• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 324
  • 210
  • 41
  • 31
  • 29
  • 12
  • 11
  • 8
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 813
  • 813
  • 813
  • 200
  • 196
  • 194
  • 160
  • 134
  • 113
  • 101
  • 76
  • 70
  • 62
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Efeitos dos ácidos graxos sobre a morte de células endoteliais. / Effects of fatty acids on endothelial cell death.

Masi, Laureane Nunes 03 September 2010 (has links)
Foram avaliados: morte celular, conteúdo intracelular de NO e produção de ERO, em células endoteliais (ECV-304). Foram estudados os ácidos graxos: esteárico (SA) a 150 <font face=\"Symbol\">mM, oléico (OA) a 300 <font face=\"Symbol\">mM e linoléico (LA), gama-linolênico (<font face=\"Symbol\">gA), EPA e DHA a 50 e 100 <font face=\"Symbol\">mM. O SA induziu morte em 17,8 % das células, aumentou 99,2 % as ERO e não alterou o NO. O SA com os AG <font face=\"Symbol\">w-3 não alterou a morte induzida pelo SA. O DHA a 50 <font face=\"Symbol\">mM com o SA diminuiu 58 % o NO e EPA a 50 e 100 <font face=\"Symbol\">mM reduziu 78,4 % e 50%, respectivamente. O SA com DHA e EPA a 100 <font face=\"Symbol\">mM diminuiu as ERO em 20 %. Os AG <font face=\"Symbol\">w-6 (LA e <font face=\"Symbol\">gA) aboliram a morte induzida pelo SA. O LA a 100 <font face=\"Symbol\">mM aumentou o NO em 32,5 % e esse a 50 e 100 <font face=\"Symbol\">m M reduziu 50 % e 67 %, respectivamente, as ERO. O OA não alterou a viabilidade celular e as ERO, mas diminuiu o NO em 57 %. O OA com os AG <font face=\"Symbol\">w-3 e <font face=\"Symbol\">w-6 causou morte em 84 % das células, reduziu o NO em 60 % sem alterar as ERO. Assim, AG <font face=\"Symbol\">w-6 protegem contra a morte induzida por AG saturado. O OA não é tóxico mesmo em altas concentrações. Contudo, quando associado aos AG <font face=\"Symbol\">w-3 e <font face=\"Symbol\">w-6 pode causar citotoxicidade. / The parameters examined were: cell death, intracellular content of NO and production of ROS, on endothelial cells (ECV-304). The fatty acids studied were: stearic (SA) at 150 <font face=\"Symbol\">mM, oleic (OA) at 300 <font face=\"Symbol\">mM, linoleic (LA), gamma-linolenic (<font face=\"Symbol\">gA), EPA and DHA at 50 and 100 <font face=\"Symbol\">mM. SA led 17.8% of cells to death, increased by 99.2% ROS and did not alter the NO. SA with <font face=\"Symbol\">w-3 PUFA did not alter dead cells induced by SA. DHA at 50 <font face=\"Symbol\">mM plus SA decreased NO by 58% and EPA at 50 e 100 <font face=\"Symbol\">mM reduced by 78.4% and 50%, respectively. SA with DHA or EPA at 100 <font face=\"Symbol\">mM decreased ROS at 20 %. <font face=\"Symbol\">w-6 PUFA, LA and <font face=\"Symbol\">gA, abolished cell death induced by SA. LA at 100 <font face=\"Symbol\">mM increased NO by 32.5% and this PUFA at 50 e 100 <font face=\"Symbol\">mM decreased ROS by 50% and 67%, respectively. OA did not alter cell viability and ROS but decreased the NO by 57%. OA with <font face=\"Symbol\">w-3 and <font face=\"Symbol\">w-6 PUFA increased dead cells to 84 %, decreased NO by 60 % and did not alter ROS. Thus, <font face=\"Symbol\">w-6 PUFA protect against cell death induced by saturated FA. OA is not toxic even at high concentrations. However, when associated with PUFA (<font face=\"Symbol\">w-3 e <font face=\"Symbol\">w-6) OA causes cytotoxicity.
522

Propriedades redox de canais de potássio mitocondriais ATP-sensíveis em cérebro de seu efeito neuroprotetor em excitotoxicidade / Redox Properties of Brain Mitochondrial ATP-Sensitive Potassium Channels and Neuroprotective Effects in Excitotoxicity

Fornazari, Maynara 29 August 2008 (has links)
Muitos estudos demonstram que a abertura de canais de K+ mitocondriais sensíveis à ATP (mitoKATP) previnem contra danos promovidos por isquemia/reperfusão em coração. Em geral, esta proteção envolve mudanças no estado redox mitocondrial. Em cérebro, sabe-se que agonistas farmacológicos de mitoKATP também protegem em modelo de isquemia/reperfusão. Entretanto, os mecanismos envolvidos na prevenção de danos em cérebro ainda não estão claros. O objetivo principal deste trabalho é compreender os efeitos de canais de K+ mitocondriais ATP-sensíveis em tecido cerebral e os mecanismos pelos quais a sua ativação pode proteger contra danos promovidos por excitotoxicidade, uma das principais conseqüências de um evento isquêmico em cérebro. Neste contexto, demonstramos a proteção pelo mitoKATP em modelo de excitotoxicidade induzida pela ativação direta de receptores NMDA, utilizando cultura de células granulosas de cerebelo. Paralelamente a essa proteção, verificamos que a ativação de mitoKATP reduz a geração de espécies reativas de oxigênio (ROS). Em mitocôndrias isoladas, observamos que ROS geradas pela mitocôndria ativam mitoKATP cerebral, resultando em um aumento da captação de K+ para a matriz, medida através da técnica de inchamento mitocondrial. Em condições de baixa geração de ROS, a adição de H2O2 exógeno ativa o inchamento mitocondrial em resposta à entrada de K+ de modo prevenido por catalase, assim, confirmando que a atividade desses canais é redox-sensível. A ativação de mitoKATP por agonistas farmacológicos, como diazóxido, também é maior na presença de alta geração de ROS, conforme indicado por uma leve diminuição no potencial de membrana mitocondrial. Interessantemente, a adição de um redutor tiólico, 2-mercaptopropionilglicina (MPG) previne a ativação de mitoKATP. A ativação de mitoKATP não alterou a capacidade de captar Ca2+ pela mitocôndria, demonstrando que este não é o mecanismo pelo qual esses canais previnem morte celular excitotóxica. Não foram observados efeitos desses canais em modelo de excitotoxicidade in vivo e em modelo de doença neurodegenerativa, acidose metilmalônica. Juntos, nossos resultados demonstram que mitoKATP cerebrais agem como sensores de ROS mitocondrial, que quando ativados reduzem a liberação de ROS por um leve desacoplamento, prevenindo morte neuronal por excitotoxicidade NMDA-induzida / Several studies have shown that mitochondrial ATP-sensitive K+ channel (mitoKATP) opening prevents ischemia/reperfusion injuries in heart, in a manner involving changes in redox state. In brain, mitoKATP agonists also protect against ischemia/reperfusion. However, the exactly mechanism that mitoKATP protects the brain is still unclear. The purpose of this work is to understand the effects of mitochondrial ATP-sensitive K+ channels in brain and how this channel can protect against excitotoxic cell death, the main consequence of a cerebral ischemia. In this context, we demonstrate that mitoKATP protects against excitotoxicity promoted by NMDA receptor activation in cultured cerebellar granule cells. In paralell, we verified that mitoKATP activation also decreases reactive oxygen species (ROS). In isolated mitochondria, we observed that mitochondrially-generated ROS can activate brain mitoKATP, resulting in enhanced K+ uptake into the matrix, measured as swelling of the organelle. Under conditions in which mitochondrial ROS release is low, exogenous H2O2 activated swelling secondary to K+ entrance, in a manner prevented by catalase, confirming that the activity of this channel is redox-sensitive. Activation of mitoKATP channels by the pharmacological agonist diazoxide was also improved when endogenous mitochondrial ROS release was enhanced, as indicated by mild decreases in mitochondrial membrane potentials. Interessantly, mitoKATP activation was preveted by the thiol reductant 2-mercaptopropionylglycine (MPG). Mitochondrial Ca2+ uptake was not modified by opening mitoKATP, suggesting that this is not the mechanism through which this channel prevents excitotoxic cell death. In an in vivo excitotoxicity model and also neurodegenerative disease model, methylmalonic acidemia, the effects of mitoKATP agonists were not observed. Together, our results demonstrate that brain mitoKATP acts as a mitochondrial ROS sensor, which, when activated, prevents ROS release by mildly uncoupling respiration from oxidative phosphorylation, decreasing excitotoxic cell death
523

Estudo do efeito do extrato de nim (Azadirachta indica) em cultura de células de Rubus fruticosus. / Study of the effects of neem (Azadirachta indica) extract in Rubus fruticosus cell culture.

Gumiero, Viviane Cristina 18 November 2008 (has links)
O nim (Azadirachta indica) é conhecido na Ásia devido a várias propriedades biológicas conhecidas desde a antigüidade. Os estudos referentes à ação inseticida dessa planta restringem-se a análise de seus mecanismos de ação sobre insetos e também de seus efeitos sobre trabalhadores rurais que fazem uso de produtos a base de nim; não havendo, na literatura pesquisada, trabalhos relativos aos impactos causados sobre o sistema vegetal. As plantas, assim como outros organismos, possuem a capacidade de se defenderem contra ataque de patógenos. Uma das respostas desencadeadas pelo reconhecimento do patógeno pelas células vegetais é a reação de hipersensibilidade (RH), que envolve a morte imediata das células do sítio primário de infecção, oferecendo resistência ao crescimento do patógeno. A RH é caracterizada pela necrose dos tecidos onde primeiro se manifestou a infecção, e este processo de morte celular programada envolve uma série de sinais que ainda não estão completamente elucidados. Neste trabalho, foram estabelecidas as condições do meio de cultura de células de Rubus fruticosus para os estudos com extrato de sementes de nim, avaliado o efeito elicitor deste sobre a cultura. Foram obtidos extratos hidroalcoólicos E1 e E2 e suas respectivas frações lioflizadas, L1 e L2. Estes extratos apresentaram maior teor de açúcares e lipídeos em sua composição e revelaram potencial antioxidante. Detectou-se a presença de AZA-A em L1 e L2, por meio de CLAE, cujos teores foram de 5,03 e 1,1 mg/mL, respectivamente, com tempo de retenção em torno de 9,5 minutos, confirmado por meio de análises via espectrometria de massas. O extrato L2 foi fracionado nas frações L2 inicial e AZA2. O extrato L2, nas concentrações de 0,1; 0,5; 1 e 5 mg/mL, e destas frações AZA2 e L2 inicial nas proporções do extrato L2 nestas concentrações, elicitaram células de Rubus fruticosus. O extrato L2, nas concentrações de 0,1; 0,5; 1 e 5 mg/mL, e suas frações AZA2 e L2 inicial nas proporções do extrato L2 nestas concentrações, elicitaram células de Rubus fruticosus. As células de Rubus fruticosus (1,8g) foram incubadas em tampão citrato de sódio contendo o extrato L2 e as frações L2 inicial e AZA2, separadamente, até a concentração de 5 mg/mL, por 1h, em temperatura ambiente. Após este período, os compostos fenólicos, proteínas e açúcares redutores foram determinados no meio extracelular e intracelular por métodos colorimétricos. O efeito destas frações e do extrato L2, na produção de EROs em células intactas de Rubus fruticosus, foi analisado usando a sonda diacetato 2,7-diclorofluoresceína (LEE et al., 1999; MURATA et al., 2001). Os resultados obtidos indicam que AZA isolada não teve efeito sobre respostas de defesa. A fração L2 inicial teve aumento de fenólicos intracelulares, de açúcares redutores extracelulares e diminuição de EROs, com o aumento da concentração do elicitor, indicando potencial antioxidante e mecanismo de defesa. O extrato L2 também demonstrou potencial antioxidante e protetor das células com o aumento da concentração do elicitor, além de possuir ação inseticida. / The neem (Azadirachta indica) is known in Asia due to their several biological properties. The studies on the insecticide action of neem extracts have only been restrict to the insect mechanisms and their effects on rural workers; studies on the impact in the vegetable system are not available. The plants, like the other organisms, have the ability to self-defend against attack of patogens. The hypersensitive response (RH), a type of programmed cell death (PCD) in plants, is triggered by plant cells when they recognize the patogen, and is characterized by necrosis of tissues in the local region surrounding the infection; the signals involved are still not completely elucidated. The present study evaluated the effects of neem extracts in Rubus fruticosus cell. The powdered seeds were submitted to two consecutive extractions with ethanol:water (1:1, v/v) at room temperature for 10 minutes, yielding E1 and E2 fractions. The solvent was evaporated and the aqueous extracts were concentrated and lyophilized, resulting in two samples, L1 and L2. They are used for analyses by high performance liquid chromatograph (HPLC) in C-18 column (4.6 x 250 mm), with acetonitrile-water (4:6 v/v) as mobile phase, flow rate 1 mL/min, monitored at 214 nm. The principal compound of this fraction was azadirachtin (5.03 and 1.1 mg/mL, respectively), the retention time was 9.5 min; it was confirmed using mass spectrophotometry. The L2 extract was partially fractionated by high performance liquid chromatograph (HPLC) in semi preparative C-18 column. The main fractions, analyzed by colorimetric methods, ESI-MS, were L2 initial and AZA2. The Rubus fruticosus cells (18-21 days; 1.8 g) were incubated in sodium citrate buffer containing L2, L2 initial ans AZA2 at concentrations up to 5 mg/mL, for 1h, at room temperature. After this period, the phenolic compounds, proteins and reducing sugar were determined in the extracellular and intracellular medium by colorimetric methods. Also, the effects of these fractions over the production of reactive oxygen species (ROS) in intact cell of Rubus fruticosus, was analyzed using 2,7-dichloro-fluorescein diacetate. AZA2 had no effect on the defense response. The initial L2 fraction increased the phenolic compounds in the intracellular medium and the reducing sugars in the extracellular medium. The same fraction showed an inhibitory effect on ROS and also increased the concentration of the elicitor. These results indicate the antioxidant potential and protector effect of the L2 initial. The L2 extract also demonstrated antioxidant and protective potential of cells with the increase of the elicitor concentration. Therefore, in parallel with its insecticide action, the neem extract contributes to the self-defense ability of the plants.
524

Regulation of C-reactive Protein Gene Expression and Function

Thirumalai, Avinash N 01 December 2014 (has links)
Human C-reactive protein (CRP) is the prototypic acute phase protein whose serum concentration increases rapidly during inflammation. CRP is also associated with atherosclerosis; it is deposited at lesion sites where it may interact with modified lipoproteins. There are 2 major questions regarding CRP: 1. How is the serum concentration of CRP regulated? 2. What are the functions of CRP in atherosclerosis? Our first aim was to determine the role of the constitutively expressed transcription factor Oct-1 in regulating CRP gene expression. We found that Oct-1 overexpression inhibited (IL-6+IL-1β)- induced CRP gene expression; maximal inhibition required the binding of Oct-1 to an octamer motif at (-59 to -66) on the CRP promoter. Oct-1 overexpression inhibited both (IL-6+IL-1β)- induced and C/EBPβ-induced CRP gene expression even when the Oct-1 site was deleted. These findings suggest that Oct-1 is a repressor of CRP gene expression that acts via binding to its cognate site on the CRP promoter as well as through indirect interactions with other promoterbound transcription factors. Our second aim was to investigate the interaction of CRP with oxidized low density lipoprotein (ox-LDL). Acidic pH, a hallmark of atherosclerotic lesions, reversibly alters CRP structure and exposes a hidden binding site that enables CRP to bind ox-LDL. Using site-directed mutagenesis we constructed a CRP mutant (E42Q) that showed significant binding to ox-LDL at physiological pH. E42Q CRP required a less acidic pH for maximal binding and bound ox-LDL more efficiently than wild type CRP at any pH. We then examined if reactive oxygen species also induced CRP – ox-LDL interaction. H2O2-treated CRP bound ox-LDL at physiological pH. Like acidic pH, H2O2-treatment induced only a local structural change exposing the ox-LDL binding site. E42Q and H2O2-modified CRP are tools to study the function of CRP in animal models of atherosclerosis, which may not have an inflammatory environment sufficient to modify CRP and induce binding to atherogenic ox-LDL. We conclude that Oct-1 is one of the critical regulators of CRP gene expression, and that CRP can be modified in vitro to convert it into an atherogenic LDL-binding molecule.
525

FUNCTIONALIZATION OF IRON OXIDE NANOPARTICLES AND THE IMPACT ON SURFACE REACTIVE OXYGEN SPECIES GENERATION FOR POTENTIAL BIOMEDICAL AND ENVIRONMENTAL APPLICATIONS

Mai, Trang 01 January 2019 (has links)
Iron oxide nanoparticles (IONPs) have been widely studied for a variety of applications, from biomedical applications (e.g., cell separation, drug delivery, contrast agent for magnetic resonance imaging and magnetically mediated energy delivery for cancer treatment) to environmental remediations (e.g., heavy metal removal and organic pollutants degradation). It has been demonstrated that IONPs can induce the production of reactive oxygen species (ROS) via Fenton/Haber-Weiss reactions which has been shown to be one of the key underlying mechanisms of nanoparticles toxicity. This inherent toxicity of nanoparticles has been shown to enhance the efficacy of traditional cancer therapies such as chemotherapy and radiation. In addition, the generation of ROS induced by IONPs has been also studied as advanced oxidation processes (AOP) for wastewater treatment. Recent research has also shown that exposure to an alternating magnetic field can significantly enhance the generation of ROS induced by IONPs. Moreover, the coatings of IONPs play an important role on the surface reactivity of nanoparticles since it can prevent the generation of ROS via Fenton chemistries at the surface of the nanoparticles. In this work, co-precipitated IONPs were functionalized with small molecules including citric acid, sodium phosphate, amino silane and dopamine. The impact of coating on surface reactivity of the as-synthesized particles was studied using methylene blue dye degradation assay under AMF exposure. With the coatings of these small molecules, the IONPs induced ROS generation was significantly decreased because of the dense surface coverage. To study the effect of polymeric coatings, a degradable poly (beta amino ester) (PBAE) polymer coating was synthesized with dopamine as an anchor to bind to nanoparticles. The surface reactivity of the particles was expected to be recovered once the polymer coating was degraded. Furthermore, the impact of non-degradable PEG-based polymer coating on surface reactivity via ROS generation was also investigated using methylene blue decolorization assay with the presence of AMF. The retention of surface reactivity of PEG-based polymer coated IONPs shows promise for cancer treatment. The application of IONPs as heterogeneous catalyst for organic contaminant degradation was investigated. Bisphenol A (BPA) was used as a model compound, and Fenton reactions were induced by IONPs with the presence of hydrogen peroxide and hydroxylamine as well as alternating magnetic field exposure. The kinetics of BPA degradation under water bath and AMF exposure at 37oC was also studied, and the results showed potential applications of IONPs for organic pollutants remediation.
526

Chemically Induced DNA Damage in Extended-term Cultures of Human Lymphocytes

Andersson, Maria January 2006 (has links)
<p>Generation of DNA damage is regarded to be an important initial event in the development cancer. Consequently, a battery of tests have been developed to detect different types of genotoxic effects in order to be able to predict the potential genotoxicity and mutagenicity of chemicals, including both pharmaceutical drugs and various types of environmental and occupational agents, as well as dietary factors. The aim of this thesis was to evaluate whether the combination of the comet assay and the extended-term cultures of human lymphocytes (ETC) can be used as an alternative <i>in vitro</i> system to more commonly used transformed mammalian cell lines, and primary cell cultures from humans, when testing the potential genotoxicity of chemicals. </p><p>Using the comet assay, a panel of reference compounds showed that the ETC were found to detect the DNA-damaging effects with no remarkable difference to what has been reported in other cell types. Moreover, in comparison with a well-established rodent cell line, the mouse lymphoma L5178Y cells, the ETC showed similar sensitivity to the DNA damaging effects of the genotoxic agents hydrogen peroxide and catechol. Although there was an interindividual variation in induced DNA damage and the subsequent repair when using ETC from different blood donors, it did not seem to be of crucial importance for the identification of DNA-damaging agents. The demonstrated difference in sensitivity to catechol-induced DNA damage between freshly isolated peripheral lymphocytes and ETC may very well be due to their different proliferative status but despite this difference, both <i>in vitro</i> systems were able to identify catechol as a DNA-damaging agent at the same concentration.</p><p>Based on these results, it is proposed that the ETC and the comet assay are a useful combination when testing for the potential DNA damaging effects of chemicals. Representing easily cultivated cells possessing the normal human karyotype, where one blood sample can be used for numerous experiments performed over a long time, extended-term cultures appear to be a useful alternative, both to transformed mammalian cell lines, and primary cell cultures from humans. In fact, the extended-term lymphocytes, with or without S9 and/or lesion specific DNA repair enzymes, should be used more frequently when screening for the potential genotoxicity of chemicals.</p>
527

Effects of dietary fat and fiber on the oxidative status of the small intestine and colon of rats

Sanders, Lisa Merle 16 August 2006 (has links)
Colon cancer is one of the most commonly diagnosed cancers in the US, yet small intestine cancer is a rare event. While there are many similarities between these two tissues, inherent differences such as redox status, may contribute to the variation in cancer occurrence. We examined the difference in reactive oxygen species (ROS) generation, antioxidant enzyme activity and oxidative DNA damage in the small and large intestine of rats under normal conditions and following exposure to exogenous oxidative stress. Basal ROS and antioxidant enzyme activities were greater in the colon than the small intestine, and the balance of ROS to antioxidant enzymes in the colon was more pro-oxidant than in the small intestine. During oxidative stress, ROS and oxidative DNA damage were greater in the colon than the small intestine. Thus the colon responds to oxidative stress less effectively than the small intestine, possibly contributing to increased cancer incidence at this site. We next wanted to understand how diets containing a combination of fish or corn oil and pectin or cellulose may alter the redox environment of the colon. ROS, oxidative DNA damage, antioxidant enzyme activity and apoptosis were measured in colonocytes of rats fed one of four diets containing either corn oil or fish oil and cellulose or pectin. Measurements were madein rats untreated with carcinogen and rats exposed to a chemical carcinogen and radiation. In rats not treated with a carcinogen, fish oil enhanced ROS, and fish oil/pectin suppressed antioxidant enzymes as compared to corn oil/cellulose. Oxidative DNA damage was inversely related to ROS in the fish oil/pectin diet and apoptosis was enhanced relative to other diets. In carcinogen treated and irradiated rats, a similar protective effect was seen with fish oil/pectin as evidenced by a reduction in oxidative DNA damage and enhancement of apoptosis. This suggests that a diet containing fish oil/pectin may protect against colon carcinogenesis by modulation of the redox environment to promote apoptosis and minimize oxidative DNA damage.
528

Chemically Induced DNA Damage in Extended-term Cultures of Human Lymphocytes

Andersson, Maria January 2006 (has links)
Generation of DNA damage is regarded to be an important initial event in the development cancer. Consequently, a battery of tests have been developed to detect different types of genotoxic effects in order to be able to predict the potential genotoxicity and mutagenicity of chemicals, including both pharmaceutical drugs and various types of environmental and occupational agents, as well as dietary factors. The aim of this thesis was to evaluate whether the combination of the comet assay and the extended-term cultures of human lymphocytes (ETC) can be used as an alternative in vitro system to more commonly used transformed mammalian cell lines, and primary cell cultures from humans, when testing the potential genotoxicity of chemicals. Using the comet assay, a panel of reference compounds showed that the ETC were found to detect the DNA-damaging effects with no remarkable difference to what has been reported in other cell types. Moreover, in comparison with a well-established rodent cell line, the mouse lymphoma L5178Y cells, the ETC showed similar sensitivity to the DNA damaging effects of the genotoxic agents hydrogen peroxide and catechol. Although there was an interindividual variation in induced DNA damage and the subsequent repair when using ETC from different blood donors, it did not seem to be of crucial importance for the identification of DNA-damaging agents. The demonstrated difference in sensitivity to catechol-induced DNA damage between freshly isolated peripheral lymphocytes and ETC may very well be due to their different proliferative status but despite this difference, both in vitro systems were able to identify catechol as a DNA-damaging agent at the same concentration. Based on these results, it is proposed that the ETC and the comet assay are a useful combination when testing for the potential DNA damaging effects of chemicals. Representing easily cultivated cells possessing the normal human karyotype, where one blood sample can be used for numerous experiments performed over a long time, extended-term cultures appear to be a useful alternative, both to transformed mammalian cell lines, and primary cell cultures from humans. In fact, the extended-term lymphocytes, with or without S9 and/or lesion specific DNA repair enzymes, should be used more frequently when screening for the potential genotoxicity of chemicals.
529

Studies On The Roles Of Intracellular Ca2+ And Reactive Oxygen Species During CD4+ T Cell Activation : Influence Of Signal Strength

Ahmed, Asma 07 1900 (has links)
Optimal CD4+ T cell activation is key to the generation of a productive immune response. Naïve circulating CD4+ T cells are quiescent under normal conditions and undergo activation only upon encounter of the T cell receptor (TCR) with Major Histocompatibility Complex (MHC)-encoded class II molecules on antigen presenting cells (APCs). Processed antigens (derived from pathogens, tumors or self tissue during autoimmunity) in complex with MHC class II are recognized by specific TCRs on CD4+ T cells. After this encounter, the highly complex and regulated process of CD4+ T cell activation results in the differentiation of naïve T cells into effectors and their clonal expansion. Apart from binding to its cognate peptide-MHC-II complex, several other factors define the extent and magnitude of T cell activation. This context is an important determinant of the nature of the subsequent T cell response. One of the factors involved is the strength of the signal (SOS) which is delivered to the cell upon ligation of the TCR to the MHC-peptide complex. The SOS, which can vary from weak to strong, is determined by the affinity/avidity of the TCR for the MHC-peptide complex, antigen concentrations, the duration of engagement, etc. Extreme weak or strong signals can lead to non-productive T cell responses with the former resulting mostly in anergy and the latter in cell death. Signals of optimal strength are the ones that translate into functional T cell responses. However, mechanisms by which signal strength information is translated into distinct T cell responses are still not very well understood. Binding of the TCR to the MHC-peptide complex triggers several signaling cascades and leads to generation of intracellular signaling intermediates, including Ca2+. Rise in intracellular Ca2+ levels is one of the first events to occur upon initiation of T cell activation. The initial increase is brought about due to release of Ca2+ from intracellular smooth endoplasmic reticulum stores. Once intracellular stores have been emptied, the increase is sustained by a process termed as capacitative Ca2+ entry, involving opening of Ca2+ channels in the plasma membrane known as Ca2+ release activated channels (CRACs). Consequently, Ca2+ flows from the extracellular milieu into the cell. A sustained Ca2+ increase is essential for activation of the transcription factor, NF-AT whose primary job is to initiate transcription of IL-2, a cytokine crucial for CD4+ T cell proliferation. The other intracellular signaling intermediates which are the focus of work presented in this study are reactive oxygen species (ROS). TCR signaling leads to generation of ROS, which may be either mitogenic or detrimental to T cell activation. Low levels of ROS, especially H2O2, inactivate phosphatases leading to activation of kinases and signaling pathways resulting in increased proliferation. However, high levels of ROS cause oxidative stress leading to reduced T cell activation, hyporesponsiveness and death. The experimental system used for this study consists of purified mouse lymph node CD4+ T cells. These cells were activated with varying strengths of the primary signal to better understand the roles of Ca2+ and ROS in modulating T cell activation and function. The signal strength was either varied by addition of different concentrations of ionomycin or thapsigargin, pharmacological agents that increase intracellular Ca2+ concentrations. Alternatively, signal through the surface TCR-CD3 complex was initiated using anti-CD3 in two modes: soluble (weak signal) or plate immobilized (strong signal). Increasing concentrations of ionomycin or thapsigargin or changing the mode of anti-CD3 from soluble to plate bound enhances IL-2 amounts, thereby converting a weak signal to a strong one. The work presented has been divided into three parts, each dealing with a distinct aspect of T cell activation. I. SOS and CTLA4-CD80/CD86 interactions: The binding of the TCR to its cognate MHC-peptide complex delivers the primary signal. However, this alone is not sufficient to drive T cell activation and an additional costimulatory signal emanating from the binding of CD28, a constitutively expressed receptor on T cells, to its ligands CD80 and CD86 is required. Another receptor that binds to CD80 and CD86 is CTLA-4 although it does so with a ~100 fold higher affinity. CTLA-4, unlike CD28, is expressed upon T cell activation and is considered to downregulate T cell activation. Its role as a negative regulator is highlighted by the phenotype of Ctla4 -/-mice which die of massive lymphoproliferation. However, there have also been reports of some plasticity in the effects mediated by CTLA-4. Previous work from our laboratory showed that CTLA-4-CD80/CD86 interactions could either inhibit or stimulate T cell activation depending on the SOS. To identify the molecular mediators of the differential effects of CTLA-4, the role of Ca2+ and ROS was evaluated. During activation with phorbol myristate acetate (PMA) and low amounts of ionomycin, intracellular amounts of Ca2+ were greatly reduced upon blockade of CTLA-4-CD80/CD86 interactions. Further experiments demonstrated that CTLA4-CD80/CD86 interactions reduced cell cycling upon activation with PMA and high amounts of ionomycin or thapsigargin (strong SOS) but the opposite occurred with PMA and low amounts of ionomycin or thapsigargin (weak SOS). These results were confirmed by activating cells with anti-CD3 either in the soluble or plate bound form. Considerably higher amounts of intracellular Ca2+ were present in cells activated with plate bound anti-CD3 compared to those activated with soluble anti-CD3. These amounts, further augmented by CTLA-4-CD80/CD86 interactions, probably became toxic to cells as increased proliferation was observed, using reagents that blocked these interactions. The opposite, however, was seen in cells activated with soluble anti-CD3. Also, CTLA4-CD80/CD86 interactions enhanced the generation of ROS. Studies with catalase revealed that H2O2 is required for IL-2 production and cell cycle progression during activation with a weak SOS. However, the high amounts of ROS produced during activation with a strong SOS reduced cell cycle progression. Together, this study identifies intracellular Ca2+ and ROS to play important roles in the modulation of T cell responses by CTLA4-CD80/CD86 interactions. II. SOS and CD4 downregulation: This study was initiated to identify early T cell functional responses that would help predict the strength of the primary signal. Using the in vitro culture system of varying signal strengths, it was found that CD4 surface expression was controlled by signal strength. CD4 is a surface glycoprotein expressed on the TH subset along with the TCR. It performs two main functions: First, binding to MHC class II and strengthening the TCR-MHC interaction, i.e. functioning as a coreceptor. Second, due to its association with p56lck a src family tyrosine kinase, the presence of CD4 along with the TCR enhances signal transduction. Also, CD4 acts as a receptor for entry for the AIDS virus. It is known that CD4 is downregulated from the surface and degraded upon T cell activation by a protein kinase-C dependent process in human and mouse T cells. Experiments presented in this study showed increased CD4 downregulation with a strong signal. The roles of intracellular mediators were assessed and high intracellular Ca2+ amounts, but not PMA activation, was required for sustained CD4 downregulation. Also, increased H2O2 amounts in cells activated with a strong SOS inhibited CD4 downregulation. Most interestingly, the pattern of CD4 downregulation was different between peripheral T cells and thymocytes, suggesting a correlation with CD4+ T cell development. III. Modulation of CD4+ T cell activation by small molecule plant growth regulators: An important area of investigation in T cell biology is the identification of molecules that modulate T cell activation. Towards this end, the mechanisms by which small molecule plant growth regulators, naphthalene acetic acid (NAA), 2,4 dichlorophenoxyacetic acid (2,4D) and indole acetic acid (IAA), influence CD4+ T cell activation was studied. It is useful to recall that IAA is the natural auxin present in plants, NAA is a synthetic auxin and 2,4D is a herbicide. These compounds, but not structurally similar control molecules, increased the activation and IL-2 production in CD4+ T cells activated with either soluble anti-CD3 or a combination of PMA and ionomycin. An investigation into the mechanisms of action by these compounds revealed increased early generation of intracellular ROS and Ca2+. Interestingly, the nature of their effects was found to rely on the strength of the primary signal: IL-2 and proliferation were increased in cells activated with a weak signal, but lowered proliferation was observed in cells activated with a strong signal. Cells activated with strong signal posses high amounts of ROS and Ca2+ and further increase in their amounts by IAA, NAA and 2,4D resulted in growth suppression. However, augmentation of Ca2+ and ROS amounts in cells activated with a weak signal was mitogenic. The role of these compounds during in vivo T cell responses needs to be addressed. Taken together, results presented in this study emphasize the importance of the role of SOS in determining T cell responses. In addition, the roles of Ca2+ and ROS downstream of the primary signal in modulating CD4+ T cell activation were demonstrated.
530

Energy Metabolic Stress Syndrome : Impact of Physical Activity of Different Intensity and Duration

Branth, Stefan January 2006 (has links)
All living cell functions require an ongoing supply of energy derived from carbohydrates, lipids and proteins with their own pathways of breakdown. All of them end up in the oxidation of reduced coenzymes, yielding chemically-bound energy in the form of adenosine triphosphate (ATP). One broad definition of energy would be the capability to do work and, therefore, the more work that has to be done, the more energy is needed, which may under extreme conditions put the cell into a state of energy metabolic stress. This complex of problems has been examined in the present thesis, where individuals representing different degrees of training status, have been subjected to various types of stressful work-loads as regards intensity and duration. Meanwhile, the energy turnover has been monitored on different levels as whole body (organism)-, single organ/tissue-, cellular and molecular levels. Combined methodologies have been developed and utilized to examine carefully and in some detail energy expenditure and biochemical variables with study subjects under long-term, (outfield) physically and mentally stressful conditions. When the individuals were in a well-controlled energy balance, a diet rich in saturated fatty acids did not elicit any major metabolic stress signs concerning serum lipoproteins and/or insulin/glucose homeostasis during the test period including high volume and low intensity energy turn over. Only a slight decrease in the Apo-B / Apo-A1 ratio was observed, despite a period of totally sedentary life style among the participants. Mental stress combined with a varying energy balance during off-shore sailing races was shown to cause such an energy metabolic stress situation that development of abdominal obesity and signs of a metabolic syndrome in embryo affected the participants who were young, non-obese men and despite their fairly healthy lifestyle concerning the diet they were on and their physical activity habits. Even well-trained young individuals of both sexes, subjected to exhaustive endurance (high intensity exercise session), developed signs of insulin resistance with a deteriorated intracellular glucose availability leading to a supposed ion pump failure and a disturbed osmoregulation on a cellular level. Hence, they presented themselves as having acquired an energy metabolic stress like condition. In conclusion, an energy metabolic stress syndrome has been described, basically due to impaired fuelling of ion pumps with a cluster of signs and symptoms on single organ/tissue-, cellular and molecular levels manifested by muscular intracellular swelling, tendency towards erythrocyte shrinkage as a consequence of a relative insulin resistance concomitant with ion distribution disturbances (Gardos effect), oxidative stress and osmoregulatory taurine leakage.

Page generated in 0.0597 seconds