

Phase Transformation Behavior Of Embedded Bimetallic Nanoscaled Alloy Particles In Immiscible Matrices

Basha, D Althaf 07 1900 (has links) (PDF)
The aim of the present thesis is to understand the phase transformation behavior of embedded alloy nanoparticles embedded in immiscible matrices. Embedded alloy inclusions have been dispersed in immiscible matrix via rapid solidification method. The present work deals with synthesis of embedded particles, evolution of microstructure, morphology and crystallographic orientation relation relationships among different phases, phase transformation and phase stability behavior of embedded alloy inclusions in different matrices. In the present investigation the systems chosen are Bi-Sn and Bi-Pb in Zn matrix and Cd-Sn in Al matrix. Chapter 1 gives the brief introduction of present work Chapter 2 gives a brief review of nanoscale materials, various synthesis techniques, microstructure evolution, solidification and melting theories. Chapter 3 discusses the processing and experimental techniques used for characterization of the different samples in the present work. Melt-spinning technique used to synthesize the rapidly solidified ribbons. The structural characterization is carried out using X-ray diffraction and transmission electron microscopy. Chapter 4 illustrates the size dependent solubility and phase transformation behavior of Sn-Cd alloy nanoparticles embedded in aluminum matrix. X-ray diffraction study shows the presence of fcc Al, bct Sn, hcp Cd solid solution and hcp Cd phases. Based on Zen’s law, the amount of Sn present Cd solid solution is estimated. Using overlapped sterograms, the orientational relationships among various phases are found. Microscopy studies reveal that majority of the alloy nano inclusions exhibit a cuboctahedral shape with 111 and 100 facets and they are bicrystalline. STEM-EDS analysis shows that both phases exhibit size dependent solubility behavior and for particles size smaller than 18 nm, single phase solid solution could only be observed. Calorimetric studies reveal a depression in eutectic melting point of bimetallic particles. In situ heating studies show that melting initiates at triple line junction corner and melt first grows into the interior of the Sn rich phase of the particle and then later the melt grows into the interior of the Cd phase of the particle. During cooling first Cd phase solidifies later Sn phase solidifies and on further cooling at low temperatures entire particle transforming into complete solid solution phase particle. Size dependent melting studies show that during heating smaller particles melted first, later bigger particles melted. During cooling first bigger particle solidified later smaller particles solidified. High resolution imaging indicates presence of steps across particle-matrix interface that may get annihilated during heating. During cooling, molten particles in the size range of 16-30 nm solidify as solid solution which for molten particles greater than 30 nm solidify as biphasic particle. Insitu heating studies indicates that for solid particles less than 15 nm get dissolved in the Al matrix at temperatures at around 135°C. Differential scanning calorimetry (DSC) studies show in the first heating cycle most of the particles melt with an onset of melting of at 166.8°C which is close to the bulk eutectic temperature of Sn-Cd alooy. The heating cycle reveals that the melting event is not sharp which can be understood from in-situ microscopy heating studies. In the second and the third cycles, the onset of melting observed at still lower temperatures 164.3°C and 158.5°C .The decrease in onset melting point in subsequent heating cycles is attributed to solid solution formation of all small particles whose size range below 30 nm during cooling. cooling cycles exhibit an undercooling of 90°C with respect to Cd liquidus temperature. Thermal cycling experiments using DSC were carried out by arresting the run at certain pre-determined temperatures during cooling and reheating the sample to observe the change in the melting peak position and area under the peak. The areas of these endothermic peaks give us an estimate of the fraction of the particles solidified upto the temperature when the cycling is reversed. Based on experimental observations, a thermodynamic model is developed, to understand the solubility behavior and to describe the eutectic melting transition of a binary Sn-Cd alloy particle embedded in Al matrix. Chapter 5 discusses the phase stability and phase transformation behavior of nanoscaled Bi-Sn alloys in Zn matrix. Bi-Sn alloys with eutectic composition embedded in Zn matrix using melt spinning technique. X-ray diffraction study shows the presence of rhombohedral Bi, pure BCT Sn and hcp Zn phases. In X-ray diffractogram, there are also other new peaks observed, whose peak positions (interplanar spacings) do not coincide either with rhombohedral Bi or bct Sn or hcp Zn. Assuming these new phase peaks belong to bct Sn rich solid solution(based on earlier work on Bi-Sn rapidly solidified metastable alloys) whole pattern fitting done on x-ray diffractogram using Lebail method. The new phase peaks indicated as bct M1(metastable phase1), bct M2(metastable phase2) phases. The amount of Bi present in M1, M2 solid solution is estimated using Zens law. Two sets of inclusions were found, one contains equilibrium bismuth and tin phases and the other set contains equilibrium bismuth and a metastable phase. In-situ TEM experiments suggest that as temperature increases bismuth diffuses into tin and becomes complete solid solution. Melting intiates along the matrix–particle interface leading to a core shell microstructure. During cooling the entire inclusion solidify as solid solution and decomposes at lower temperatures. High temperature XRD studies show that as temperature increases M1, M2 phases peaks merge with Sn phase peaks and Bi phase peak intensities slowly disappear and on further increasing temperature Sn solid solution phase peaks also disappear. During cooling diffraction studies show that first Sn solid solution phase peaks appear and later Bi phase peaks appear. But, the peaks belong to metstable phases not appeared while cooling. Chapter 6 presents morphology and phase transformation of nanoscaled bismuth-lead alloys with eutectic (Pb44.5-Bi55.5) and peritectic (Pb70-Bi30) compositions embedded in zinc matrix. using melt spinning technique. In alloy1[ Zn-2at%(Pb44.5-Bi55.5)] inclusions were found to be phase separated into two parts one is rhombohedral Bi and the other is hcp Pb7Bi3 phase. X-ray diffraction study shows the presence of rhombohedral Bi, hcp Pb7Bi3 and hcp Zn phases in Zn-2at%(Pb44.5-Bi55.5) melt spun sample. The morphology and orientation relationships among various phases have been found. In-situ microscpy heating studies show that melt initially spreads along the matrix–particle interface leading to a core-shell microstructure. And in the core of the core-sell particles, first Bi phase melts later Pb7Bi3 phase will melt and during cooling the whole particle solidify as biphase particle with large undercooling. In-situ heating studies carried out to study the size dependent melting and solidification behavior of biphase particles. During heating smaller particles melt melt first later bigger particle will melt. In contrast, while cooling smaller particles solidifies first, later bigger particles will solidify. Detailed high temperature x-ray diffraction studies indicate there increases first Bi phase peaks disappear later Pb7Bi3 phase peaks disappear and during cooling first Pb7Bi3 phase peaks appear and later Bi phase peaks appear. In alloy2[ Zn-2at%(Pb70-Bi30)] inclusions were found to be single phase particles. X-ray diffraction study shows the presence of hcp Pb7Bi3 and hcp Zn phases in Zn-2at%(Pb70-Bi30) melt spun sample. The crystallographic orientation relationship between hcp Pb7Bi3 and hcp Zn phases. In-situ microscpy heating studies show that melting initiates across the matrix–particle interface grows gradually into the interior of the particle. Three phase equilibrium at peritectic reaction temperature is not observed during insitu heating TEM studies. Size dependent melting point depression of single phase particles is not observed from in-situ heating studies. Detailed high temperature x-ray diffraction studies show that while heating the Pb7Bi3 phase peak intensities start decreasing after 170°C and become zero at 234°C. And during cooling Pb7Bi3 phase peaks starts appearing at 200°C and on further cooling the Pb7Bi3 phase peak intensities increase upto 150°C, below this temperature peak intensities remain constant.
39

Korrelation mikrostruktureller und mechanischer Eigenschaften von Ti-Fe-Legierungen

Schlieter, Antje 30 July 2012 (has links) (PDF)
The effect of solidification conditions on microstructural and mechanical properties of eutectic TiFe alloy cast under different conditions was examined. Samples exhibit different ultrafine eutectic structures (β-Ti(Fe) solid solution + TiFe). Different cooling conditions lead to the evolution of ultrafine eutectic oval-shaped colonies or elongated lamellar colonies with preferred orientation. Isotropic as well as anisotropic mechanical properties were obtained. Alloys exhibit compressive strengths between 2200 and 2700 MPa and plastic strains between 7 and 19 pct. in compression.
40

Studies On Momentum, Heat And Mass Transfer In Binary Alloy Solidification Processes

Chakraborty, Suman 09 1900 (has links)
The primary focus of the present work is the development of macro-models for numerical simulation of binary alloy solidification processes, consistent with microscopic phase-change considerations, with a particular emphasis on capturing the effects of non-equilibrium species redistribution on overall macrosegregation behaviour. As a first step, a generalised macroscopic framework is developed for mathematical modelling of the process. The complete set of equivalent single-phase governing equations (mass, momentum, energy and species conservation) are solved following a pressure-based Finite Volume Method according to the SIMPLER algorithm. An algorithm is also developed for the prescription of the coupling between temperature and the melt-fraction. Based on the above unified approach of solidification modelling, a macroscopic numerical model is devised that is capable of capturing the interaction between the double-diffusive convective field and a localised fluid flow on account of solutal undercooling during non-equilibrium solidification of binary alloys. Numerical simulations are performed for the case of two-dimensional transient solidification of Pb-Sn alloys, and the simulation results are also compared with the corresponding experimental results quoted in the literature. It is observed that non-equilibrium effects on account of solutal undercooling result in an enhanced macrosegregation. Next, the model is extended to capture the effects of dendritic arm coarsening on the macroscopic transport phenomena occurring during a binary alloy solidification process. The numerical results are first tested against experimental results quoted in the literature, corresponding to the solidification of an Al-Cu alloy in a bottom-cooled cavity. It is concluded that dendritic arm coarsening leads to an increased effective permeability of the mushy region as well as an enhanced eutectic fraction of the solidified ingot. Consequently, an enhanced macrosegregation can be predicted as compared to that dictated by shrinkage-induced fluid flow alone. For an order-of-magnitude assessment of predictions from the numerical models, a systematic approach is subsequently developed for scaling analysis of momentum, heat and species conservation equations pertaining to the case of solidification of a binary mixture. A characteristic velocity scale inside the mushy region is derived, in terms of the morphological parameters of the two-phase region. A subsequent analysis of the energy equation results in an estimation of the solid layer thickness. It is also shown from scaling principles that non-equilibrium effects result in an enhanced macro-segregation compared to the case of an equilibrium model For the sake of assessment of the scaling analysis, the predictions are validated against computational results corresponding to the simulation of a full set of governing equations, thus confirming the trends suggested by the scale analysis. In order to analytically investigate certain limiting cases of unidirectional alloy solidification, a fully analytical solution technique is established for the solution of unidirectional, conduction-dominated, alloy solidification problems. The results are tested for the problem of solidification of an ammonium chloride-water solution, and are compared with those from existing analytical models as well as with the corresponding results from a fully numerical simulation. The effects of different microscopic models on solidification behaviour are illustrated, and transients in temperature and heat flux distribution are also analysed. An excellent agreement between the present solutions and results from the computational simulation can be observed. The generalised numerical model is subsequently utilised to investigate the effects of laminar double-diffusive Rayleigh-Benard convection on directional solidification of binary fluids, when cooled and solidified from the top. A series of experiments is also performed with ammonium chloride-water solutions of hypoeutectic and hypereutectic composition, so as to facilitate comparisons with numerical predictions. While excellent agreements can be obtained for the first case, the second case results in a peculiar situation, where crystals nucleated on the inner roof of the cavity start descending through the bulk fluid, and finally settle down at the bottom of the cavity in the form of a sedimented solid layer. An eutectic solidification front subsequently progresses from the top surface vertically downwards, and eventually meets the heap of solid crystals collected on the floor of the cavity. However, comparison of experimental observations with corresponding numerical results from the present model is not possible under this situation, since the associated transport process involves a complex combination of a number of closely interconnected physical mechanisms, many of which are yet to be resolved. Subsequent to the development of the mathematical model and experimental arrangements for macroscopic transport processes during an alloy solidification process, some of the important modes of double-diffusive instability are analytically investigated, as a binary alloy of any specified initial composition is directionally solidified from the top. By employing a close-formed solution technique, the critical liquid layer heights corresponding to the onset of direct mode of instability are identified, corresponding two a binary alloy with three different initial compositions. In order to simulate turbulent transport during non-equilibrium solidification processes of binary alloys, a modified k-8 model is subsequently developed. Particular emphasis is given for appropriate modelling of turbulence parameters, so that the model merges with single-phase turbulence closure equations in the pure liquid region in a smooth manner. Laboratory experiments are performed using an ammonium chloride-water solution that is solidified by cooling from the top of a rectangular cavity. A good agreement between numerical and experimental results is observed. Finally, in order to study the effects of three-dimensionality in fluid flow on overall macrosegregation behaviour, the interaction between double-diffusive convection and non-equilibrium solidification of a binary mixture in a cubic enclosure (cooled from a side) is numerically investigated using a three-dimensional transient mathematical model. Investigations are carried out for two separate model systems, one corresponding to a typical metal-ally analogue system and other corresponding to an actual metal-alloy system. As a result of three-dimensional convective flow-patterns, a significant solute macrosegregation is observed in the transverse sections of the cavity, which cannot be captured by two-dimensional simulations.

Page generated in 0.1167 seconds