Spelling suggestions: "subject:"multionational krylov"" "subject:"multionational krylove""
11 |
Model Order Reduction with Rational Krylov MethodsOlsson, K. Henrik A. January 2005 (has links)
<p>Rational Krylov methods for model order reduction are studied. A dual rational Arnoldi method for model order reduction and a rational Krylov method for model order reduction and eigenvalue computation have been implemented. It is shown how to deflate redundant or unwanted vectors and how to obtain moment matching. Both methods are designed for generalised state space systems---the former for multiple-input-multiple-output (MIMO) systems from finite element discretisations and the latter for single-input-single-output (SISO) systems---and applied to relevant test problems. The dual rational Arnoldi method is designed for generating real reduced order systems using complex shift points and stabilising a system that happens to be unstable. For the rational Krylov method, a forward error in the recursion and an estimate of the error in the approximation of the transfer function are studie.</p><p>A stability analysis of a heat exchanger model is made. The model is a nonlinear partial differential-algebraic equation (PDAE). Its well-posedness and how to prescribe boundary data is investigated through analysis of a linearised PDAE and numerical experiments on a nonlinear DAE. Four methods for generating reduced order models are applied to the nonlinear DAE and compared: a Krylov based moment matching method, balanced truncation, Galerkin projection onto a proper orthogonal decomposition (POD) basis, and a lumping method.</p>
|
12 |
Rational Lanczos-type methods for model order reduction / Méthodes de type Lanczos rationnel pour la réduction de modèlesBarkouki, Houda 22 December 2016 (has links)
La solution numérique des systèmes dynamiques est un moyen efficace pour étudier des phénomènes physiques complexes. Cependant, dans un cadre à grande échelle, la dimension du système rend les calculs infaisables en raison des limites de mémoire et de temps, ainsi que le mauvais conditionnement. La solution de ce problème est la réduction de modèles. Cette thèse porte sur les méthodes de projection pour construire efficacement des modèles d'ordre inférieur à partir des systèmes linéaires dynamiques de grande taille. En particulier, nous nous intéressons à la projection sur la réunion de plusieurs sous-espaces de Krylov standard qui conduit à une classe de modèles d'ordre réduit. Cette méthode est connue par l'interpolation rationnelle. En se basant sur ce cadre théorique qui relie la projection de Krylov à l'interpolation rationnelle, quatre algorithmes de type Lanczos rationnel pour la réduction de modèles sont proposés. Dans un premier temps, nous avons introduit une méthode adaptative de type Lanczos rationnel par block pour réduire l'ordre des systèmes linéaires dynamiques de grande taille, cette méthode est basée sur l'algorithme de Lanczos rationnel par block et une méthode adaptative pour choisir les points d'interpolation. Une généralisation de ce premier algorithme est également donnée, où différentes multiplicités sont considérées pour chaque point d'interpolation. Ensuite, nous avons proposé une autre extension de la méthode du sous-espace de Krylov standard pour les systèmes à plusieurs-entrées plusieurs-sorties, qui est le sous-espace de Krylov global. Nous avons obtenu des équations qui décrivent cette procédure. Finalement, nous avons proposé une méthode de Lanczos étendu par block et nous avons établi de nouvelles propriétés algébriques pour cet algorithme. L'efficacité et la précision de tous les algorithmes proposés, appliqués sur des problèmes de réduction de modèles, sont testées dans plusieurs exemples numériques. / Numerical solution of dynamical systems have been a successful means for studying complex physical phenomena. However, in large-scale setting, the system dimension makes the computations infeasible due to memory and time limitations, and ill-conditioning. The remedy of this problem is model reductions. This dissertations focuses on projection methods to efficiently construct reduced order models for large linear dynamical systems. Especially, we are interesting by projection onto unions of Krylov subspaces which lead to a class of reduced order models known as rational interpolation. Based on this theoretical framework that relate Krylov projection to rational interpolation, four rational Lanczos-type algorithms for model reduction are proposed. At first, an adaptative rational block Lanczos-type method for reducing the order of large scale dynamical systems is introduced, based on a rational block Lanczos algorithm and an adaptive approach for choosing the interpolation points. A generalization of the first algorithm is also given where different multiplicities are consider for each interpolation point. Next, we proposed another extension of the standard Krylov subspace method for Multiple-Input Multiple-Output (MIMO) systems, which is the global Krylov subspace, and we obtained also some equations that describe this process. Finally, an extended block Lanczos method is introduced and new algebraic properties for this algorithm are also given. The accuracy and the efficiency of all proposed algorithms when applied to model order reduction problem are tested by means of different numerical experiments that use a collection of well known benchmark examples.
|
13 |
A rational SHIRA method for the Hamiltonian eigenvalue problemBenner, Peter, Effenberger, Cedric 07 January 2009 (has links)
The SHIRA method of Mehrmann and Watkins belongs among the structure preserving Krylov subspace methods for solving skew-Hamiltonian eigenvalue problems. It can also be applied to Hamiltonian eigenproblems by considering a suitable transformation. Structure induced shift-and-invert techniques are employed to steer the algorithm towards the interesting region of the spectrum. However, the shift cannot be altered in the middle of the computation without discarding the information that has been accumulated so far. This paper shows how SHIRA can be combined with ideas from Ruhe's Rational Krylov algorithm to yield a method that permits an adjustment of shift after every step of the computation, adding greatly to the flexibility of the algorithm. We call this new method rational SHIRA. A numerical example is presented to demonstrate its efficiency.
|
14 |
Rational Krylov Methods for Operator FunctionsGüttel, Stefan 26 March 2010 (has links) (PDF)
We present a unified and self-contained treatment of rational Krylov methods for approximating the product of a function of a linear operator with a vector. With the help of general rational Krylov decompositions we reveal the connections between seemingly different approximation methods, such as the Rayleigh–Ritz or shift-and-invert method, and derive new methods, for example a restarted rational Krylov method and a related method based on rational interpolation in prescribed nodes. Various theorems known for polynomial Krylov spaces are generalized to the rational Krylov case. Computational issues, such as the computation of so-called matrix Rayleigh quotients or parallel variants of rational Arnoldi algorithms, are discussed. We also present novel estimates for the error arising from inexact linear system solves and the approximation error of the Rayleigh–Ritz method. Rational Krylov methods involve several parameters and we discuss their optimal choice by considering the underlying rational approximation problems. In particular, we present different classes of optimal parameters and collect formulas for the associated convergence rates. Often the parameters leading to best convergence rates are not optimal in terms of computation time required by the resulting rational Krylov method. We explain this observation and present new approaches for computing parameters that are preferable for computations. We give a heuristic explanation of superlinear convergence effects observed with the Rayleigh–Ritz method, utilizing a new theory of the convergence of rational Ritz values. All theoretical results are tested and illustrated by numerical examples. Numerous links to the historical and recent literature are included.
|
15 |
Rational Krylov Methods for Operator FunctionsGüttel, Stefan 12 March 2010 (has links)
We present a unified and self-contained treatment of rational Krylov methods for approximating the product of a function of a linear operator with a vector. With the help of general rational Krylov decompositions we reveal the connections between seemingly different approximation methods, such as the Rayleigh–Ritz or shift-and-invert method, and derive new methods, for example a restarted rational Krylov method and a related method based on rational interpolation in prescribed nodes. Various theorems known for polynomial Krylov spaces are generalized to the rational Krylov case. Computational issues, such as the computation of so-called matrix Rayleigh quotients or parallel variants of rational Arnoldi algorithms, are discussed. We also present novel estimates for the error arising from inexact linear system solves and the approximation error of the Rayleigh–Ritz method. Rational Krylov methods involve several parameters and we discuss their optimal choice by considering the underlying rational approximation problems. In particular, we present different classes of optimal parameters and collect formulas for the associated convergence rates. Often the parameters leading to best convergence rates are not optimal in terms of computation time required by the resulting rational Krylov method. We explain this observation and present new approaches for computing parameters that are preferable for computations. We give a heuristic explanation of superlinear convergence effects observed with the Rayleigh–Ritz method, utilizing a new theory of the convergence of rational Ritz values. All theoretical results are tested and illustrated by numerical examples. Numerous links to the historical and recent literature are included.
|
Page generated in 0.0633 seconds